737a4e83faed32199515a74c3e634bfdeba66a51
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_single
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
91     __m128           minushalf = _mm_set1_ps(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
96     real             *vftab;
97     __m128           dummy_mask,cutoff_mask;
98     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
99     __m128           one     = _mm_set1_ps(1.0);
100     __m128           two     = _mm_set1_ps(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_ps(fr->ic->epsfac);
113     charge           = mdatoms->chargeA;
114
115     invsqrta         = fr->invsqrta;
116     dvda             = fr->dvda;
117     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
118     gbtab            = fr->gbtab->data;
119     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = jnrC = jnrD = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125     j_coord_offsetC = 0;
126     j_coord_offsetD = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     for(iidx=0;iidx<4*DIM;iidx++)
132     {
133         scratch[iidx] = 0.0;
134     }
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
152
153         fix0             = _mm_setzero_ps();
154         fiy0             = _mm_setzero_ps();
155         fiz0             = _mm_setzero_ps();
156
157         /* Load parameters for i particles */
158         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
159         isai0            = _mm_load1_ps(invsqrta+inr+0);
160
161         /* Reset potential sums */
162         velecsum         = _mm_setzero_ps();
163         vgbsum           = _mm_setzero_ps();
164         dvdasum          = _mm_setzero_ps();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             jnrC             = jjnr[jidx+2];
174             jnrD             = jjnr[jidx+3];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             j_coord_offsetC  = DIM*jnrC;
178             j_coord_offsetD  = DIM*jnrD;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               x+j_coord_offsetC,x+j_coord_offsetD,
183                                               &jx0,&jy0,&jz0);
184
185             /* Calculate displacement vector */
186             dx00             = _mm_sub_ps(ix0,jx0);
187             dy00             = _mm_sub_ps(iy0,jy0);
188             dz00             = _mm_sub_ps(iz0,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
192
193             rinv00           = avx128fma_invsqrt_f(rsq00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
197                                                               charge+jnrC+0,charge+jnrD+0);
198             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
199                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _mm_mul_ps(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _mm_mul_ps(iq0,jq0);
209
210             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
211             isaprod          = _mm_mul_ps(isai0,isaj0);
212             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
213             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
214
215             /* Calculate generalized born table index - this is a separate table from the normal one,
216              * but we use the same procedure by multiplying r with scale and truncating to integer.
217              */
218             rt               = _mm_mul_ps(r00,gbscale);
219             gbitab           = _mm_cvttps_epi32(rt);
220 #ifdef __XOP__
221             gbeps            = _mm_frcz_ps(rt);
222 #else
223             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
224 #endif
225             gbitab           = _mm_slli_epi32(gbitab,2);
226
227             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
228             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
229             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
230             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
231             _MM_TRANSPOSE4_PS(Y,F,G,H);
232             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
233             VV               = _mm_macc_ps(gbeps,Fp,Y);
234             vgb              = _mm_mul_ps(gbqqfactor,VV);
235
236             twogbeps         = _mm_add_ps(gbeps,gbeps);
237             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
238             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
239             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
240             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
241             fjptrA           = dvda+jnrA;
242             fjptrB           = dvda+jnrB;
243             fjptrC           = dvda+jnrC;
244             fjptrD           = dvda+jnrD;
245             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
246             velec            = _mm_mul_ps(qq00,rinv00);
247             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             velecsum         = _mm_add_ps(velecsum,velec);
251             vgbsum           = _mm_add_ps(vgbsum,vgb);
252
253             fscal            = felec;
254
255              /* Update vectorial force */
256             fix0             = _mm_macc_ps(dx00,fscal,fix0);
257             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
258             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
259
260             fjptrA             = f+j_coord_offsetA;
261             fjptrB             = f+j_coord_offsetB;
262             fjptrC             = f+j_coord_offsetC;
263             fjptrD             = f+j_coord_offsetD;
264             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
265                                                    _mm_mul_ps(dx00,fscal),
266                                                    _mm_mul_ps(dy00,fscal),
267                                                    _mm_mul_ps(dz00,fscal));
268
269             /* Inner loop uses 61 flops */
270         }
271
272         if(jidx<j_index_end)
273         {
274
275             /* Get j neighbor index, and coordinate index */
276             jnrlistA         = jjnr[jidx];
277             jnrlistB         = jjnr[jidx+1];
278             jnrlistC         = jjnr[jidx+2];
279             jnrlistD         = jjnr[jidx+3];
280             /* Sign of each element will be negative for non-real atoms.
281              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
282              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
283              */
284             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
285             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
286             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
287             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
288             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
289             j_coord_offsetA  = DIM*jnrA;
290             j_coord_offsetB  = DIM*jnrB;
291             j_coord_offsetC  = DIM*jnrC;
292             j_coord_offsetD  = DIM*jnrD;
293
294             /* load j atom coordinates */
295             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
296                                               x+j_coord_offsetC,x+j_coord_offsetD,
297                                               &jx0,&jy0,&jz0);
298
299             /* Calculate displacement vector */
300             dx00             = _mm_sub_ps(ix0,jx0);
301             dy00             = _mm_sub_ps(iy0,jy0);
302             dz00             = _mm_sub_ps(iz0,jz0);
303
304             /* Calculate squared distance and things based on it */
305             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
306
307             rinv00           = avx128fma_invsqrt_f(rsq00);
308
309             /* Load parameters for j particles */
310             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
311                                                               charge+jnrC+0,charge+jnrD+0);
312             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
313                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             r00              = _mm_mul_ps(rsq00,rinv00);
320             r00              = _mm_andnot_ps(dummy_mask,r00);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq00             = _mm_mul_ps(iq0,jq0);
324
325             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
326             isaprod          = _mm_mul_ps(isai0,isaj0);
327             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
328             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
329
330             /* Calculate generalized born table index - this is a separate table from the normal one,
331              * but we use the same procedure by multiplying r with scale and truncating to integer.
332              */
333             rt               = _mm_mul_ps(r00,gbscale);
334             gbitab           = _mm_cvttps_epi32(rt);
335 #ifdef __XOP__
336             gbeps            = _mm_frcz_ps(rt);
337 #else
338             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
339 #endif
340             gbitab           = _mm_slli_epi32(gbitab,2);
341
342             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
343             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
344             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
345             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
346             _MM_TRANSPOSE4_PS(Y,F,G,H);
347             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
348             VV               = _mm_macc_ps(gbeps,Fp,Y);
349             vgb              = _mm_mul_ps(gbqqfactor,VV);
350
351             twogbeps         = _mm_add_ps(gbeps,gbeps);
352             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
353             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
354             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
355             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
356             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
357             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
358             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
359             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
360             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
361             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
362             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
363             velec            = _mm_mul_ps(qq00,rinv00);
364             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
365
366             /* Update potential sum for this i atom from the interaction with this j atom. */
367             velec            = _mm_andnot_ps(dummy_mask,velec);
368             velecsum         = _mm_add_ps(velecsum,velec);
369             vgb              = _mm_andnot_ps(dummy_mask,vgb);
370             vgbsum           = _mm_add_ps(vgbsum,vgb);
371
372             fscal            = felec;
373
374             fscal            = _mm_andnot_ps(dummy_mask,fscal);
375
376              /* Update vectorial force */
377             fix0             = _mm_macc_ps(dx00,fscal,fix0);
378             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
379             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
380
381             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
382             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
383             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
384             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
385             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
386                                                    _mm_mul_ps(dx00,fscal),
387                                                    _mm_mul_ps(dy00,fscal),
388                                                    _mm_mul_ps(dz00,fscal));
389
390             /* Inner loop uses 62 flops */
391         }
392
393         /* End of innermost loop */
394
395         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
396                                               f+i_coord_offset,fshift+i_shift_offset);
397
398         ggid                        = gid[iidx];
399         /* Update potential energies */
400         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
401         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
402         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
403         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
404
405         /* Increment number of inner iterations */
406         inneriter                  += j_index_end - j_index_start;
407
408         /* Outer loop uses 9 flops */
409     }
410
411     /* Increment number of outer iterations */
412     outeriter        += nri;
413
414     /* Update outer/inner flops */
415
416     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*62);
417 }
418 /*
419  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_single
420  * Electrostatics interaction: GeneralizedBorn
421  * VdW interaction:            None
422  * Geometry:                   Particle-Particle
423  * Calculate force/pot:        Force
424  */
425 void
426 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_single
427                     (t_nblist                    * gmx_restrict       nlist,
428                      rvec                        * gmx_restrict          xx,
429                      rvec                        * gmx_restrict          ff,
430                      struct t_forcerec           * gmx_restrict          fr,
431                      t_mdatoms                   * gmx_restrict     mdatoms,
432                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
433                      t_nrnb                      * gmx_restrict        nrnb)
434 {
435     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
436      * just 0 for non-waters.
437      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
438      * jnr indices corresponding to data put in the four positions in the SIMD register.
439      */
440     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
441     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
442     int              jnrA,jnrB,jnrC,jnrD;
443     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
444     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
445     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
446     real             rcutoff_scalar;
447     real             *shiftvec,*fshift,*x,*f;
448     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
449     real             scratch[4*DIM];
450     __m128           fscal,rcutoff,rcutoff2,jidxall;
451     int              vdwioffset0;
452     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
453     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
454     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
455     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
456     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
457     real             *charge;
458     __m128i          gbitab;
459     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
460     __m128           minushalf = _mm_set1_ps(-0.5);
461     real             *invsqrta,*dvda,*gbtab;
462     __m128i          vfitab;
463     __m128i          ifour       = _mm_set1_epi32(4);
464     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
465     real             *vftab;
466     __m128           dummy_mask,cutoff_mask;
467     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
468     __m128           one     = _mm_set1_ps(1.0);
469     __m128           two     = _mm_set1_ps(2.0);
470     x                = xx[0];
471     f                = ff[0];
472
473     nri              = nlist->nri;
474     iinr             = nlist->iinr;
475     jindex           = nlist->jindex;
476     jjnr             = nlist->jjnr;
477     shiftidx         = nlist->shift;
478     gid              = nlist->gid;
479     shiftvec         = fr->shift_vec[0];
480     fshift           = fr->fshift[0];
481     facel            = _mm_set1_ps(fr->ic->epsfac);
482     charge           = mdatoms->chargeA;
483
484     invsqrta         = fr->invsqrta;
485     dvda             = fr->dvda;
486     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
487     gbtab            = fr->gbtab->data;
488     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
489
490     /* Avoid stupid compiler warnings */
491     jnrA = jnrB = jnrC = jnrD = 0;
492     j_coord_offsetA = 0;
493     j_coord_offsetB = 0;
494     j_coord_offsetC = 0;
495     j_coord_offsetD = 0;
496
497     outeriter        = 0;
498     inneriter        = 0;
499
500     for(iidx=0;iidx<4*DIM;iidx++)
501     {
502         scratch[iidx] = 0.0;
503     }
504
505     /* Start outer loop over neighborlists */
506     for(iidx=0; iidx<nri; iidx++)
507     {
508         /* Load shift vector for this list */
509         i_shift_offset   = DIM*shiftidx[iidx];
510
511         /* Load limits for loop over neighbors */
512         j_index_start    = jindex[iidx];
513         j_index_end      = jindex[iidx+1];
514
515         /* Get outer coordinate index */
516         inr              = iinr[iidx];
517         i_coord_offset   = DIM*inr;
518
519         /* Load i particle coords and add shift vector */
520         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
521
522         fix0             = _mm_setzero_ps();
523         fiy0             = _mm_setzero_ps();
524         fiz0             = _mm_setzero_ps();
525
526         /* Load parameters for i particles */
527         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
528         isai0            = _mm_load1_ps(invsqrta+inr+0);
529
530         dvdasum          = _mm_setzero_ps();
531
532         /* Start inner kernel loop */
533         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
534         {
535
536             /* Get j neighbor index, and coordinate index */
537             jnrA             = jjnr[jidx];
538             jnrB             = jjnr[jidx+1];
539             jnrC             = jjnr[jidx+2];
540             jnrD             = jjnr[jidx+3];
541             j_coord_offsetA  = DIM*jnrA;
542             j_coord_offsetB  = DIM*jnrB;
543             j_coord_offsetC  = DIM*jnrC;
544             j_coord_offsetD  = DIM*jnrD;
545
546             /* load j atom coordinates */
547             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
548                                               x+j_coord_offsetC,x+j_coord_offsetD,
549                                               &jx0,&jy0,&jz0);
550
551             /* Calculate displacement vector */
552             dx00             = _mm_sub_ps(ix0,jx0);
553             dy00             = _mm_sub_ps(iy0,jy0);
554             dz00             = _mm_sub_ps(iz0,jz0);
555
556             /* Calculate squared distance and things based on it */
557             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
558
559             rinv00           = avx128fma_invsqrt_f(rsq00);
560
561             /* Load parameters for j particles */
562             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
563                                                               charge+jnrC+0,charge+jnrD+0);
564             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
565                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
566
567             /**************************
568              * CALCULATE INTERACTIONS *
569              **************************/
570
571             r00              = _mm_mul_ps(rsq00,rinv00);
572
573             /* Compute parameters for interactions between i and j atoms */
574             qq00             = _mm_mul_ps(iq0,jq0);
575
576             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
577             isaprod          = _mm_mul_ps(isai0,isaj0);
578             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
579             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
580
581             /* Calculate generalized born table index - this is a separate table from the normal one,
582              * but we use the same procedure by multiplying r with scale and truncating to integer.
583              */
584             rt               = _mm_mul_ps(r00,gbscale);
585             gbitab           = _mm_cvttps_epi32(rt);
586 #ifdef __XOP__
587             gbeps            = _mm_frcz_ps(rt);
588 #else
589             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
590 #endif
591             gbitab           = _mm_slli_epi32(gbitab,2);
592
593             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
594             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
595             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
596             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
597             _MM_TRANSPOSE4_PS(Y,F,G,H);
598             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
599             VV               = _mm_macc_ps(gbeps,Fp,Y);
600             vgb              = _mm_mul_ps(gbqqfactor,VV);
601
602             twogbeps         = _mm_add_ps(gbeps,gbeps);
603             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
604             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
605             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
606             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
607             fjptrA           = dvda+jnrA;
608             fjptrB           = dvda+jnrB;
609             fjptrC           = dvda+jnrC;
610             fjptrD           = dvda+jnrD;
611             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
612             velec            = _mm_mul_ps(qq00,rinv00);
613             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
614
615             fscal            = felec;
616
617              /* Update vectorial force */
618             fix0             = _mm_macc_ps(dx00,fscal,fix0);
619             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
620             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
621
622             fjptrA             = f+j_coord_offsetA;
623             fjptrB             = f+j_coord_offsetB;
624             fjptrC             = f+j_coord_offsetC;
625             fjptrD             = f+j_coord_offsetD;
626             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
627                                                    _mm_mul_ps(dx00,fscal),
628                                                    _mm_mul_ps(dy00,fscal),
629                                                    _mm_mul_ps(dz00,fscal));
630
631             /* Inner loop uses 59 flops */
632         }
633
634         if(jidx<j_index_end)
635         {
636
637             /* Get j neighbor index, and coordinate index */
638             jnrlistA         = jjnr[jidx];
639             jnrlistB         = jjnr[jidx+1];
640             jnrlistC         = jjnr[jidx+2];
641             jnrlistD         = jjnr[jidx+3];
642             /* Sign of each element will be negative for non-real atoms.
643              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
644              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
645              */
646             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
647             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
648             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
649             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
650             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
651             j_coord_offsetA  = DIM*jnrA;
652             j_coord_offsetB  = DIM*jnrB;
653             j_coord_offsetC  = DIM*jnrC;
654             j_coord_offsetD  = DIM*jnrD;
655
656             /* load j atom coordinates */
657             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
658                                               x+j_coord_offsetC,x+j_coord_offsetD,
659                                               &jx0,&jy0,&jz0);
660
661             /* Calculate displacement vector */
662             dx00             = _mm_sub_ps(ix0,jx0);
663             dy00             = _mm_sub_ps(iy0,jy0);
664             dz00             = _mm_sub_ps(iz0,jz0);
665
666             /* Calculate squared distance and things based on it */
667             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
668
669             rinv00           = avx128fma_invsqrt_f(rsq00);
670
671             /* Load parameters for j particles */
672             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
673                                                               charge+jnrC+0,charge+jnrD+0);
674             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
675                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
676
677             /**************************
678              * CALCULATE INTERACTIONS *
679              **************************/
680
681             r00              = _mm_mul_ps(rsq00,rinv00);
682             r00              = _mm_andnot_ps(dummy_mask,r00);
683
684             /* Compute parameters for interactions between i and j atoms */
685             qq00             = _mm_mul_ps(iq0,jq0);
686
687             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
688             isaprod          = _mm_mul_ps(isai0,isaj0);
689             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
690             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
691
692             /* Calculate generalized born table index - this is a separate table from the normal one,
693              * but we use the same procedure by multiplying r with scale and truncating to integer.
694              */
695             rt               = _mm_mul_ps(r00,gbscale);
696             gbitab           = _mm_cvttps_epi32(rt);
697 #ifdef __XOP__
698             gbeps            = _mm_frcz_ps(rt);
699 #else
700             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
701 #endif
702             gbitab           = _mm_slli_epi32(gbitab,2);
703
704             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
705             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
706             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
707             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
708             _MM_TRANSPOSE4_PS(Y,F,G,H);
709             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
710             VV               = _mm_macc_ps(gbeps,Fp,Y);
711             vgb              = _mm_mul_ps(gbqqfactor,VV);
712
713             twogbeps         = _mm_add_ps(gbeps,gbeps);
714             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
715             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
716             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
717             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
718             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
719             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
720             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
721             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
722             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
723             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
724             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
725             velec            = _mm_mul_ps(qq00,rinv00);
726             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
727
728             fscal            = felec;
729
730             fscal            = _mm_andnot_ps(dummy_mask,fscal);
731
732              /* Update vectorial force */
733             fix0             = _mm_macc_ps(dx00,fscal,fix0);
734             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
735             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
736
737             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
738             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
739             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
740             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
741             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
742                                                    _mm_mul_ps(dx00,fscal),
743                                                    _mm_mul_ps(dy00,fscal),
744                                                    _mm_mul_ps(dz00,fscal));
745
746             /* Inner loop uses 60 flops */
747         }
748
749         /* End of innermost loop */
750
751         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
752                                               f+i_coord_offset,fshift+i_shift_offset);
753
754         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
755         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
756
757         /* Increment number of inner iterations */
758         inneriter                  += j_index_end - j_index_start;
759
760         /* Outer loop uses 7 flops */
761     }
762
763     /* Increment number of outer iterations */
764     outeriter        += nri;
765
766     /* Update outer/inner flops */
767
768     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*60);
769 }