Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: None
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
99     real             *vftab;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     vftab            = kernel_data->table_vdw->data;
120     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm_setzero_ps();
155         fiy0             = _mm_setzero_ps();
156         fiz0             = _mm_setzero_ps();
157
158         /* Load parameters for i particles */
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         vvdwsum          = _mm_setzero_ps();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               x+j_coord_offsetC,x+j_coord_offsetD,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_ps(ix0,jx0);
185             dy00             = _mm_sub_ps(iy0,jy0);
186             dz00             = _mm_sub_ps(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
190
191             rinv00           = gmx_mm_invsqrt_ps(rsq00);
192
193             /* Load parameters for j particles */
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196             vdwjidx0C        = 2*vdwtype[jnrC+0];
197             vdwjidx0D        = 2*vdwtype[jnrD+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             r00              = _mm_mul_ps(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
207                                          vdwparam+vdwioffset0+vdwjidx0B,
208                                          vdwparam+vdwioffset0+vdwjidx0C,
209                                          vdwparam+vdwioffset0+vdwjidx0D,
210                                          &c6_00,&c12_00);
211
212             /* Calculate table index by multiplying r with table scale and truncate to integer */
213             rt               = _mm_mul_ps(r00,vftabscale);
214             vfitab           = _mm_cvttps_epi32(rt);
215 #ifdef __XOP__
216             vfeps            = _mm_frcz_ps(rt);
217 #else
218             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
219 #endif
220             twovfeps         = _mm_add_ps(vfeps,vfeps);
221             vfitab           = _mm_slli_epi32(vfitab,3);
222
223             /* CUBIC SPLINE TABLE DISPERSION */
224             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
225             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
226             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
227             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
228             _MM_TRANSPOSE4_PS(Y,F,G,H);
229             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
230             VV               = _mm_macc_ps(vfeps,Fp,Y);
231             vvdw6            = _mm_mul_ps(c6_00,VV);
232             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
233             fvdw6            = _mm_mul_ps(c6_00,FF);
234
235             /* CUBIC SPLINE TABLE REPULSION */
236             vfitab           = _mm_add_epi32(vfitab,ifour);
237             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
238             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
239             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
240             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
241             _MM_TRANSPOSE4_PS(Y,F,G,H);
242             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
243             VV               = _mm_macc_ps(vfeps,Fp,Y);
244             vvdw12           = _mm_mul_ps(c12_00,VV);
245             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
246             fvdw12           = _mm_mul_ps(c12_00,FF);
247             vvdw             = _mm_add_ps(vvdw12,vvdw6);
248             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
252
253             fscal            = fvdw;
254
255              /* Update vectorial force */
256             fix0             = _mm_macc_ps(dx00,fscal,fix0);
257             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
258             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
259
260             fjptrA             = f+j_coord_offsetA;
261             fjptrB             = f+j_coord_offsetB;
262             fjptrC             = f+j_coord_offsetC;
263             fjptrD             = f+j_coord_offsetD;
264             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
265                                                    _mm_mul_ps(dx00,fscal),
266                                                    _mm_mul_ps(dy00,fscal),
267                                                    _mm_mul_ps(dz00,fscal));
268
269             /* Inner loop uses 59 flops */
270         }
271
272         if(jidx<j_index_end)
273         {
274
275             /* Get j neighbor index, and coordinate index */
276             jnrlistA         = jjnr[jidx];
277             jnrlistB         = jjnr[jidx+1];
278             jnrlistC         = jjnr[jidx+2];
279             jnrlistD         = jjnr[jidx+3];
280             /* Sign of each element will be negative for non-real atoms.
281              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
282              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
283              */
284             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
285             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
286             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
287             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
288             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
289             j_coord_offsetA  = DIM*jnrA;
290             j_coord_offsetB  = DIM*jnrB;
291             j_coord_offsetC  = DIM*jnrC;
292             j_coord_offsetD  = DIM*jnrD;
293
294             /* load j atom coordinates */
295             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
296                                               x+j_coord_offsetC,x+j_coord_offsetD,
297                                               &jx0,&jy0,&jz0);
298
299             /* Calculate displacement vector */
300             dx00             = _mm_sub_ps(ix0,jx0);
301             dy00             = _mm_sub_ps(iy0,jy0);
302             dz00             = _mm_sub_ps(iz0,jz0);
303
304             /* Calculate squared distance and things based on it */
305             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
306
307             rinv00           = gmx_mm_invsqrt_ps(rsq00);
308
309             /* Load parameters for j particles */
310             vdwjidx0A        = 2*vdwtype[jnrA+0];
311             vdwjidx0B        = 2*vdwtype[jnrB+0];
312             vdwjidx0C        = 2*vdwtype[jnrC+0];
313             vdwjidx0D        = 2*vdwtype[jnrD+0];
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             r00              = _mm_mul_ps(rsq00,rinv00);
320             r00              = _mm_andnot_ps(dummy_mask,r00);
321
322             /* Compute parameters for interactions between i and j atoms */
323             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
324                                          vdwparam+vdwioffset0+vdwjidx0B,
325                                          vdwparam+vdwioffset0+vdwjidx0C,
326                                          vdwparam+vdwioffset0+vdwjidx0D,
327                                          &c6_00,&c12_00);
328
329             /* Calculate table index by multiplying r with table scale and truncate to integer */
330             rt               = _mm_mul_ps(r00,vftabscale);
331             vfitab           = _mm_cvttps_epi32(rt);
332 #ifdef __XOP__
333             vfeps            = _mm_frcz_ps(rt);
334 #else
335             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
336 #endif
337             twovfeps         = _mm_add_ps(vfeps,vfeps);
338             vfitab           = _mm_slli_epi32(vfitab,3);
339
340             /* CUBIC SPLINE TABLE DISPERSION */
341             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
342             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
343             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
344             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
345             _MM_TRANSPOSE4_PS(Y,F,G,H);
346             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
347             VV               = _mm_macc_ps(vfeps,Fp,Y);
348             vvdw6            = _mm_mul_ps(c6_00,VV);
349             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
350             fvdw6            = _mm_mul_ps(c6_00,FF);
351
352             /* CUBIC SPLINE TABLE REPULSION */
353             vfitab           = _mm_add_epi32(vfitab,ifour);
354             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
355             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
356             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
357             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
358             _MM_TRANSPOSE4_PS(Y,F,G,H);
359             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
360             VV               = _mm_macc_ps(vfeps,Fp,Y);
361             vvdw12           = _mm_mul_ps(c12_00,VV);
362             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
363             fvdw12           = _mm_mul_ps(c12_00,FF);
364             vvdw             = _mm_add_ps(vvdw12,vvdw6);
365             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
369             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
370
371             fscal            = fvdw;
372
373             fscal            = _mm_andnot_ps(dummy_mask,fscal);
374
375              /* Update vectorial force */
376             fix0             = _mm_macc_ps(dx00,fscal,fix0);
377             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
378             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
379
380             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
381             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
382             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
383             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
384             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
385                                                    _mm_mul_ps(dx00,fscal),
386                                                    _mm_mul_ps(dy00,fscal),
387                                                    _mm_mul_ps(dz00,fscal));
388
389             /* Inner loop uses 60 flops */
390         }
391
392         /* End of innermost loop */
393
394         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
395                                               f+i_coord_offset,fshift+i_shift_offset);
396
397         ggid                        = gid[iidx];
398         /* Update potential energies */
399         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
400
401         /* Increment number of inner iterations */
402         inneriter                  += j_index_end - j_index_start;
403
404         /* Outer loop uses 7 flops */
405     }
406
407     /* Increment number of outer iterations */
408     outeriter        += nri;
409
410     /* Update outer/inner flops */
411
412     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*60);
413 }
414 /*
415  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_single
416  * Electrostatics interaction: None
417  * VdW interaction:            CubicSplineTable
418  * Geometry:                   Particle-Particle
419  * Calculate force/pot:        Force
420  */
421 void
422 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_single
423                     (t_nblist                    * gmx_restrict       nlist,
424                      rvec                        * gmx_restrict          xx,
425                      rvec                        * gmx_restrict          ff,
426                      t_forcerec                  * gmx_restrict          fr,
427                      t_mdatoms                   * gmx_restrict     mdatoms,
428                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
429                      t_nrnb                      * gmx_restrict        nrnb)
430 {
431     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
432      * just 0 for non-waters.
433      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
434      * jnr indices corresponding to data put in the four positions in the SIMD register.
435      */
436     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
437     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
438     int              jnrA,jnrB,jnrC,jnrD;
439     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
440     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
441     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
442     real             rcutoff_scalar;
443     real             *shiftvec,*fshift,*x,*f;
444     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
445     real             scratch[4*DIM];
446     __m128           fscal,rcutoff,rcutoff2,jidxall;
447     int              vdwioffset0;
448     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
449     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
450     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
451     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
452     int              nvdwtype;
453     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
454     int              *vdwtype;
455     real             *vdwparam;
456     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
457     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
458     __m128i          vfitab;
459     __m128i          ifour       = _mm_set1_epi32(4);
460     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
461     real             *vftab;
462     __m128           dummy_mask,cutoff_mask;
463     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
464     __m128           one     = _mm_set1_ps(1.0);
465     __m128           two     = _mm_set1_ps(2.0);
466     x                = xx[0];
467     f                = ff[0];
468
469     nri              = nlist->nri;
470     iinr             = nlist->iinr;
471     jindex           = nlist->jindex;
472     jjnr             = nlist->jjnr;
473     shiftidx         = nlist->shift;
474     gid              = nlist->gid;
475     shiftvec         = fr->shift_vec[0];
476     fshift           = fr->fshift[0];
477     nvdwtype         = fr->ntype;
478     vdwparam         = fr->nbfp;
479     vdwtype          = mdatoms->typeA;
480
481     vftab            = kernel_data->table_vdw->data;
482     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
483
484     /* Avoid stupid compiler warnings */
485     jnrA = jnrB = jnrC = jnrD = 0;
486     j_coord_offsetA = 0;
487     j_coord_offsetB = 0;
488     j_coord_offsetC = 0;
489     j_coord_offsetD = 0;
490
491     outeriter        = 0;
492     inneriter        = 0;
493
494     for(iidx=0;iidx<4*DIM;iidx++)
495     {
496         scratch[iidx] = 0.0;
497     }
498
499     /* Start outer loop over neighborlists */
500     for(iidx=0; iidx<nri; iidx++)
501     {
502         /* Load shift vector for this list */
503         i_shift_offset   = DIM*shiftidx[iidx];
504
505         /* Load limits for loop over neighbors */
506         j_index_start    = jindex[iidx];
507         j_index_end      = jindex[iidx+1];
508
509         /* Get outer coordinate index */
510         inr              = iinr[iidx];
511         i_coord_offset   = DIM*inr;
512
513         /* Load i particle coords and add shift vector */
514         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
515
516         fix0             = _mm_setzero_ps();
517         fiy0             = _mm_setzero_ps();
518         fiz0             = _mm_setzero_ps();
519
520         /* Load parameters for i particles */
521         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
522
523         /* Start inner kernel loop */
524         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
525         {
526
527             /* Get j neighbor index, and coordinate index */
528             jnrA             = jjnr[jidx];
529             jnrB             = jjnr[jidx+1];
530             jnrC             = jjnr[jidx+2];
531             jnrD             = jjnr[jidx+3];
532             j_coord_offsetA  = DIM*jnrA;
533             j_coord_offsetB  = DIM*jnrB;
534             j_coord_offsetC  = DIM*jnrC;
535             j_coord_offsetD  = DIM*jnrD;
536
537             /* load j atom coordinates */
538             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
539                                               x+j_coord_offsetC,x+j_coord_offsetD,
540                                               &jx0,&jy0,&jz0);
541
542             /* Calculate displacement vector */
543             dx00             = _mm_sub_ps(ix0,jx0);
544             dy00             = _mm_sub_ps(iy0,jy0);
545             dz00             = _mm_sub_ps(iz0,jz0);
546
547             /* Calculate squared distance and things based on it */
548             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
549
550             rinv00           = gmx_mm_invsqrt_ps(rsq00);
551
552             /* Load parameters for j particles */
553             vdwjidx0A        = 2*vdwtype[jnrA+0];
554             vdwjidx0B        = 2*vdwtype[jnrB+0];
555             vdwjidx0C        = 2*vdwtype[jnrC+0];
556             vdwjidx0D        = 2*vdwtype[jnrD+0];
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             r00              = _mm_mul_ps(rsq00,rinv00);
563
564             /* Compute parameters for interactions between i and j atoms */
565             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
566                                          vdwparam+vdwioffset0+vdwjidx0B,
567                                          vdwparam+vdwioffset0+vdwjidx0C,
568                                          vdwparam+vdwioffset0+vdwjidx0D,
569                                          &c6_00,&c12_00);
570
571             /* Calculate table index by multiplying r with table scale and truncate to integer */
572             rt               = _mm_mul_ps(r00,vftabscale);
573             vfitab           = _mm_cvttps_epi32(rt);
574 #ifdef __XOP__
575             vfeps            = _mm_frcz_ps(rt);
576 #else
577             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
578 #endif
579             twovfeps         = _mm_add_ps(vfeps,vfeps);
580             vfitab           = _mm_slli_epi32(vfitab,3);
581
582             /* CUBIC SPLINE TABLE DISPERSION */
583             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
584             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
585             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
586             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
587             _MM_TRANSPOSE4_PS(Y,F,G,H);
588             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
589             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
590             fvdw6            = _mm_mul_ps(c6_00,FF);
591
592             /* CUBIC SPLINE TABLE REPULSION */
593             vfitab           = _mm_add_epi32(vfitab,ifour);
594             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
595             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
596             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
597             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
598             _MM_TRANSPOSE4_PS(Y,F,G,H);
599             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
600             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
601             fvdw12           = _mm_mul_ps(c12_00,FF);
602             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
603
604             fscal            = fvdw;
605
606              /* Update vectorial force */
607             fix0             = _mm_macc_ps(dx00,fscal,fix0);
608             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
609             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
610
611             fjptrA             = f+j_coord_offsetA;
612             fjptrB             = f+j_coord_offsetB;
613             fjptrC             = f+j_coord_offsetC;
614             fjptrD             = f+j_coord_offsetD;
615             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
616                                                    _mm_mul_ps(dx00,fscal),
617                                                    _mm_mul_ps(dy00,fscal),
618                                                    _mm_mul_ps(dz00,fscal));
619
620             /* Inner loop uses 51 flops */
621         }
622
623         if(jidx<j_index_end)
624         {
625
626             /* Get j neighbor index, and coordinate index */
627             jnrlistA         = jjnr[jidx];
628             jnrlistB         = jjnr[jidx+1];
629             jnrlistC         = jjnr[jidx+2];
630             jnrlistD         = jjnr[jidx+3];
631             /* Sign of each element will be negative for non-real atoms.
632              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
633              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
634              */
635             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
636             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
637             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
638             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
639             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
640             j_coord_offsetA  = DIM*jnrA;
641             j_coord_offsetB  = DIM*jnrB;
642             j_coord_offsetC  = DIM*jnrC;
643             j_coord_offsetD  = DIM*jnrD;
644
645             /* load j atom coordinates */
646             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
647                                               x+j_coord_offsetC,x+j_coord_offsetD,
648                                               &jx0,&jy0,&jz0);
649
650             /* Calculate displacement vector */
651             dx00             = _mm_sub_ps(ix0,jx0);
652             dy00             = _mm_sub_ps(iy0,jy0);
653             dz00             = _mm_sub_ps(iz0,jz0);
654
655             /* Calculate squared distance and things based on it */
656             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
657
658             rinv00           = gmx_mm_invsqrt_ps(rsq00);
659
660             /* Load parameters for j particles */
661             vdwjidx0A        = 2*vdwtype[jnrA+0];
662             vdwjidx0B        = 2*vdwtype[jnrB+0];
663             vdwjidx0C        = 2*vdwtype[jnrC+0];
664             vdwjidx0D        = 2*vdwtype[jnrD+0];
665
666             /**************************
667              * CALCULATE INTERACTIONS *
668              **************************/
669
670             r00              = _mm_mul_ps(rsq00,rinv00);
671             r00              = _mm_andnot_ps(dummy_mask,r00);
672
673             /* Compute parameters for interactions between i and j atoms */
674             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
675                                          vdwparam+vdwioffset0+vdwjidx0B,
676                                          vdwparam+vdwioffset0+vdwjidx0C,
677                                          vdwparam+vdwioffset0+vdwjidx0D,
678                                          &c6_00,&c12_00);
679
680             /* Calculate table index by multiplying r with table scale and truncate to integer */
681             rt               = _mm_mul_ps(r00,vftabscale);
682             vfitab           = _mm_cvttps_epi32(rt);
683 #ifdef __XOP__
684             vfeps            = _mm_frcz_ps(rt);
685 #else
686             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
687 #endif
688             twovfeps         = _mm_add_ps(vfeps,vfeps);
689             vfitab           = _mm_slli_epi32(vfitab,3);
690
691             /* CUBIC SPLINE TABLE DISPERSION */
692             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
693             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
694             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
695             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
696             _MM_TRANSPOSE4_PS(Y,F,G,H);
697             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
698             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
699             fvdw6            = _mm_mul_ps(c6_00,FF);
700
701             /* CUBIC SPLINE TABLE REPULSION */
702             vfitab           = _mm_add_epi32(vfitab,ifour);
703             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
704             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
705             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
706             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
707             _MM_TRANSPOSE4_PS(Y,F,G,H);
708             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
709             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
710             fvdw12           = _mm_mul_ps(c12_00,FF);
711             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
712
713             fscal            = fvdw;
714
715             fscal            = _mm_andnot_ps(dummy_mask,fscal);
716
717              /* Update vectorial force */
718             fix0             = _mm_macc_ps(dx00,fscal,fix0);
719             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
720             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
721
722             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
723             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
724             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
725             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
726             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
727                                                    _mm_mul_ps(dx00,fscal),
728                                                    _mm_mul_ps(dy00,fscal),
729                                                    _mm_mul_ps(dz00,fscal));
730
731             /* Inner loop uses 52 flops */
732         }
733
734         /* End of innermost loop */
735
736         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
737                                               f+i_coord_offset,fshift+i_shift_offset);
738
739         /* Increment number of inner iterations */
740         inneriter                  += j_index_end - j_index_start;
741
742         /* Outer loop uses 6 flops */
743     }
744
745     /* Increment number of outer iterations */
746     outeriter        += nri;
747
748     /* Update outer/inner flops */
749
750     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*52);
751 }