2a4265fef2666e7629848be77e331976214c1967
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: None
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     int              nvdwtype;
89     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
93     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
94     __m128i          vfitab;
95     __m128i          ifour       = _mm_set1_epi32(4);
96     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
97     real             *vftab;
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     vftab            = kernel_data->table_vdw->data;
118     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = jnrC = jnrD = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124     j_coord_offsetC = 0;
125     j_coord_offsetD = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     for(iidx=0;iidx<4*DIM;iidx++)
131     {
132         scratch[iidx] = 0.0;
133     }
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _mm_setzero_ps();
153         fiy0             = _mm_setzero_ps();
154         fiz0             = _mm_setzero_ps();
155
156         /* Load parameters for i particles */
157         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
158
159         /* Reset potential sums */
160         vvdwsum          = _mm_setzero_ps();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173             j_coord_offsetC  = DIM*jnrC;
174             j_coord_offsetD  = DIM*jnrD;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               x+j_coord_offsetC,x+j_coord_offsetD,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_ps(ix0,jx0);
183             dy00             = _mm_sub_ps(iy0,jy0);
184             dz00             = _mm_sub_ps(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
188
189             rinv00           = gmx_mm_invsqrt_ps(rsq00);
190
191             /* Load parameters for j particles */
192             vdwjidx0A        = 2*vdwtype[jnrA+0];
193             vdwjidx0B        = 2*vdwtype[jnrB+0];
194             vdwjidx0C        = 2*vdwtype[jnrC+0];
195             vdwjidx0D        = 2*vdwtype[jnrD+0];
196
197             /**************************
198              * CALCULATE INTERACTIONS *
199              **************************/
200
201             r00              = _mm_mul_ps(rsq00,rinv00);
202
203             /* Compute parameters for interactions between i and j atoms */
204             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
205                                          vdwparam+vdwioffset0+vdwjidx0B,
206                                          vdwparam+vdwioffset0+vdwjidx0C,
207                                          vdwparam+vdwioffset0+vdwjidx0D,
208                                          &c6_00,&c12_00);
209
210             /* Calculate table index by multiplying r with table scale and truncate to integer */
211             rt               = _mm_mul_ps(r00,vftabscale);
212             vfitab           = _mm_cvttps_epi32(rt);
213 #ifdef __XOP__
214             vfeps            = _mm_frcz_ps(rt);
215 #else
216             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
217 #endif
218             twovfeps         = _mm_add_ps(vfeps,vfeps);
219             vfitab           = _mm_slli_epi32(vfitab,3);
220
221             /* CUBIC SPLINE TABLE DISPERSION */
222             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
223             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
224             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
225             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
226             _MM_TRANSPOSE4_PS(Y,F,G,H);
227             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
228             VV               = _mm_macc_ps(vfeps,Fp,Y);
229             vvdw6            = _mm_mul_ps(c6_00,VV);
230             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
231             fvdw6            = _mm_mul_ps(c6_00,FF);
232
233             /* CUBIC SPLINE TABLE REPULSION */
234             vfitab           = _mm_add_epi32(vfitab,ifour);
235             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
236             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
237             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
238             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
239             _MM_TRANSPOSE4_PS(Y,F,G,H);
240             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
241             VV               = _mm_macc_ps(vfeps,Fp,Y);
242             vvdw12           = _mm_mul_ps(c12_00,VV);
243             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
244             fvdw12           = _mm_mul_ps(c12_00,FF);
245             vvdw             = _mm_add_ps(vvdw12,vvdw6);
246             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
250
251             fscal            = fvdw;
252
253              /* Update vectorial force */
254             fix0             = _mm_macc_ps(dx00,fscal,fix0);
255             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
256             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
257
258             fjptrA             = f+j_coord_offsetA;
259             fjptrB             = f+j_coord_offsetB;
260             fjptrC             = f+j_coord_offsetC;
261             fjptrD             = f+j_coord_offsetD;
262             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
263                                                    _mm_mul_ps(dx00,fscal),
264                                                    _mm_mul_ps(dy00,fscal),
265                                                    _mm_mul_ps(dz00,fscal));
266
267             /* Inner loop uses 59 flops */
268         }
269
270         if(jidx<j_index_end)
271         {
272
273             /* Get j neighbor index, and coordinate index */
274             jnrlistA         = jjnr[jidx];
275             jnrlistB         = jjnr[jidx+1];
276             jnrlistC         = jjnr[jidx+2];
277             jnrlistD         = jjnr[jidx+3];
278             /* Sign of each element will be negative for non-real atoms.
279              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
280              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
281              */
282             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
283             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
284             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
285             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
286             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
287             j_coord_offsetA  = DIM*jnrA;
288             j_coord_offsetB  = DIM*jnrB;
289             j_coord_offsetC  = DIM*jnrC;
290             j_coord_offsetD  = DIM*jnrD;
291
292             /* load j atom coordinates */
293             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
294                                               x+j_coord_offsetC,x+j_coord_offsetD,
295                                               &jx0,&jy0,&jz0);
296
297             /* Calculate displacement vector */
298             dx00             = _mm_sub_ps(ix0,jx0);
299             dy00             = _mm_sub_ps(iy0,jy0);
300             dz00             = _mm_sub_ps(iz0,jz0);
301
302             /* Calculate squared distance and things based on it */
303             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
304
305             rinv00           = gmx_mm_invsqrt_ps(rsq00);
306
307             /* Load parameters for j particles */
308             vdwjidx0A        = 2*vdwtype[jnrA+0];
309             vdwjidx0B        = 2*vdwtype[jnrB+0];
310             vdwjidx0C        = 2*vdwtype[jnrC+0];
311             vdwjidx0D        = 2*vdwtype[jnrD+0];
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             r00              = _mm_mul_ps(rsq00,rinv00);
318             r00              = _mm_andnot_ps(dummy_mask,r00);
319
320             /* Compute parameters for interactions between i and j atoms */
321             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
322                                          vdwparam+vdwioffset0+vdwjidx0B,
323                                          vdwparam+vdwioffset0+vdwjidx0C,
324                                          vdwparam+vdwioffset0+vdwjidx0D,
325                                          &c6_00,&c12_00);
326
327             /* Calculate table index by multiplying r with table scale and truncate to integer */
328             rt               = _mm_mul_ps(r00,vftabscale);
329             vfitab           = _mm_cvttps_epi32(rt);
330 #ifdef __XOP__
331             vfeps            = _mm_frcz_ps(rt);
332 #else
333             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
334 #endif
335             twovfeps         = _mm_add_ps(vfeps,vfeps);
336             vfitab           = _mm_slli_epi32(vfitab,3);
337
338             /* CUBIC SPLINE TABLE DISPERSION */
339             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
340             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
341             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
342             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
343             _MM_TRANSPOSE4_PS(Y,F,G,H);
344             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
345             VV               = _mm_macc_ps(vfeps,Fp,Y);
346             vvdw6            = _mm_mul_ps(c6_00,VV);
347             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
348             fvdw6            = _mm_mul_ps(c6_00,FF);
349
350             /* CUBIC SPLINE TABLE REPULSION */
351             vfitab           = _mm_add_epi32(vfitab,ifour);
352             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
353             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
354             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
355             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
356             _MM_TRANSPOSE4_PS(Y,F,G,H);
357             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
358             VV               = _mm_macc_ps(vfeps,Fp,Y);
359             vvdw12           = _mm_mul_ps(c12_00,VV);
360             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
361             fvdw12           = _mm_mul_ps(c12_00,FF);
362             vvdw             = _mm_add_ps(vvdw12,vvdw6);
363             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
367             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
368
369             fscal            = fvdw;
370
371             fscal            = _mm_andnot_ps(dummy_mask,fscal);
372
373              /* Update vectorial force */
374             fix0             = _mm_macc_ps(dx00,fscal,fix0);
375             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
376             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
377
378             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
379             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
380             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
381             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
382             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
383                                                    _mm_mul_ps(dx00,fscal),
384                                                    _mm_mul_ps(dy00,fscal),
385                                                    _mm_mul_ps(dz00,fscal));
386
387             /* Inner loop uses 60 flops */
388         }
389
390         /* End of innermost loop */
391
392         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
393                                               f+i_coord_offset,fshift+i_shift_offset);
394
395         ggid                        = gid[iidx];
396         /* Update potential energies */
397         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
398
399         /* Increment number of inner iterations */
400         inneriter                  += j_index_end - j_index_start;
401
402         /* Outer loop uses 7 flops */
403     }
404
405     /* Increment number of outer iterations */
406     outeriter        += nri;
407
408     /* Update outer/inner flops */
409
410     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*60);
411 }
412 /*
413  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_single
414  * Electrostatics interaction: None
415  * VdW interaction:            CubicSplineTable
416  * Geometry:                   Particle-Particle
417  * Calculate force/pot:        Force
418  */
419 void
420 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_single
421                     (t_nblist                    * gmx_restrict       nlist,
422                      rvec                        * gmx_restrict          xx,
423                      rvec                        * gmx_restrict          ff,
424                      t_forcerec                  * gmx_restrict          fr,
425                      t_mdatoms                   * gmx_restrict     mdatoms,
426                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
427                      t_nrnb                      * gmx_restrict        nrnb)
428 {
429     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
430      * just 0 for non-waters.
431      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
432      * jnr indices corresponding to data put in the four positions in the SIMD register.
433      */
434     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
435     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
436     int              jnrA,jnrB,jnrC,jnrD;
437     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
438     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
439     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
440     real             rcutoff_scalar;
441     real             *shiftvec,*fshift,*x,*f;
442     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
443     real             scratch[4*DIM];
444     __m128           fscal,rcutoff,rcutoff2,jidxall;
445     int              vdwioffset0;
446     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
447     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
448     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
449     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
450     int              nvdwtype;
451     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
452     int              *vdwtype;
453     real             *vdwparam;
454     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
455     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
456     __m128i          vfitab;
457     __m128i          ifour       = _mm_set1_epi32(4);
458     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
459     real             *vftab;
460     __m128           dummy_mask,cutoff_mask;
461     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
462     __m128           one     = _mm_set1_ps(1.0);
463     __m128           two     = _mm_set1_ps(2.0);
464     x                = xx[0];
465     f                = ff[0];
466
467     nri              = nlist->nri;
468     iinr             = nlist->iinr;
469     jindex           = nlist->jindex;
470     jjnr             = nlist->jjnr;
471     shiftidx         = nlist->shift;
472     gid              = nlist->gid;
473     shiftvec         = fr->shift_vec[0];
474     fshift           = fr->fshift[0];
475     nvdwtype         = fr->ntype;
476     vdwparam         = fr->nbfp;
477     vdwtype          = mdatoms->typeA;
478
479     vftab            = kernel_data->table_vdw->data;
480     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
481
482     /* Avoid stupid compiler warnings */
483     jnrA = jnrB = jnrC = jnrD = 0;
484     j_coord_offsetA = 0;
485     j_coord_offsetB = 0;
486     j_coord_offsetC = 0;
487     j_coord_offsetD = 0;
488
489     outeriter        = 0;
490     inneriter        = 0;
491
492     for(iidx=0;iidx<4*DIM;iidx++)
493     {
494         scratch[iidx] = 0.0;
495     }
496
497     /* Start outer loop over neighborlists */
498     for(iidx=0; iidx<nri; iidx++)
499     {
500         /* Load shift vector for this list */
501         i_shift_offset   = DIM*shiftidx[iidx];
502
503         /* Load limits for loop over neighbors */
504         j_index_start    = jindex[iidx];
505         j_index_end      = jindex[iidx+1];
506
507         /* Get outer coordinate index */
508         inr              = iinr[iidx];
509         i_coord_offset   = DIM*inr;
510
511         /* Load i particle coords and add shift vector */
512         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
513
514         fix0             = _mm_setzero_ps();
515         fiy0             = _mm_setzero_ps();
516         fiz0             = _mm_setzero_ps();
517
518         /* Load parameters for i particles */
519         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
520
521         /* Start inner kernel loop */
522         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
523         {
524
525             /* Get j neighbor index, and coordinate index */
526             jnrA             = jjnr[jidx];
527             jnrB             = jjnr[jidx+1];
528             jnrC             = jjnr[jidx+2];
529             jnrD             = jjnr[jidx+3];
530             j_coord_offsetA  = DIM*jnrA;
531             j_coord_offsetB  = DIM*jnrB;
532             j_coord_offsetC  = DIM*jnrC;
533             j_coord_offsetD  = DIM*jnrD;
534
535             /* load j atom coordinates */
536             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
537                                               x+j_coord_offsetC,x+j_coord_offsetD,
538                                               &jx0,&jy0,&jz0);
539
540             /* Calculate displacement vector */
541             dx00             = _mm_sub_ps(ix0,jx0);
542             dy00             = _mm_sub_ps(iy0,jy0);
543             dz00             = _mm_sub_ps(iz0,jz0);
544
545             /* Calculate squared distance and things based on it */
546             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
547
548             rinv00           = gmx_mm_invsqrt_ps(rsq00);
549
550             /* Load parameters for j particles */
551             vdwjidx0A        = 2*vdwtype[jnrA+0];
552             vdwjidx0B        = 2*vdwtype[jnrB+0];
553             vdwjidx0C        = 2*vdwtype[jnrC+0];
554             vdwjidx0D        = 2*vdwtype[jnrD+0];
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             r00              = _mm_mul_ps(rsq00,rinv00);
561
562             /* Compute parameters for interactions between i and j atoms */
563             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
564                                          vdwparam+vdwioffset0+vdwjidx0B,
565                                          vdwparam+vdwioffset0+vdwjidx0C,
566                                          vdwparam+vdwioffset0+vdwjidx0D,
567                                          &c6_00,&c12_00);
568
569             /* Calculate table index by multiplying r with table scale and truncate to integer */
570             rt               = _mm_mul_ps(r00,vftabscale);
571             vfitab           = _mm_cvttps_epi32(rt);
572 #ifdef __XOP__
573             vfeps            = _mm_frcz_ps(rt);
574 #else
575             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
576 #endif
577             twovfeps         = _mm_add_ps(vfeps,vfeps);
578             vfitab           = _mm_slli_epi32(vfitab,3);
579
580             /* CUBIC SPLINE TABLE DISPERSION */
581             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
582             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
583             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
584             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
585             _MM_TRANSPOSE4_PS(Y,F,G,H);
586             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
587             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
588             fvdw6            = _mm_mul_ps(c6_00,FF);
589
590             /* CUBIC SPLINE TABLE REPULSION */
591             vfitab           = _mm_add_epi32(vfitab,ifour);
592             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
593             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
594             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
595             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
596             _MM_TRANSPOSE4_PS(Y,F,G,H);
597             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
598             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
599             fvdw12           = _mm_mul_ps(c12_00,FF);
600             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
601
602             fscal            = fvdw;
603
604              /* Update vectorial force */
605             fix0             = _mm_macc_ps(dx00,fscal,fix0);
606             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
607             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
608
609             fjptrA             = f+j_coord_offsetA;
610             fjptrB             = f+j_coord_offsetB;
611             fjptrC             = f+j_coord_offsetC;
612             fjptrD             = f+j_coord_offsetD;
613             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
614                                                    _mm_mul_ps(dx00,fscal),
615                                                    _mm_mul_ps(dy00,fscal),
616                                                    _mm_mul_ps(dz00,fscal));
617
618             /* Inner loop uses 51 flops */
619         }
620
621         if(jidx<j_index_end)
622         {
623
624             /* Get j neighbor index, and coordinate index */
625             jnrlistA         = jjnr[jidx];
626             jnrlistB         = jjnr[jidx+1];
627             jnrlistC         = jjnr[jidx+2];
628             jnrlistD         = jjnr[jidx+3];
629             /* Sign of each element will be negative for non-real atoms.
630              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
631              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
632              */
633             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
634             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
635             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
636             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
637             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
638             j_coord_offsetA  = DIM*jnrA;
639             j_coord_offsetB  = DIM*jnrB;
640             j_coord_offsetC  = DIM*jnrC;
641             j_coord_offsetD  = DIM*jnrD;
642
643             /* load j atom coordinates */
644             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
645                                               x+j_coord_offsetC,x+j_coord_offsetD,
646                                               &jx0,&jy0,&jz0);
647
648             /* Calculate displacement vector */
649             dx00             = _mm_sub_ps(ix0,jx0);
650             dy00             = _mm_sub_ps(iy0,jy0);
651             dz00             = _mm_sub_ps(iz0,jz0);
652
653             /* Calculate squared distance and things based on it */
654             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
655
656             rinv00           = gmx_mm_invsqrt_ps(rsq00);
657
658             /* Load parameters for j particles */
659             vdwjidx0A        = 2*vdwtype[jnrA+0];
660             vdwjidx0B        = 2*vdwtype[jnrB+0];
661             vdwjidx0C        = 2*vdwtype[jnrC+0];
662             vdwjidx0D        = 2*vdwtype[jnrD+0];
663
664             /**************************
665              * CALCULATE INTERACTIONS *
666              **************************/
667
668             r00              = _mm_mul_ps(rsq00,rinv00);
669             r00              = _mm_andnot_ps(dummy_mask,r00);
670
671             /* Compute parameters for interactions between i and j atoms */
672             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
673                                          vdwparam+vdwioffset0+vdwjidx0B,
674                                          vdwparam+vdwioffset0+vdwjidx0C,
675                                          vdwparam+vdwioffset0+vdwjidx0D,
676                                          &c6_00,&c12_00);
677
678             /* Calculate table index by multiplying r with table scale and truncate to integer */
679             rt               = _mm_mul_ps(r00,vftabscale);
680             vfitab           = _mm_cvttps_epi32(rt);
681 #ifdef __XOP__
682             vfeps            = _mm_frcz_ps(rt);
683 #else
684             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
685 #endif
686             twovfeps         = _mm_add_ps(vfeps,vfeps);
687             vfitab           = _mm_slli_epi32(vfitab,3);
688
689             /* CUBIC SPLINE TABLE DISPERSION */
690             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
691             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
692             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
693             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
694             _MM_TRANSPOSE4_PS(Y,F,G,H);
695             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
696             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
697             fvdw6            = _mm_mul_ps(c6_00,FF);
698
699             /* CUBIC SPLINE TABLE REPULSION */
700             vfitab           = _mm_add_epi32(vfitab,ifour);
701             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
702             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
703             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
704             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
705             _MM_TRANSPOSE4_PS(Y,F,G,H);
706             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
707             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
708             fvdw12           = _mm_mul_ps(c12_00,FF);
709             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
710
711             fscal            = fvdw;
712
713             fscal            = _mm_andnot_ps(dummy_mask,fscal);
714
715              /* Update vectorial force */
716             fix0             = _mm_macc_ps(dx00,fscal,fix0);
717             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
718             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
719
720             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
721             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
722             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
723             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
724             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
725                                                    _mm_mul_ps(dx00,fscal),
726                                                    _mm_mul_ps(dy00,fscal),
727                                                    _mm_mul_ps(dz00,fscal));
728
729             /* Inner loop uses 52 flops */
730         }
731
732         /* End of innermost loop */
733
734         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
735                                               f+i_coord_offset,fshift+i_shift_offset);
736
737         /* Increment number of inner iterations */
738         inneriter                  += j_index_end - j_index_start;
739
740         /* Outer loop uses 6 flops */
741     }
742
743     /* Increment number of outer iterations */
744     outeriter        += nri;
745
746     /* Update outer/inner flops */
747
748     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*52);
749 }