Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          gbitab;
91     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
92     __m128           minushalf = _mm_set1_ps(-0.5);
93     real             *invsqrta,*dvda,*gbtab;
94     __m128i          vfitab;
95     __m128i          ifour       = _mm_set1_epi32(4);
96     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
97     real             *vftab;
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     invsqrta         = fr->invsqrta;
117     dvda             = fr->dvda;
118     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
119     gbtab            = fr->gbtab.data;
120     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm_setzero_ps();
155         fiy0             = _mm_setzero_ps();
156         fiz0             = _mm_setzero_ps();
157
158         /* Load parameters for i particles */
159         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
160         isai0            = _mm_load1_ps(invsqrta+inr+0);
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_ps();
164         vgbsum           = _mm_setzero_ps();
165         dvdasum          = _mm_setzero_ps();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178             j_coord_offsetC  = DIM*jnrC;
179             j_coord_offsetD  = DIM*jnrD;
180
181             /* load j atom coordinates */
182             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               x+j_coord_offsetC,x+j_coord_offsetD,
184                                               &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm_sub_ps(ix0,jx0);
188             dy00             = _mm_sub_ps(iy0,jy0);
189             dz00             = _mm_sub_ps(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
193
194             rinv00           = gmx_mm_invsqrt_ps(rsq00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
198                                                               charge+jnrC+0,charge+jnrD+0);
199             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
200                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
201
202             /**************************
203              * CALCULATE INTERACTIONS *
204              **************************/
205
206             r00              = _mm_mul_ps(rsq00,rinv00);
207
208             /* Compute parameters for interactions between i and j atoms */
209             qq00             = _mm_mul_ps(iq0,jq0);
210
211             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
212             isaprod          = _mm_mul_ps(isai0,isaj0);
213             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
214             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
215
216             /* Calculate generalized born table index - this is a separate table from the normal one,
217              * but we use the same procedure by multiplying r with scale and truncating to integer.
218              */
219             rt               = _mm_mul_ps(r00,gbscale);
220             gbitab           = _mm_cvttps_epi32(rt);
221 #ifdef __XOP__
222             gbeps            = _mm_frcz_ps(rt);
223 #else
224             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
225 #endif
226             gbitab           = _mm_slli_epi32(gbitab,2);
227
228             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
229             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
230             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
231             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
232             _MM_TRANSPOSE4_PS(Y,F,G,H);
233             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
234             VV               = _mm_macc_ps(gbeps,Fp,Y);
235             vgb              = _mm_mul_ps(gbqqfactor,VV);
236
237             twogbeps         = _mm_add_ps(gbeps,gbeps);
238             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
239             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
240             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
241             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
242             fjptrA           = dvda+jnrA;
243             fjptrB           = dvda+jnrB;
244             fjptrC           = dvda+jnrC;
245             fjptrD           = dvda+jnrD;
246             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
247             velec            = _mm_mul_ps(qq00,rinv00);
248             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velecsum         = _mm_add_ps(velecsum,velec);
252             vgbsum           = _mm_add_ps(vgbsum,vgb);
253
254             fscal            = felec;
255
256              /* Update vectorial force */
257             fix0             = _mm_macc_ps(dx00,fscal,fix0);
258             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
259             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
260
261             fjptrA             = f+j_coord_offsetA;
262             fjptrB             = f+j_coord_offsetB;
263             fjptrC             = f+j_coord_offsetC;
264             fjptrD             = f+j_coord_offsetD;
265             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
266                                                    _mm_mul_ps(dx00,fscal),
267                                                    _mm_mul_ps(dy00,fscal),
268                                                    _mm_mul_ps(dz00,fscal));
269
270             /* Inner loop uses 61 flops */
271         }
272
273         if(jidx<j_index_end)
274         {
275
276             /* Get j neighbor index, and coordinate index */
277             jnrlistA         = jjnr[jidx];
278             jnrlistB         = jjnr[jidx+1];
279             jnrlistC         = jjnr[jidx+2];
280             jnrlistD         = jjnr[jidx+3];
281             /* Sign of each element will be negative for non-real atoms.
282              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
283              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
284              */
285             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
286             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
287             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
288             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
289             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
290             j_coord_offsetA  = DIM*jnrA;
291             j_coord_offsetB  = DIM*jnrB;
292             j_coord_offsetC  = DIM*jnrC;
293             j_coord_offsetD  = DIM*jnrD;
294
295             /* load j atom coordinates */
296             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
297                                               x+j_coord_offsetC,x+j_coord_offsetD,
298                                               &jx0,&jy0,&jz0);
299
300             /* Calculate displacement vector */
301             dx00             = _mm_sub_ps(ix0,jx0);
302             dy00             = _mm_sub_ps(iy0,jy0);
303             dz00             = _mm_sub_ps(iz0,jz0);
304
305             /* Calculate squared distance and things based on it */
306             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
307
308             rinv00           = gmx_mm_invsqrt_ps(rsq00);
309
310             /* Load parameters for j particles */
311             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
312                                                               charge+jnrC+0,charge+jnrD+0);
313             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
314                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             r00              = _mm_mul_ps(rsq00,rinv00);
321             r00              = _mm_andnot_ps(dummy_mask,r00);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq00             = _mm_mul_ps(iq0,jq0);
325
326             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
327             isaprod          = _mm_mul_ps(isai0,isaj0);
328             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
329             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
330
331             /* Calculate generalized born table index - this is a separate table from the normal one,
332              * but we use the same procedure by multiplying r with scale and truncating to integer.
333              */
334             rt               = _mm_mul_ps(r00,gbscale);
335             gbitab           = _mm_cvttps_epi32(rt);
336 #ifdef __XOP__
337             gbeps            = _mm_frcz_ps(rt);
338 #else
339             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
340 #endif
341             gbitab           = _mm_slli_epi32(gbitab,2);
342
343             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
344             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
345             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
346             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
347             _MM_TRANSPOSE4_PS(Y,F,G,H);
348             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
349             VV               = _mm_macc_ps(gbeps,Fp,Y);
350             vgb              = _mm_mul_ps(gbqqfactor,VV);
351
352             twogbeps         = _mm_add_ps(gbeps,gbeps);
353             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
354             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
355             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
356             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
357             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
358             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
359             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
360             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
361             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
362             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
363             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
364             velec            = _mm_mul_ps(qq00,rinv00);
365             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velec            = _mm_andnot_ps(dummy_mask,velec);
369             velecsum         = _mm_add_ps(velecsum,velec);
370             vgb              = _mm_andnot_ps(dummy_mask,vgb);
371             vgbsum           = _mm_add_ps(vgbsum,vgb);
372
373             fscal            = felec;
374
375             fscal            = _mm_andnot_ps(dummy_mask,fscal);
376
377              /* Update vectorial force */
378             fix0             = _mm_macc_ps(dx00,fscal,fix0);
379             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
380             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
381
382             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
383             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
384             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
385             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
386             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
387                                                    _mm_mul_ps(dx00,fscal),
388                                                    _mm_mul_ps(dy00,fscal),
389                                                    _mm_mul_ps(dz00,fscal));
390
391             /* Inner loop uses 62 flops */
392         }
393
394         /* End of innermost loop */
395
396         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
397                                               f+i_coord_offset,fshift+i_shift_offset);
398
399         ggid                        = gid[iidx];
400         /* Update potential energies */
401         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
402         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
403         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
404         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
405
406         /* Increment number of inner iterations */
407         inneriter                  += j_index_end - j_index_start;
408
409         /* Outer loop uses 9 flops */
410     }
411
412     /* Increment number of outer iterations */
413     outeriter        += nri;
414
415     /* Update outer/inner flops */
416
417     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*62);
418 }
419 /*
420  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_single
421  * Electrostatics interaction: GeneralizedBorn
422  * VdW interaction:            None
423  * Geometry:                   Particle-Particle
424  * Calculate force/pot:        Force
425  */
426 void
427 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_single
428                     (t_nblist                    * gmx_restrict       nlist,
429                      rvec                        * gmx_restrict          xx,
430                      rvec                        * gmx_restrict          ff,
431                      t_forcerec                  * gmx_restrict          fr,
432                      t_mdatoms                   * gmx_restrict     mdatoms,
433                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
434                      t_nrnb                      * gmx_restrict        nrnb)
435 {
436     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
437      * just 0 for non-waters.
438      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
439      * jnr indices corresponding to data put in the four positions in the SIMD register.
440      */
441     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
442     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
443     int              jnrA,jnrB,jnrC,jnrD;
444     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
445     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
446     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
447     real             rcutoff_scalar;
448     real             *shiftvec,*fshift,*x,*f;
449     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
450     real             scratch[4*DIM];
451     __m128           fscal,rcutoff,rcutoff2,jidxall;
452     int              vdwioffset0;
453     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
454     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
455     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
456     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
457     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
458     real             *charge;
459     __m128i          gbitab;
460     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
461     __m128           minushalf = _mm_set1_ps(-0.5);
462     real             *invsqrta,*dvda,*gbtab;
463     __m128i          vfitab;
464     __m128i          ifour       = _mm_set1_epi32(4);
465     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
466     real             *vftab;
467     __m128           dummy_mask,cutoff_mask;
468     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
469     __m128           one     = _mm_set1_ps(1.0);
470     __m128           two     = _mm_set1_ps(2.0);
471     x                = xx[0];
472     f                = ff[0];
473
474     nri              = nlist->nri;
475     iinr             = nlist->iinr;
476     jindex           = nlist->jindex;
477     jjnr             = nlist->jjnr;
478     shiftidx         = nlist->shift;
479     gid              = nlist->gid;
480     shiftvec         = fr->shift_vec[0];
481     fshift           = fr->fshift[0];
482     facel            = _mm_set1_ps(fr->epsfac);
483     charge           = mdatoms->chargeA;
484
485     invsqrta         = fr->invsqrta;
486     dvda             = fr->dvda;
487     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
488     gbtab            = fr->gbtab.data;
489     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
490
491     /* Avoid stupid compiler warnings */
492     jnrA = jnrB = jnrC = jnrD = 0;
493     j_coord_offsetA = 0;
494     j_coord_offsetB = 0;
495     j_coord_offsetC = 0;
496     j_coord_offsetD = 0;
497
498     outeriter        = 0;
499     inneriter        = 0;
500
501     for(iidx=0;iidx<4*DIM;iidx++)
502     {
503         scratch[iidx] = 0.0;
504     }
505
506     /* Start outer loop over neighborlists */
507     for(iidx=0; iidx<nri; iidx++)
508     {
509         /* Load shift vector for this list */
510         i_shift_offset   = DIM*shiftidx[iidx];
511
512         /* Load limits for loop over neighbors */
513         j_index_start    = jindex[iidx];
514         j_index_end      = jindex[iidx+1];
515
516         /* Get outer coordinate index */
517         inr              = iinr[iidx];
518         i_coord_offset   = DIM*inr;
519
520         /* Load i particle coords and add shift vector */
521         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
522
523         fix0             = _mm_setzero_ps();
524         fiy0             = _mm_setzero_ps();
525         fiz0             = _mm_setzero_ps();
526
527         /* Load parameters for i particles */
528         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
529         isai0            = _mm_load1_ps(invsqrta+inr+0);
530
531         dvdasum          = _mm_setzero_ps();
532
533         /* Start inner kernel loop */
534         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
535         {
536
537             /* Get j neighbor index, and coordinate index */
538             jnrA             = jjnr[jidx];
539             jnrB             = jjnr[jidx+1];
540             jnrC             = jjnr[jidx+2];
541             jnrD             = jjnr[jidx+3];
542             j_coord_offsetA  = DIM*jnrA;
543             j_coord_offsetB  = DIM*jnrB;
544             j_coord_offsetC  = DIM*jnrC;
545             j_coord_offsetD  = DIM*jnrD;
546
547             /* load j atom coordinates */
548             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
549                                               x+j_coord_offsetC,x+j_coord_offsetD,
550                                               &jx0,&jy0,&jz0);
551
552             /* Calculate displacement vector */
553             dx00             = _mm_sub_ps(ix0,jx0);
554             dy00             = _mm_sub_ps(iy0,jy0);
555             dz00             = _mm_sub_ps(iz0,jz0);
556
557             /* Calculate squared distance and things based on it */
558             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
559
560             rinv00           = gmx_mm_invsqrt_ps(rsq00);
561
562             /* Load parameters for j particles */
563             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
564                                                               charge+jnrC+0,charge+jnrD+0);
565             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
566                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             r00              = _mm_mul_ps(rsq00,rinv00);
573
574             /* Compute parameters for interactions between i and j atoms */
575             qq00             = _mm_mul_ps(iq0,jq0);
576
577             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
578             isaprod          = _mm_mul_ps(isai0,isaj0);
579             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
580             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
581
582             /* Calculate generalized born table index - this is a separate table from the normal one,
583              * but we use the same procedure by multiplying r with scale and truncating to integer.
584              */
585             rt               = _mm_mul_ps(r00,gbscale);
586             gbitab           = _mm_cvttps_epi32(rt);
587 #ifdef __XOP__
588             gbeps            = _mm_frcz_ps(rt);
589 #else
590             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
591 #endif
592             gbitab           = _mm_slli_epi32(gbitab,2);
593
594             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
595             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
596             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
597             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
598             _MM_TRANSPOSE4_PS(Y,F,G,H);
599             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
600             VV               = _mm_macc_ps(gbeps,Fp,Y);
601             vgb              = _mm_mul_ps(gbqqfactor,VV);
602
603             twogbeps         = _mm_add_ps(gbeps,gbeps);
604             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
605             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
606             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
607             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
608             fjptrA           = dvda+jnrA;
609             fjptrB           = dvda+jnrB;
610             fjptrC           = dvda+jnrC;
611             fjptrD           = dvda+jnrD;
612             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
613             velec            = _mm_mul_ps(qq00,rinv00);
614             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
615
616             fscal            = felec;
617
618              /* Update vectorial force */
619             fix0             = _mm_macc_ps(dx00,fscal,fix0);
620             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
621             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
622
623             fjptrA             = f+j_coord_offsetA;
624             fjptrB             = f+j_coord_offsetB;
625             fjptrC             = f+j_coord_offsetC;
626             fjptrD             = f+j_coord_offsetD;
627             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
628                                                    _mm_mul_ps(dx00,fscal),
629                                                    _mm_mul_ps(dy00,fscal),
630                                                    _mm_mul_ps(dz00,fscal));
631
632             /* Inner loop uses 59 flops */
633         }
634
635         if(jidx<j_index_end)
636         {
637
638             /* Get j neighbor index, and coordinate index */
639             jnrlistA         = jjnr[jidx];
640             jnrlistB         = jjnr[jidx+1];
641             jnrlistC         = jjnr[jidx+2];
642             jnrlistD         = jjnr[jidx+3];
643             /* Sign of each element will be negative for non-real atoms.
644              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
645              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
646              */
647             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
648             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
649             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
650             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
651             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
652             j_coord_offsetA  = DIM*jnrA;
653             j_coord_offsetB  = DIM*jnrB;
654             j_coord_offsetC  = DIM*jnrC;
655             j_coord_offsetD  = DIM*jnrD;
656
657             /* load j atom coordinates */
658             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
659                                               x+j_coord_offsetC,x+j_coord_offsetD,
660                                               &jx0,&jy0,&jz0);
661
662             /* Calculate displacement vector */
663             dx00             = _mm_sub_ps(ix0,jx0);
664             dy00             = _mm_sub_ps(iy0,jy0);
665             dz00             = _mm_sub_ps(iz0,jz0);
666
667             /* Calculate squared distance and things based on it */
668             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
669
670             rinv00           = gmx_mm_invsqrt_ps(rsq00);
671
672             /* Load parameters for j particles */
673             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
674                                                               charge+jnrC+0,charge+jnrD+0);
675             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
676                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
677
678             /**************************
679              * CALCULATE INTERACTIONS *
680              **************************/
681
682             r00              = _mm_mul_ps(rsq00,rinv00);
683             r00              = _mm_andnot_ps(dummy_mask,r00);
684
685             /* Compute parameters for interactions between i and j atoms */
686             qq00             = _mm_mul_ps(iq0,jq0);
687
688             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
689             isaprod          = _mm_mul_ps(isai0,isaj0);
690             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
691             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
692
693             /* Calculate generalized born table index - this is a separate table from the normal one,
694              * but we use the same procedure by multiplying r with scale and truncating to integer.
695              */
696             rt               = _mm_mul_ps(r00,gbscale);
697             gbitab           = _mm_cvttps_epi32(rt);
698 #ifdef __XOP__
699             gbeps            = _mm_frcz_ps(rt);
700 #else
701             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
702 #endif
703             gbitab           = _mm_slli_epi32(gbitab,2);
704
705             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
706             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
707             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
708             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
709             _MM_TRANSPOSE4_PS(Y,F,G,H);
710             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
711             VV               = _mm_macc_ps(gbeps,Fp,Y);
712             vgb              = _mm_mul_ps(gbqqfactor,VV);
713
714             twogbeps         = _mm_add_ps(gbeps,gbeps);
715             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
716             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
717             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
718             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
719             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
720             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
721             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
722             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
723             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
724             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
725             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
726             velec            = _mm_mul_ps(qq00,rinv00);
727             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
728
729             fscal            = felec;
730
731             fscal            = _mm_andnot_ps(dummy_mask,fscal);
732
733              /* Update vectorial force */
734             fix0             = _mm_macc_ps(dx00,fscal,fix0);
735             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
736             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
737
738             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
739             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
740             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
741             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
742             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
743                                                    _mm_mul_ps(dx00,fscal),
744                                                    _mm_mul_ps(dy00,fscal),
745                                                    _mm_mul_ps(dz00,fscal));
746
747             /* Inner loop uses 60 flops */
748         }
749
750         /* End of innermost loop */
751
752         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
753                                               f+i_coord_offset,fshift+i_shift_offset);
754
755         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
756         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
757
758         /* Increment number of inner iterations */
759         inneriter                  += j_index_end - j_index_start;
760
761         /* Outer loop uses 7 flops */
762     }
763
764     /* Increment number of outer iterations */
765     outeriter        += nri;
766
767     /* Update outer/inner flops */
768
769     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*60);
770 }