Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: None
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     int              nvdwtype;
75     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
76     int              *vdwtype;
77     real             *vdwparam;
78     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
79     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
80     __m128i          vfitab;
81     __m128i          ifour       = _mm_set1_epi32(4);
82     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
83     real             *vftab;
84     __m128           dummy_mask,cutoff_mask;
85     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
86     __m128           one     = _mm_set1_ps(1.0);
87     __m128           two     = _mm_set1_ps(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     vftab            = kernel_data->table_vdw->data;
104     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
105
106     /* Avoid stupid compiler warnings */
107     jnrA = jnrB = jnrC = jnrD = 0;
108     j_coord_offsetA = 0;
109     j_coord_offsetB = 0;
110     j_coord_offsetC = 0;
111     j_coord_offsetD = 0;
112
113     outeriter        = 0;
114     inneriter        = 0;
115
116     for(iidx=0;iidx<4*DIM;iidx++)
117     {
118         scratch[iidx] = 0.0;
119     }
120
121     /* Start outer loop over neighborlists */
122     for(iidx=0; iidx<nri; iidx++)
123     {
124         /* Load shift vector for this list */
125         i_shift_offset   = DIM*shiftidx[iidx];
126
127         /* Load limits for loop over neighbors */
128         j_index_start    = jindex[iidx];
129         j_index_end      = jindex[iidx+1];
130
131         /* Get outer coordinate index */
132         inr              = iinr[iidx];
133         i_coord_offset   = DIM*inr;
134
135         /* Load i particle coords and add shift vector */
136         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
137
138         fix0             = _mm_setzero_ps();
139         fiy0             = _mm_setzero_ps();
140         fiz0             = _mm_setzero_ps();
141
142         /* Load parameters for i particles */
143         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145         /* Reset potential sums */
146         vvdwsum          = _mm_setzero_ps();
147
148         /* Start inner kernel loop */
149         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
150         {
151
152             /* Get j neighbor index, and coordinate index */
153             jnrA             = jjnr[jidx];
154             jnrB             = jjnr[jidx+1];
155             jnrC             = jjnr[jidx+2];
156             jnrD             = jjnr[jidx+3];
157             j_coord_offsetA  = DIM*jnrA;
158             j_coord_offsetB  = DIM*jnrB;
159             j_coord_offsetC  = DIM*jnrC;
160             j_coord_offsetD  = DIM*jnrD;
161
162             /* load j atom coordinates */
163             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
164                                               x+j_coord_offsetC,x+j_coord_offsetD,
165                                               &jx0,&jy0,&jz0);
166
167             /* Calculate displacement vector */
168             dx00             = _mm_sub_ps(ix0,jx0);
169             dy00             = _mm_sub_ps(iy0,jy0);
170             dz00             = _mm_sub_ps(iz0,jz0);
171
172             /* Calculate squared distance and things based on it */
173             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
174
175             rinv00           = gmx_mm_invsqrt_ps(rsq00);
176
177             /* Load parameters for j particles */
178             vdwjidx0A        = 2*vdwtype[jnrA+0];
179             vdwjidx0B        = 2*vdwtype[jnrB+0];
180             vdwjidx0C        = 2*vdwtype[jnrC+0];
181             vdwjidx0D        = 2*vdwtype[jnrD+0];
182
183             /**************************
184              * CALCULATE INTERACTIONS *
185              **************************/
186
187             r00              = _mm_mul_ps(rsq00,rinv00);
188
189             /* Compute parameters for interactions between i and j atoms */
190             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
191                                          vdwparam+vdwioffset0+vdwjidx0B,
192                                          vdwparam+vdwioffset0+vdwjidx0C,
193                                          vdwparam+vdwioffset0+vdwjidx0D,
194                                          &c6_00,&c12_00);
195
196             /* Calculate table index by multiplying r with table scale and truncate to integer */
197             rt               = _mm_mul_ps(r00,vftabscale);
198             vfitab           = _mm_cvttps_epi32(rt);
199 #ifdef __XOP__
200             vfeps            = _mm_frcz_ps(rt);
201 #else
202             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
203 #endif
204             twovfeps         = _mm_add_ps(vfeps,vfeps);
205             vfitab           = _mm_slli_epi32(vfitab,3);
206
207             /* CUBIC SPLINE TABLE DISPERSION */
208             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
209             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
210             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
211             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
212             _MM_TRANSPOSE4_PS(Y,F,G,H);
213             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
214             VV               = _mm_macc_ps(vfeps,Fp,Y);
215             vvdw6            = _mm_mul_ps(c6_00,VV);
216             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
217             fvdw6            = _mm_mul_ps(c6_00,FF);
218
219             /* CUBIC SPLINE TABLE REPULSION */
220             vfitab           = _mm_add_epi32(vfitab,ifour);
221             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
222             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
223             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
224             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
225             _MM_TRANSPOSE4_PS(Y,F,G,H);
226             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
227             VV               = _mm_macc_ps(vfeps,Fp,Y);
228             vvdw12           = _mm_mul_ps(c12_00,VV);
229             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
230             fvdw12           = _mm_mul_ps(c12_00,FF);
231             vvdw             = _mm_add_ps(vvdw12,vvdw6);
232             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
233
234             /* Update potential sum for this i atom from the interaction with this j atom. */
235             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
236
237             fscal            = fvdw;
238
239              /* Update vectorial force */
240             fix0             = _mm_macc_ps(dx00,fscal,fix0);
241             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
242             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
243
244             fjptrA             = f+j_coord_offsetA;
245             fjptrB             = f+j_coord_offsetB;
246             fjptrC             = f+j_coord_offsetC;
247             fjptrD             = f+j_coord_offsetD;
248             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
249                                                    _mm_mul_ps(dx00,fscal),
250                                                    _mm_mul_ps(dy00,fscal),
251                                                    _mm_mul_ps(dz00,fscal));
252
253             /* Inner loop uses 59 flops */
254         }
255
256         if(jidx<j_index_end)
257         {
258
259             /* Get j neighbor index, and coordinate index */
260             jnrlistA         = jjnr[jidx];
261             jnrlistB         = jjnr[jidx+1];
262             jnrlistC         = jjnr[jidx+2];
263             jnrlistD         = jjnr[jidx+3];
264             /* Sign of each element will be negative for non-real atoms.
265              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
266              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
267              */
268             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
269             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
270             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
271             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
272             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
273             j_coord_offsetA  = DIM*jnrA;
274             j_coord_offsetB  = DIM*jnrB;
275             j_coord_offsetC  = DIM*jnrC;
276             j_coord_offsetD  = DIM*jnrD;
277
278             /* load j atom coordinates */
279             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
280                                               x+j_coord_offsetC,x+j_coord_offsetD,
281                                               &jx0,&jy0,&jz0);
282
283             /* Calculate displacement vector */
284             dx00             = _mm_sub_ps(ix0,jx0);
285             dy00             = _mm_sub_ps(iy0,jy0);
286             dz00             = _mm_sub_ps(iz0,jz0);
287
288             /* Calculate squared distance and things based on it */
289             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
290
291             rinv00           = gmx_mm_invsqrt_ps(rsq00);
292
293             /* Load parameters for j particles */
294             vdwjidx0A        = 2*vdwtype[jnrA+0];
295             vdwjidx0B        = 2*vdwtype[jnrB+0];
296             vdwjidx0C        = 2*vdwtype[jnrC+0];
297             vdwjidx0D        = 2*vdwtype[jnrD+0];
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             r00              = _mm_mul_ps(rsq00,rinv00);
304             r00              = _mm_andnot_ps(dummy_mask,r00);
305
306             /* Compute parameters for interactions between i and j atoms */
307             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
308                                          vdwparam+vdwioffset0+vdwjidx0B,
309                                          vdwparam+vdwioffset0+vdwjidx0C,
310                                          vdwparam+vdwioffset0+vdwjidx0D,
311                                          &c6_00,&c12_00);
312
313             /* Calculate table index by multiplying r with table scale and truncate to integer */
314             rt               = _mm_mul_ps(r00,vftabscale);
315             vfitab           = _mm_cvttps_epi32(rt);
316 #ifdef __XOP__
317             vfeps            = _mm_frcz_ps(rt);
318 #else
319             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
320 #endif
321             twovfeps         = _mm_add_ps(vfeps,vfeps);
322             vfitab           = _mm_slli_epi32(vfitab,3);
323
324             /* CUBIC SPLINE TABLE DISPERSION */
325             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
326             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
327             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
328             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
329             _MM_TRANSPOSE4_PS(Y,F,G,H);
330             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
331             VV               = _mm_macc_ps(vfeps,Fp,Y);
332             vvdw6            = _mm_mul_ps(c6_00,VV);
333             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
334             fvdw6            = _mm_mul_ps(c6_00,FF);
335
336             /* CUBIC SPLINE TABLE REPULSION */
337             vfitab           = _mm_add_epi32(vfitab,ifour);
338             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
339             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
340             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
341             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
342             _MM_TRANSPOSE4_PS(Y,F,G,H);
343             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
344             VV               = _mm_macc_ps(vfeps,Fp,Y);
345             vvdw12           = _mm_mul_ps(c12_00,VV);
346             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
347             fvdw12           = _mm_mul_ps(c12_00,FF);
348             vvdw             = _mm_add_ps(vvdw12,vvdw6);
349             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
353             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
354
355             fscal            = fvdw;
356
357             fscal            = _mm_andnot_ps(dummy_mask,fscal);
358
359              /* Update vectorial force */
360             fix0             = _mm_macc_ps(dx00,fscal,fix0);
361             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
362             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
363
364             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
365             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
366             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
367             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
368             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
369                                                    _mm_mul_ps(dx00,fscal),
370                                                    _mm_mul_ps(dy00,fscal),
371                                                    _mm_mul_ps(dz00,fscal));
372
373             /* Inner loop uses 60 flops */
374         }
375
376         /* End of innermost loop */
377
378         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
379                                               f+i_coord_offset,fshift+i_shift_offset);
380
381         ggid                        = gid[iidx];
382         /* Update potential energies */
383         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
384
385         /* Increment number of inner iterations */
386         inneriter                  += j_index_end - j_index_start;
387
388         /* Outer loop uses 7 flops */
389     }
390
391     /* Increment number of outer iterations */
392     outeriter        += nri;
393
394     /* Update outer/inner flops */
395
396     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*60);
397 }
398 /*
399  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_single
400  * Electrostatics interaction: None
401  * VdW interaction:            CubicSplineTable
402  * Geometry:                   Particle-Particle
403  * Calculate force/pot:        Force
404  */
405 void
406 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_single
407                     (t_nblist * gmx_restrict                nlist,
408                      rvec * gmx_restrict                    xx,
409                      rvec * gmx_restrict                    ff,
410                      t_forcerec * gmx_restrict              fr,
411                      t_mdatoms * gmx_restrict               mdatoms,
412                      nb_kernel_data_t * gmx_restrict        kernel_data,
413                      t_nrnb * gmx_restrict                  nrnb)
414 {
415     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
416      * just 0 for non-waters.
417      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
418      * jnr indices corresponding to data put in the four positions in the SIMD register.
419      */
420     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
421     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
422     int              jnrA,jnrB,jnrC,jnrD;
423     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
424     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
425     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
426     real             rcutoff_scalar;
427     real             *shiftvec,*fshift,*x,*f;
428     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
429     real             scratch[4*DIM];
430     __m128           fscal,rcutoff,rcutoff2,jidxall;
431     int              vdwioffset0;
432     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
433     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
434     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
435     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
436     int              nvdwtype;
437     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
438     int              *vdwtype;
439     real             *vdwparam;
440     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
441     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
442     __m128i          vfitab;
443     __m128i          ifour       = _mm_set1_epi32(4);
444     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
445     real             *vftab;
446     __m128           dummy_mask,cutoff_mask;
447     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
448     __m128           one     = _mm_set1_ps(1.0);
449     __m128           two     = _mm_set1_ps(2.0);
450     x                = xx[0];
451     f                = ff[0];
452
453     nri              = nlist->nri;
454     iinr             = nlist->iinr;
455     jindex           = nlist->jindex;
456     jjnr             = nlist->jjnr;
457     shiftidx         = nlist->shift;
458     gid              = nlist->gid;
459     shiftvec         = fr->shift_vec[0];
460     fshift           = fr->fshift[0];
461     nvdwtype         = fr->ntype;
462     vdwparam         = fr->nbfp;
463     vdwtype          = mdatoms->typeA;
464
465     vftab            = kernel_data->table_vdw->data;
466     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
467
468     /* Avoid stupid compiler warnings */
469     jnrA = jnrB = jnrC = jnrD = 0;
470     j_coord_offsetA = 0;
471     j_coord_offsetB = 0;
472     j_coord_offsetC = 0;
473     j_coord_offsetD = 0;
474
475     outeriter        = 0;
476     inneriter        = 0;
477
478     for(iidx=0;iidx<4*DIM;iidx++)
479     {
480         scratch[iidx] = 0.0;
481     }
482
483     /* Start outer loop over neighborlists */
484     for(iidx=0; iidx<nri; iidx++)
485     {
486         /* Load shift vector for this list */
487         i_shift_offset   = DIM*shiftidx[iidx];
488
489         /* Load limits for loop over neighbors */
490         j_index_start    = jindex[iidx];
491         j_index_end      = jindex[iidx+1];
492
493         /* Get outer coordinate index */
494         inr              = iinr[iidx];
495         i_coord_offset   = DIM*inr;
496
497         /* Load i particle coords and add shift vector */
498         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
499
500         fix0             = _mm_setzero_ps();
501         fiy0             = _mm_setzero_ps();
502         fiz0             = _mm_setzero_ps();
503
504         /* Load parameters for i particles */
505         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
506
507         /* Start inner kernel loop */
508         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
509         {
510
511             /* Get j neighbor index, and coordinate index */
512             jnrA             = jjnr[jidx];
513             jnrB             = jjnr[jidx+1];
514             jnrC             = jjnr[jidx+2];
515             jnrD             = jjnr[jidx+3];
516             j_coord_offsetA  = DIM*jnrA;
517             j_coord_offsetB  = DIM*jnrB;
518             j_coord_offsetC  = DIM*jnrC;
519             j_coord_offsetD  = DIM*jnrD;
520
521             /* load j atom coordinates */
522             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
523                                               x+j_coord_offsetC,x+j_coord_offsetD,
524                                               &jx0,&jy0,&jz0);
525
526             /* Calculate displacement vector */
527             dx00             = _mm_sub_ps(ix0,jx0);
528             dy00             = _mm_sub_ps(iy0,jy0);
529             dz00             = _mm_sub_ps(iz0,jz0);
530
531             /* Calculate squared distance and things based on it */
532             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
533
534             rinv00           = gmx_mm_invsqrt_ps(rsq00);
535
536             /* Load parameters for j particles */
537             vdwjidx0A        = 2*vdwtype[jnrA+0];
538             vdwjidx0B        = 2*vdwtype[jnrB+0];
539             vdwjidx0C        = 2*vdwtype[jnrC+0];
540             vdwjidx0D        = 2*vdwtype[jnrD+0];
541
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             r00              = _mm_mul_ps(rsq00,rinv00);
547
548             /* Compute parameters for interactions between i and j atoms */
549             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
550                                          vdwparam+vdwioffset0+vdwjidx0B,
551                                          vdwparam+vdwioffset0+vdwjidx0C,
552                                          vdwparam+vdwioffset0+vdwjidx0D,
553                                          &c6_00,&c12_00);
554
555             /* Calculate table index by multiplying r with table scale and truncate to integer */
556             rt               = _mm_mul_ps(r00,vftabscale);
557             vfitab           = _mm_cvttps_epi32(rt);
558 #ifdef __XOP__
559             vfeps            = _mm_frcz_ps(rt);
560 #else
561             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
562 #endif
563             twovfeps         = _mm_add_ps(vfeps,vfeps);
564             vfitab           = _mm_slli_epi32(vfitab,3);
565
566             /* CUBIC SPLINE TABLE DISPERSION */
567             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
568             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
569             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
570             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
571             _MM_TRANSPOSE4_PS(Y,F,G,H);
572             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
573             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
574             fvdw6            = _mm_mul_ps(c6_00,FF);
575
576             /* CUBIC SPLINE TABLE REPULSION */
577             vfitab           = _mm_add_epi32(vfitab,ifour);
578             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
579             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
580             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
581             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
582             _MM_TRANSPOSE4_PS(Y,F,G,H);
583             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
584             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
585             fvdw12           = _mm_mul_ps(c12_00,FF);
586             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
587
588             fscal            = fvdw;
589
590              /* Update vectorial force */
591             fix0             = _mm_macc_ps(dx00,fscal,fix0);
592             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
593             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
594
595             fjptrA             = f+j_coord_offsetA;
596             fjptrB             = f+j_coord_offsetB;
597             fjptrC             = f+j_coord_offsetC;
598             fjptrD             = f+j_coord_offsetD;
599             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
600                                                    _mm_mul_ps(dx00,fscal),
601                                                    _mm_mul_ps(dy00,fscal),
602                                                    _mm_mul_ps(dz00,fscal));
603
604             /* Inner loop uses 51 flops */
605         }
606
607         if(jidx<j_index_end)
608         {
609
610             /* Get j neighbor index, and coordinate index */
611             jnrlistA         = jjnr[jidx];
612             jnrlistB         = jjnr[jidx+1];
613             jnrlistC         = jjnr[jidx+2];
614             jnrlistD         = jjnr[jidx+3];
615             /* Sign of each element will be negative for non-real atoms.
616              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
617              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
618              */
619             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
620             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
621             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
622             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
623             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
624             j_coord_offsetA  = DIM*jnrA;
625             j_coord_offsetB  = DIM*jnrB;
626             j_coord_offsetC  = DIM*jnrC;
627             j_coord_offsetD  = DIM*jnrD;
628
629             /* load j atom coordinates */
630             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
631                                               x+j_coord_offsetC,x+j_coord_offsetD,
632                                               &jx0,&jy0,&jz0);
633
634             /* Calculate displacement vector */
635             dx00             = _mm_sub_ps(ix0,jx0);
636             dy00             = _mm_sub_ps(iy0,jy0);
637             dz00             = _mm_sub_ps(iz0,jz0);
638
639             /* Calculate squared distance and things based on it */
640             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
641
642             rinv00           = gmx_mm_invsqrt_ps(rsq00);
643
644             /* Load parameters for j particles */
645             vdwjidx0A        = 2*vdwtype[jnrA+0];
646             vdwjidx0B        = 2*vdwtype[jnrB+0];
647             vdwjidx0C        = 2*vdwtype[jnrC+0];
648             vdwjidx0D        = 2*vdwtype[jnrD+0];
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             r00              = _mm_mul_ps(rsq00,rinv00);
655             r00              = _mm_andnot_ps(dummy_mask,r00);
656
657             /* Compute parameters for interactions between i and j atoms */
658             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
659                                          vdwparam+vdwioffset0+vdwjidx0B,
660                                          vdwparam+vdwioffset0+vdwjidx0C,
661                                          vdwparam+vdwioffset0+vdwjidx0D,
662                                          &c6_00,&c12_00);
663
664             /* Calculate table index by multiplying r with table scale and truncate to integer */
665             rt               = _mm_mul_ps(r00,vftabscale);
666             vfitab           = _mm_cvttps_epi32(rt);
667 #ifdef __XOP__
668             vfeps            = _mm_frcz_ps(rt);
669 #else
670             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
671 #endif
672             twovfeps         = _mm_add_ps(vfeps,vfeps);
673             vfitab           = _mm_slli_epi32(vfitab,3);
674
675             /* CUBIC SPLINE TABLE DISPERSION */
676             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
677             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
678             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
679             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
680             _MM_TRANSPOSE4_PS(Y,F,G,H);
681             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
682             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
683             fvdw6            = _mm_mul_ps(c6_00,FF);
684
685             /* CUBIC SPLINE TABLE REPULSION */
686             vfitab           = _mm_add_epi32(vfitab,ifour);
687             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
688             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
689             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
690             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
691             _MM_TRANSPOSE4_PS(Y,F,G,H);
692             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
693             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
694             fvdw12           = _mm_mul_ps(c12_00,FF);
695             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
696
697             fscal            = fvdw;
698
699             fscal            = _mm_andnot_ps(dummy_mask,fscal);
700
701              /* Update vectorial force */
702             fix0             = _mm_macc_ps(dx00,fscal,fix0);
703             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
704             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
705
706             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
707             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
708             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
709             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
710             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
711                                                    _mm_mul_ps(dx00,fscal),
712                                                    _mm_mul_ps(dy00,fscal),
713                                                    _mm_mul_ps(dz00,fscal));
714
715             /* Inner loop uses 52 flops */
716         }
717
718         /* End of innermost loop */
719
720         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
721                                               f+i_coord_offset,fshift+i_shift_offset);
722
723         /* Increment number of inner iterations */
724         inneriter                  += j_index_end - j_index_start;
725
726         /* Outer loop uses 6 flops */
727     }
728
729     /* Increment number of outer iterations */
730     outeriter        += nri;
731
732     /* Update outer/inner flops */
733
734     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*52);
735 }