Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          gbitab;
77     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
78     __m128           minushalf = _mm_set1_ps(-0.5);
79     real             *invsqrta,*dvda,*gbtab;
80     __m128i          vfitab;
81     __m128i          ifour       = _mm_set1_epi32(4);
82     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
83     real             *vftab;
84     __m128           dummy_mask,cutoff_mask;
85     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
86     __m128           one     = _mm_set1_ps(1.0);
87     __m128           two     = _mm_set1_ps(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm_set1_ps(fr->epsfac);
100     charge           = mdatoms->chargeA;
101
102     invsqrta         = fr->invsqrta;
103     dvda             = fr->dvda;
104     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
105     gbtab            = fr->gbtab.data;
106     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
107
108     /* Avoid stupid compiler warnings */
109     jnrA = jnrB = jnrC = jnrD = 0;
110     j_coord_offsetA = 0;
111     j_coord_offsetB = 0;
112     j_coord_offsetC = 0;
113     j_coord_offsetD = 0;
114
115     outeriter        = 0;
116     inneriter        = 0;
117
118     for(iidx=0;iidx<4*DIM;iidx++)
119     {
120         scratch[iidx] = 0.0;
121     }
122
123     /* Start outer loop over neighborlists */
124     for(iidx=0; iidx<nri; iidx++)
125     {
126         /* Load shift vector for this list */
127         i_shift_offset   = DIM*shiftidx[iidx];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
139
140         fix0             = _mm_setzero_ps();
141         fiy0             = _mm_setzero_ps();
142         fiz0             = _mm_setzero_ps();
143
144         /* Load parameters for i particles */
145         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
146         isai0            = _mm_load1_ps(invsqrta+inr+0);
147
148         /* Reset potential sums */
149         velecsum         = _mm_setzero_ps();
150         vgbsum           = _mm_setzero_ps();
151         dvdasum          = _mm_setzero_ps();
152
153         /* Start inner kernel loop */
154         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
155         {
156
157             /* Get j neighbor index, and coordinate index */
158             jnrA             = jjnr[jidx];
159             jnrB             = jjnr[jidx+1];
160             jnrC             = jjnr[jidx+2];
161             jnrD             = jjnr[jidx+3];
162             j_coord_offsetA  = DIM*jnrA;
163             j_coord_offsetB  = DIM*jnrB;
164             j_coord_offsetC  = DIM*jnrC;
165             j_coord_offsetD  = DIM*jnrD;
166
167             /* load j atom coordinates */
168             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               x+j_coord_offsetC,x+j_coord_offsetD,
170                                               &jx0,&jy0,&jz0);
171
172             /* Calculate displacement vector */
173             dx00             = _mm_sub_ps(ix0,jx0);
174             dy00             = _mm_sub_ps(iy0,jy0);
175             dz00             = _mm_sub_ps(iz0,jz0);
176
177             /* Calculate squared distance and things based on it */
178             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
179
180             rinv00           = gmx_mm_invsqrt_ps(rsq00);
181
182             /* Load parameters for j particles */
183             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
184                                                               charge+jnrC+0,charge+jnrD+0);
185             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
186                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
187
188             /**************************
189              * CALCULATE INTERACTIONS *
190              **************************/
191
192             r00              = _mm_mul_ps(rsq00,rinv00);
193
194             /* Compute parameters for interactions between i and j atoms */
195             qq00             = _mm_mul_ps(iq0,jq0);
196
197             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
198             isaprod          = _mm_mul_ps(isai0,isaj0);
199             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
200             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
201
202             /* Calculate generalized born table index - this is a separate table from the normal one,
203              * but we use the same procedure by multiplying r with scale and truncating to integer.
204              */
205             rt               = _mm_mul_ps(r00,gbscale);
206             gbitab           = _mm_cvttps_epi32(rt);
207 #ifdef __XOP__
208             gbeps            = _mm_frcz_ps(rt);
209 #else
210             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
211 #endif
212             gbitab           = _mm_slli_epi32(gbitab,2);
213
214             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
215             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
216             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
217             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
218             _MM_TRANSPOSE4_PS(Y,F,G,H);
219             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
220             VV               = _mm_macc_ps(gbeps,Fp,Y);
221             vgb              = _mm_mul_ps(gbqqfactor,VV);
222
223             twogbeps         = _mm_add_ps(gbeps,gbeps);
224             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
225             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
226             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
227             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
228             fjptrA           = dvda+jnrA;
229             fjptrB           = dvda+jnrB;
230             fjptrC           = dvda+jnrC;
231             fjptrD           = dvda+jnrD;
232             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
233             velec            = _mm_mul_ps(qq00,rinv00);
234             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
235
236             /* Update potential sum for this i atom from the interaction with this j atom. */
237             velecsum         = _mm_add_ps(velecsum,velec);
238             vgbsum           = _mm_add_ps(vgbsum,vgb);
239
240             fscal            = felec;
241
242              /* Update vectorial force */
243             fix0             = _mm_macc_ps(dx00,fscal,fix0);
244             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
245             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
246
247             fjptrA             = f+j_coord_offsetA;
248             fjptrB             = f+j_coord_offsetB;
249             fjptrC             = f+j_coord_offsetC;
250             fjptrD             = f+j_coord_offsetD;
251             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
252                                                    _mm_mul_ps(dx00,fscal),
253                                                    _mm_mul_ps(dy00,fscal),
254                                                    _mm_mul_ps(dz00,fscal));
255
256             /* Inner loop uses 61 flops */
257         }
258
259         if(jidx<j_index_end)
260         {
261
262             /* Get j neighbor index, and coordinate index */
263             jnrlistA         = jjnr[jidx];
264             jnrlistB         = jjnr[jidx+1];
265             jnrlistC         = jjnr[jidx+2];
266             jnrlistD         = jjnr[jidx+3];
267             /* Sign of each element will be negative for non-real atoms.
268              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
269              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
270              */
271             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
272             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
273             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
274             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
275             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
276             j_coord_offsetA  = DIM*jnrA;
277             j_coord_offsetB  = DIM*jnrB;
278             j_coord_offsetC  = DIM*jnrC;
279             j_coord_offsetD  = DIM*jnrD;
280
281             /* load j atom coordinates */
282             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
283                                               x+j_coord_offsetC,x+j_coord_offsetD,
284                                               &jx0,&jy0,&jz0);
285
286             /* Calculate displacement vector */
287             dx00             = _mm_sub_ps(ix0,jx0);
288             dy00             = _mm_sub_ps(iy0,jy0);
289             dz00             = _mm_sub_ps(iz0,jz0);
290
291             /* Calculate squared distance and things based on it */
292             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
293
294             rinv00           = gmx_mm_invsqrt_ps(rsq00);
295
296             /* Load parameters for j particles */
297             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
298                                                               charge+jnrC+0,charge+jnrD+0);
299             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
300                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             r00              = _mm_mul_ps(rsq00,rinv00);
307             r00              = _mm_andnot_ps(dummy_mask,r00);
308
309             /* Compute parameters for interactions between i and j atoms */
310             qq00             = _mm_mul_ps(iq0,jq0);
311
312             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
313             isaprod          = _mm_mul_ps(isai0,isaj0);
314             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
315             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
316
317             /* Calculate generalized born table index - this is a separate table from the normal one,
318              * but we use the same procedure by multiplying r with scale and truncating to integer.
319              */
320             rt               = _mm_mul_ps(r00,gbscale);
321             gbitab           = _mm_cvttps_epi32(rt);
322 #ifdef __XOP__
323             gbeps            = _mm_frcz_ps(rt);
324 #else
325             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
326 #endif
327             gbitab           = _mm_slli_epi32(gbitab,2);
328
329             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
330             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
331             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
332             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
333             _MM_TRANSPOSE4_PS(Y,F,G,H);
334             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
335             VV               = _mm_macc_ps(gbeps,Fp,Y);
336             vgb              = _mm_mul_ps(gbqqfactor,VV);
337
338             twogbeps         = _mm_add_ps(gbeps,gbeps);
339             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
340             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
341             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
342             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
343             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
344             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
345             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
346             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
347             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
348             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
349             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
350             velec            = _mm_mul_ps(qq00,rinv00);
351             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velec            = _mm_andnot_ps(dummy_mask,velec);
355             velecsum         = _mm_add_ps(velecsum,velec);
356             vgb              = _mm_andnot_ps(dummy_mask,vgb);
357             vgbsum           = _mm_add_ps(vgbsum,vgb);
358
359             fscal            = felec;
360
361             fscal            = _mm_andnot_ps(dummy_mask,fscal);
362
363              /* Update vectorial force */
364             fix0             = _mm_macc_ps(dx00,fscal,fix0);
365             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
366             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
367
368             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
369             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
370             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
371             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
372             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
373                                                    _mm_mul_ps(dx00,fscal),
374                                                    _mm_mul_ps(dy00,fscal),
375                                                    _mm_mul_ps(dz00,fscal));
376
377             /* Inner loop uses 62 flops */
378         }
379
380         /* End of innermost loop */
381
382         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
383                                               f+i_coord_offset,fshift+i_shift_offset);
384
385         ggid                        = gid[iidx];
386         /* Update potential energies */
387         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
388         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
389         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
390         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
391
392         /* Increment number of inner iterations */
393         inneriter                  += j_index_end - j_index_start;
394
395         /* Outer loop uses 9 flops */
396     }
397
398     /* Increment number of outer iterations */
399     outeriter        += nri;
400
401     /* Update outer/inner flops */
402
403     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*62);
404 }
405 /*
406  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_single
407  * Electrostatics interaction: GeneralizedBorn
408  * VdW interaction:            None
409  * Geometry:                   Particle-Particle
410  * Calculate force/pot:        Force
411  */
412 void
413 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_single
414                     (t_nblist * gmx_restrict                nlist,
415                      rvec * gmx_restrict                    xx,
416                      rvec * gmx_restrict                    ff,
417                      t_forcerec * gmx_restrict              fr,
418                      t_mdatoms * gmx_restrict               mdatoms,
419                      nb_kernel_data_t * gmx_restrict        kernel_data,
420                      t_nrnb * gmx_restrict                  nrnb)
421 {
422     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
423      * just 0 for non-waters.
424      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
425      * jnr indices corresponding to data put in the four positions in the SIMD register.
426      */
427     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
428     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
429     int              jnrA,jnrB,jnrC,jnrD;
430     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
431     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
432     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
433     real             rcutoff_scalar;
434     real             *shiftvec,*fshift,*x,*f;
435     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
436     real             scratch[4*DIM];
437     __m128           fscal,rcutoff,rcutoff2,jidxall;
438     int              vdwioffset0;
439     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
440     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
441     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
442     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
443     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
444     real             *charge;
445     __m128i          gbitab;
446     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
447     __m128           minushalf = _mm_set1_ps(-0.5);
448     real             *invsqrta,*dvda,*gbtab;
449     __m128i          vfitab;
450     __m128i          ifour       = _mm_set1_epi32(4);
451     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
452     real             *vftab;
453     __m128           dummy_mask,cutoff_mask;
454     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
455     __m128           one     = _mm_set1_ps(1.0);
456     __m128           two     = _mm_set1_ps(2.0);
457     x                = xx[0];
458     f                = ff[0];
459
460     nri              = nlist->nri;
461     iinr             = nlist->iinr;
462     jindex           = nlist->jindex;
463     jjnr             = nlist->jjnr;
464     shiftidx         = nlist->shift;
465     gid              = nlist->gid;
466     shiftvec         = fr->shift_vec[0];
467     fshift           = fr->fshift[0];
468     facel            = _mm_set1_ps(fr->epsfac);
469     charge           = mdatoms->chargeA;
470
471     invsqrta         = fr->invsqrta;
472     dvda             = fr->dvda;
473     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
474     gbtab            = fr->gbtab.data;
475     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
476
477     /* Avoid stupid compiler warnings */
478     jnrA = jnrB = jnrC = jnrD = 0;
479     j_coord_offsetA = 0;
480     j_coord_offsetB = 0;
481     j_coord_offsetC = 0;
482     j_coord_offsetD = 0;
483
484     outeriter        = 0;
485     inneriter        = 0;
486
487     for(iidx=0;iidx<4*DIM;iidx++)
488     {
489         scratch[iidx] = 0.0;
490     }
491
492     /* Start outer loop over neighborlists */
493     for(iidx=0; iidx<nri; iidx++)
494     {
495         /* Load shift vector for this list */
496         i_shift_offset   = DIM*shiftidx[iidx];
497
498         /* Load limits for loop over neighbors */
499         j_index_start    = jindex[iidx];
500         j_index_end      = jindex[iidx+1];
501
502         /* Get outer coordinate index */
503         inr              = iinr[iidx];
504         i_coord_offset   = DIM*inr;
505
506         /* Load i particle coords and add shift vector */
507         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
508
509         fix0             = _mm_setzero_ps();
510         fiy0             = _mm_setzero_ps();
511         fiz0             = _mm_setzero_ps();
512
513         /* Load parameters for i particles */
514         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
515         isai0            = _mm_load1_ps(invsqrta+inr+0);
516
517         dvdasum          = _mm_setzero_ps();
518
519         /* Start inner kernel loop */
520         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
521         {
522
523             /* Get j neighbor index, and coordinate index */
524             jnrA             = jjnr[jidx];
525             jnrB             = jjnr[jidx+1];
526             jnrC             = jjnr[jidx+2];
527             jnrD             = jjnr[jidx+3];
528             j_coord_offsetA  = DIM*jnrA;
529             j_coord_offsetB  = DIM*jnrB;
530             j_coord_offsetC  = DIM*jnrC;
531             j_coord_offsetD  = DIM*jnrD;
532
533             /* load j atom coordinates */
534             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
535                                               x+j_coord_offsetC,x+j_coord_offsetD,
536                                               &jx0,&jy0,&jz0);
537
538             /* Calculate displacement vector */
539             dx00             = _mm_sub_ps(ix0,jx0);
540             dy00             = _mm_sub_ps(iy0,jy0);
541             dz00             = _mm_sub_ps(iz0,jz0);
542
543             /* Calculate squared distance and things based on it */
544             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
545
546             rinv00           = gmx_mm_invsqrt_ps(rsq00);
547
548             /* Load parameters for j particles */
549             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
550                                                               charge+jnrC+0,charge+jnrD+0);
551             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
552                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             r00              = _mm_mul_ps(rsq00,rinv00);
559
560             /* Compute parameters for interactions between i and j atoms */
561             qq00             = _mm_mul_ps(iq0,jq0);
562
563             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
564             isaprod          = _mm_mul_ps(isai0,isaj0);
565             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
566             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
567
568             /* Calculate generalized born table index - this is a separate table from the normal one,
569              * but we use the same procedure by multiplying r with scale and truncating to integer.
570              */
571             rt               = _mm_mul_ps(r00,gbscale);
572             gbitab           = _mm_cvttps_epi32(rt);
573 #ifdef __XOP__
574             gbeps            = _mm_frcz_ps(rt);
575 #else
576             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
577 #endif
578             gbitab           = _mm_slli_epi32(gbitab,2);
579
580             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
581             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
582             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
583             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
584             _MM_TRANSPOSE4_PS(Y,F,G,H);
585             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
586             VV               = _mm_macc_ps(gbeps,Fp,Y);
587             vgb              = _mm_mul_ps(gbqqfactor,VV);
588
589             twogbeps         = _mm_add_ps(gbeps,gbeps);
590             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
591             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
592             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
593             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
594             fjptrA           = dvda+jnrA;
595             fjptrB           = dvda+jnrB;
596             fjptrC           = dvda+jnrC;
597             fjptrD           = dvda+jnrD;
598             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
599             velec            = _mm_mul_ps(qq00,rinv00);
600             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
601
602             fscal            = felec;
603
604              /* Update vectorial force */
605             fix0             = _mm_macc_ps(dx00,fscal,fix0);
606             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
607             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
608
609             fjptrA             = f+j_coord_offsetA;
610             fjptrB             = f+j_coord_offsetB;
611             fjptrC             = f+j_coord_offsetC;
612             fjptrD             = f+j_coord_offsetD;
613             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
614                                                    _mm_mul_ps(dx00,fscal),
615                                                    _mm_mul_ps(dy00,fscal),
616                                                    _mm_mul_ps(dz00,fscal));
617
618             /* Inner loop uses 59 flops */
619         }
620
621         if(jidx<j_index_end)
622         {
623
624             /* Get j neighbor index, and coordinate index */
625             jnrlistA         = jjnr[jidx];
626             jnrlistB         = jjnr[jidx+1];
627             jnrlistC         = jjnr[jidx+2];
628             jnrlistD         = jjnr[jidx+3];
629             /* Sign of each element will be negative for non-real atoms.
630              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
631              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
632              */
633             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
634             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
635             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
636             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
637             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
638             j_coord_offsetA  = DIM*jnrA;
639             j_coord_offsetB  = DIM*jnrB;
640             j_coord_offsetC  = DIM*jnrC;
641             j_coord_offsetD  = DIM*jnrD;
642
643             /* load j atom coordinates */
644             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
645                                               x+j_coord_offsetC,x+j_coord_offsetD,
646                                               &jx0,&jy0,&jz0);
647
648             /* Calculate displacement vector */
649             dx00             = _mm_sub_ps(ix0,jx0);
650             dy00             = _mm_sub_ps(iy0,jy0);
651             dz00             = _mm_sub_ps(iz0,jz0);
652
653             /* Calculate squared distance and things based on it */
654             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
655
656             rinv00           = gmx_mm_invsqrt_ps(rsq00);
657
658             /* Load parameters for j particles */
659             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
660                                                               charge+jnrC+0,charge+jnrD+0);
661             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
662                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
663
664             /**************************
665              * CALCULATE INTERACTIONS *
666              **************************/
667
668             r00              = _mm_mul_ps(rsq00,rinv00);
669             r00              = _mm_andnot_ps(dummy_mask,r00);
670
671             /* Compute parameters for interactions between i and j atoms */
672             qq00             = _mm_mul_ps(iq0,jq0);
673
674             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
675             isaprod          = _mm_mul_ps(isai0,isaj0);
676             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
677             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
678
679             /* Calculate generalized born table index - this is a separate table from the normal one,
680              * but we use the same procedure by multiplying r with scale and truncating to integer.
681              */
682             rt               = _mm_mul_ps(r00,gbscale);
683             gbitab           = _mm_cvttps_epi32(rt);
684 #ifdef __XOP__
685             gbeps            = _mm_frcz_ps(rt);
686 #else
687             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
688 #endif
689             gbitab           = _mm_slli_epi32(gbitab,2);
690
691             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
692             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
693             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
694             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
695             _MM_TRANSPOSE4_PS(Y,F,G,H);
696             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
697             VV               = _mm_macc_ps(gbeps,Fp,Y);
698             vgb              = _mm_mul_ps(gbqqfactor,VV);
699
700             twogbeps         = _mm_add_ps(gbeps,gbeps);
701             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
702             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
703             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
704             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
705             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
706             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
707             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
708             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
709             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
710             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
711             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
712             velec            = _mm_mul_ps(qq00,rinv00);
713             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
714
715             fscal            = felec;
716
717             fscal            = _mm_andnot_ps(dummy_mask,fscal);
718
719              /* Update vectorial force */
720             fix0             = _mm_macc_ps(dx00,fscal,fix0);
721             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
722             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
723
724             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
725             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
726             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
727             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
728             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
729                                                    _mm_mul_ps(dx00,fscal),
730                                                    _mm_mul_ps(dy00,fscal),
731                                                    _mm_mul_ps(dz00,fscal));
732
733             /* Inner loop uses 60 flops */
734         }
735
736         /* End of innermost loop */
737
738         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
739                                               f+i_coord_offset,fshift+i_shift_offset);
740
741         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
742         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
743
744         /* Increment number of inner iterations */
745         inneriter                  += j_index_end - j_index_start;
746
747         /* Outer loop uses 7 flops */
748     }
749
750     /* Increment number of outer iterations */
751     outeriter        += nri;
752
753     /* Update outer/inner flops */
754
755     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*60);
756 }