fc0ff76f4e5097b7712034f78baff0c3f76ea958
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          gbitab;
77     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
78     __m128           minushalf = _mm_set1_ps(-0.5);
79     real             *invsqrta,*dvda,*gbtab;
80     int              nvdwtype;
81     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
82     int              *vdwtype;
83     real             *vdwparam;
84     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
85     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
86     __m128i          vfitab;
87     __m128i          ifour       = _mm_set1_epi32(4);
88     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
89     real             *vftab;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     invsqrta         = fr->invsqrta;
112     dvda             = fr->dvda;
113     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
114     gbtab            = fr->gbtab.data;
115     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = jnrC = jnrD = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121     j_coord_offsetC = 0;
122     j_coord_offsetD = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     for(iidx=0;iidx<4*DIM;iidx++)
128     {
129         scratch[iidx] = 0.0;
130     }
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
148
149         fix0             = _mm_setzero_ps();
150         fiy0             = _mm_setzero_ps();
151         fiz0             = _mm_setzero_ps();
152
153         /* Load parameters for i particles */
154         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
155         isai0            = _mm_load1_ps(invsqrta+inr+0);
156         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         velecsum         = _mm_setzero_ps();
160         vgbsum           = _mm_setzero_ps();
161         vvdwsum          = _mm_setzero_ps();
162         dvdasum          = _mm_setzero_ps();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               x+j_coord_offsetC,x+j_coord_offsetD,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_ps(ix0,jx0);
185             dy00             = _mm_sub_ps(iy0,jy0);
186             dz00             = _mm_sub_ps(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
190
191             rinv00           = gmx_mm_invsqrt_ps(rsq00);
192
193             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
197                                                               charge+jnrC+0,charge+jnrD+0);
198             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
199                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202             vdwjidx0C        = 2*vdwtype[jnrC+0];
203             vdwjidx0D        = 2*vdwtype[jnrD+0];
204
205             /**************************
206              * CALCULATE INTERACTIONS *
207              **************************/
208
209             r00              = _mm_mul_ps(rsq00,rinv00);
210
211             /* Compute parameters for interactions between i and j atoms */
212             qq00             = _mm_mul_ps(iq0,jq0);
213             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
214                                          vdwparam+vdwioffset0+vdwjidx0B,
215                                          vdwparam+vdwioffset0+vdwjidx0C,
216                                          vdwparam+vdwioffset0+vdwjidx0D,
217                                          &c6_00,&c12_00);
218
219             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
220             isaprod          = _mm_mul_ps(isai0,isaj0);
221             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
222             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
223
224             /* Calculate generalized born table index - this is a separate table from the normal one,
225              * but we use the same procedure by multiplying r with scale and truncating to integer.
226              */
227             rt               = _mm_mul_ps(r00,gbscale);
228             gbitab           = _mm_cvttps_epi32(rt);
229 #ifdef __XOP__
230             gbeps            = _mm_frcz_ps(rt);
231 #else
232             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
233 #endif
234             gbitab           = _mm_slli_epi32(gbitab,2);
235
236             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
237             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
238             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
239             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
240             _MM_TRANSPOSE4_PS(Y,F,G,H);
241             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
242             VV               = _mm_macc_ps(gbeps,Fp,Y);
243             vgb              = _mm_mul_ps(gbqqfactor,VV);
244
245             twogbeps         = _mm_add_ps(gbeps,gbeps);
246             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
247             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
248             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
249             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
250             fjptrA           = dvda+jnrA;
251             fjptrB           = dvda+jnrB;
252             fjptrC           = dvda+jnrC;
253             fjptrD           = dvda+jnrD;
254             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
255             velec            = _mm_mul_ps(qq00,rinv00);
256             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
257
258             /* LENNARD-JONES DISPERSION/REPULSION */
259
260             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
261             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
262             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
263             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
264             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velecsum         = _mm_add_ps(velecsum,velec);
268             vgbsum           = _mm_add_ps(vgbsum,vgb);
269             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
270
271             fscal            = _mm_add_ps(felec,fvdw);
272
273              /* Update vectorial force */
274             fix0             = _mm_macc_ps(dx00,fscal,fix0);
275             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
276             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
277
278             fjptrA             = f+j_coord_offsetA;
279             fjptrB             = f+j_coord_offsetB;
280             fjptrC             = f+j_coord_offsetC;
281             fjptrD             = f+j_coord_offsetD;
282             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
283                                                    _mm_mul_ps(dx00,fscal),
284                                                    _mm_mul_ps(dy00,fscal),
285                                                    _mm_mul_ps(dz00,fscal));
286
287             /* Inner loop uses 74 flops */
288         }
289
290         if(jidx<j_index_end)
291         {
292
293             /* Get j neighbor index, and coordinate index */
294             jnrlistA         = jjnr[jidx];
295             jnrlistB         = jjnr[jidx+1];
296             jnrlistC         = jjnr[jidx+2];
297             jnrlistD         = jjnr[jidx+3];
298             /* Sign of each element will be negative for non-real atoms.
299              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
300              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
301              */
302             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
303             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
304             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
305             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
306             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
307             j_coord_offsetA  = DIM*jnrA;
308             j_coord_offsetB  = DIM*jnrB;
309             j_coord_offsetC  = DIM*jnrC;
310             j_coord_offsetD  = DIM*jnrD;
311
312             /* load j atom coordinates */
313             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
314                                               x+j_coord_offsetC,x+j_coord_offsetD,
315                                               &jx0,&jy0,&jz0);
316
317             /* Calculate displacement vector */
318             dx00             = _mm_sub_ps(ix0,jx0);
319             dy00             = _mm_sub_ps(iy0,jy0);
320             dz00             = _mm_sub_ps(iz0,jz0);
321
322             /* Calculate squared distance and things based on it */
323             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
324
325             rinv00           = gmx_mm_invsqrt_ps(rsq00);
326
327             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
328
329             /* Load parameters for j particles */
330             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
331                                                               charge+jnrC+0,charge+jnrD+0);
332             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
333                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
334             vdwjidx0A        = 2*vdwtype[jnrA+0];
335             vdwjidx0B        = 2*vdwtype[jnrB+0];
336             vdwjidx0C        = 2*vdwtype[jnrC+0];
337             vdwjidx0D        = 2*vdwtype[jnrD+0];
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             r00              = _mm_mul_ps(rsq00,rinv00);
344             r00              = _mm_andnot_ps(dummy_mask,r00);
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq00             = _mm_mul_ps(iq0,jq0);
348             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
349                                          vdwparam+vdwioffset0+vdwjidx0B,
350                                          vdwparam+vdwioffset0+vdwjidx0C,
351                                          vdwparam+vdwioffset0+vdwjidx0D,
352                                          &c6_00,&c12_00);
353
354             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
355             isaprod          = _mm_mul_ps(isai0,isaj0);
356             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
357             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
358
359             /* Calculate generalized born table index - this is a separate table from the normal one,
360              * but we use the same procedure by multiplying r with scale and truncating to integer.
361              */
362             rt               = _mm_mul_ps(r00,gbscale);
363             gbitab           = _mm_cvttps_epi32(rt);
364 #ifdef __XOP__
365             gbeps            = _mm_frcz_ps(rt);
366 #else
367             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
368 #endif
369             gbitab           = _mm_slli_epi32(gbitab,2);
370
371             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
372             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
373             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
374             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
375             _MM_TRANSPOSE4_PS(Y,F,G,H);
376             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
377             VV               = _mm_macc_ps(gbeps,Fp,Y);
378             vgb              = _mm_mul_ps(gbqqfactor,VV);
379
380             twogbeps         = _mm_add_ps(gbeps,gbeps);
381             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
382             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
383             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
384             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
385             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
386             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
387             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
388             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
389             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
390             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
391             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
392             velec            = _mm_mul_ps(qq00,rinv00);
393             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
394
395             /* LENNARD-JONES DISPERSION/REPULSION */
396
397             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
398             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
399             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
400             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
401             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velec            = _mm_andnot_ps(dummy_mask,velec);
405             velecsum         = _mm_add_ps(velecsum,velec);
406             vgb              = _mm_andnot_ps(dummy_mask,vgb);
407             vgbsum           = _mm_add_ps(vgbsum,vgb);
408             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
409             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
410
411             fscal            = _mm_add_ps(felec,fvdw);
412
413             fscal            = _mm_andnot_ps(dummy_mask,fscal);
414
415              /* Update vectorial force */
416             fix0             = _mm_macc_ps(dx00,fscal,fix0);
417             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
418             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
419
420             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
421             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
422             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
423             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
424             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
425                                                    _mm_mul_ps(dx00,fscal),
426                                                    _mm_mul_ps(dy00,fscal),
427                                                    _mm_mul_ps(dz00,fscal));
428
429             /* Inner loop uses 75 flops */
430         }
431
432         /* End of innermost loop */
433
434         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
435                                               f+i_coord_offset,fshift+i_shift_offset);
436
437         ggid                        = gid[iidx];
438         /* Update potential energies */
439         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
440         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
441         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
442         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
443         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
444
445         /* Increment number of inner iterations */
446         inneriter                  += j_index_end - j_index_start;
447
448         /* Outer loop uses 10 flops */
449     }
450
451     /* Increment number of outer iterations */
452     outeriter        += nri;
453
454     /* Update outer/inner flops */
455
456     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*75);
457 }
458 /*
459  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_single
460  * Electrostatics interaction: GeneralizedBorn
461  * VdW interaction:            LennardJones
462  * Geometry:                   Particle-Particle
463  * Calculate force/pot:        Force
464  */
465 void
466 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_single
467                     (t_nblist * gmx_restrict                nlist,
468                      rvec * gmx_restrict                    xx,
469                      rvec * gmx_restrict                    ff,
470                      t_forcerec * gmx_restrict              fr,
471                      t_mdatoms * gmx_restrict               mdatoms,
472                      nb_kernel_data_t * gmx_restrict        kernel_data,
473                      t_nrnb * gmx_restrict                  nrnb)
474 {
475     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
476      * just 0 for non-waters.
477      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
478      * jnr indices corresponding to data put in the four positions in the SIMD register.
479      */
480     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
481     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
482     int              jnrA,jnrB,jnrC,jnrD;
483     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
484     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
485     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
486     real             rcutoff_scalar;
487     real             *shiftvec,*fshift,*x,*f;
488     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
489     real             scratch[4*DIM];
490     __m128           fscal,rcutoff,rcutoff2,jidxall;
491     int              vdwioffset0;
492     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
493     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
494     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
495     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
496     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
497     real             *charge;
498     __m128i          gbitab;
499     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
500     __m128           minushalf = _mm_set1_ps(-0.5);
501     real             *invsqrta,*dvda,*gbtab;
502     int              nvdwtype;
503     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
504     int              *vdwtype;
505     real             *vdwparam;
506     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
507     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
508     __m128i          vfitab;
509     __m128i          ifour       = _mm_set1_epi32(4);
510     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
511     real             *vftab;
512     __m128           dummy_mask,cutoff_mask;
513     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
514     __m128           one     = _mm_set1_ps(1.0);
515     __m128           two     = _mm_set1_ps(2.0);
516     x                = xx[0];
517     f                = ff[0];
518
519     nri              = nlist->nri;
520     iinr             = nlist->iinr;
521     jindex           = nlist->jindex;
522     jjnr             = nlist->jjnr;
523     shiftidx         = nlist->shift;
524     gid              = nlist->gid;
525     shiftvec         = fr->shift_vec[0];
526     fshift           = fr->fshift[0];
527     facel            = _mm_set1_ps(fr->epsfac);
528     charge           = mdatoms->chargeA;
529     nvdwtype         = fr->ntype;
530     vdwparam         = fr->nbfp;
531     vdwtype          = mdatoms->typeA;
532
533     invsqrta         = fr->invsqrta;
534     dvda             = fr->dvda;
535     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
536     gbtab            = fr->gbtab.data;
537     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
538
539     /* Avoid stupid compiler warnings */
540     jnrA = jnrB = jnrC = jnrD = 0;
541     j_coord_offsetA = 0;
542     j_coord_offsetB = 0;
543     j_coord_offsetC = 0;
544     j_coord_offsetD = 0;
545
546     outeriter        = 0;
547     inneriter        = 0;
548
549     for(iidx=0;iidx<4*DIM;iidx++)
550     {
551         scratch[iidx] = 0.0;
552     }
553
554     /* Start outer loop over neighborlists */
555     for(iidx=0; iidx<nri; iidx++)
556     {
557         /* Load shift vector for this list */
558         i_shift_offset   = DIM*shiftidx[iidx];
559
560         /* Load limits for loop over neighbors */
561         j_index_start    = jindex[iidx];
562         j_index_end      = jindex[iidx+1];
563
564         /* Get outer coordinate index */
565         inr              = iinr[iidx];
566         i_coord_offset   = DIM*inr;
567
568         /* Load i particle coords and add shift vector */
569         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
570
571         fix0             = _mm_setzero_ps();
572         fiy0             = _mm_setzero_ps();
573         fiz0             = _mm_setzero_ps();
574
575         /* Load parameters for i particles */
576         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
577         isai0            = _mm_load1_ps(invsqrta+inr+0);
578         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
579
580         dvdasum          = _mm_setzero_ps();
581
582         /* Start inner kernel loop */
583         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
584         {
585
586             /* Get j neighbor index, and coordinate index */
587             jnrA             = jjnr[jidx];
588             jnrB             = jjnr[jidx+1];
589             jnrC             = jjnr[jidx+2];
590             jnrD             = jjnr[jidx+3];
591             j_coord_offsetA  = DIM*jnrA;
592             j_coord_offsetB  = DIM*jnrB;
593             j_coord_offsetC  = DIM*jnrC;
594             j_coord_offsetD  = DIM*jnrD;
595
596             /* load j atom coordinates */
597             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
598                                               x+j_coord_offsetC,x+j_coord_offsetD,
599                                               &jx0,&jy0,&jz0);
600
601             /* Calculate displacement vector */
602             dx00             = _mm_sub_ps(ix0,jx0);
603             dy00             = _mm_sub_ps(iy0,jy0);
604             dz00             = _mm_sub_ps(iz0,jz0);
605
606             /* Calculate squared distance and things based on it */
607             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
608
609             rinv00           = gmx_mm_invsqrt_ps(rsq00);
610
611             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
612
613             /* Load parameters for j particles */
614             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
615                                                               charge+jnrC+0,charge+jnrD+0);
616             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
617                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
618             vdwjidx0A        = 2*vdwtype[jnrA+0];
619             vdwjidx0B        = 2*vdwtype[jnrB+0];
620             vdwjidx0C        = 2*vdwtype[jnrC+0];
621             vdwjidx0D        = 2*vdwtype[jnrD+0];
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             r00              = _mm_mul_ps(rsq00,rinv00);
628
629             /* Compute parameters for interactions between i and j atoms */
630             qq00             = _mm_mul_ps(iq0,jq0);
631             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
632                                          vdwparam+vdwioffset0+vdwjidx0B,
633                                          vdwparam+vdwioffset0+vdwjidx0C,
634                                          vdwparam+vdwioffset0+vdwjidx0D,
635                                          &c6_00,&c12_00);
636
637             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
638             isaprod          = _mm_mul_ps(isai0,isaj0);
639             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
640             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
641
642             /* Calculate generalized born table index - this is a separate table from the normal one,
643              * but we use the same procedure by multiplying r with scale and truncating to integer.
644              */
645             rt               = _mm_mul_ps(r00,gbscale);
646             gbitab           = _mm_cvttps_epi32(rt);
647 #ifdef __XOP__
648             gbeps            = _mm_frcz_ps(rt);
649 #else
650             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
651 #endif
652             gbitab           = _mm_slli_epi32(gbitab,2);
653
654             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
655             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
656             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
657             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
658             _MM_TRANSPOSE4_PS(Y,F,G,H);
659             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
660             VV               = _mm_macc_ps(gbeps,Fp,Y);
661             vgb              = _mm_mul_ps(gbqqfactor,VV);
662
663             twogbeps         = _mm_add_ps(gbeps,gbeps);
664             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
665             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
666             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
667             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
668             fjptrA           = dvda+jnrA;
669             fjptrB           = dvda+jnrB;
670             fjptrC           = dvda+jnrC;
671             fjptrD           = dvda+jnrD;
672             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
673             velec            = _mm_mul_ps(qq00,rinv00);
674             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
675
676             /* LENNARD-JONES DISPERSION/REPULSION */
677
678             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
679             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
680
681             fscal            = _mm_add_ps(felec,fvdw);
682
683              /* Update vectorial force */
684             fix0             = _mm_macc_ps(dx00,fscal,fix0);
685             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
686             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
687
688             fjptrA             = f+j_coord_offsetA;
689             fjptrB             = f+j_coord_offsetB;
690             fjptrC             = f+j_coord_offsetC;
691             fjptrD             = f+j_coord_offsetD;
692             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
693                                                    _mm_mul_ps(dx00,fscal),
694                                                    _mm_mul_ps(dy00,fscal),
695                                                    _mm_mul_ps(dz00,fscal));
696
697             /* Inner loop uses 67 flops */
698         }
699
700         if(jidx<j_index_end)
701         {
702
703             /* Get j neighbor index, and coordinate index */
704             jnrlistA         = jjnr[jidx];
705             jnrlistB         = jjnr[jidx+1];
706             jnrlistC         = jjnr[jidx+2];
707             jnrlistD         = jjnr[jidx+3];
708             /* Sign of each element will be negative for non-real atoms.
709              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
710              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
711              */
712             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
713             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
714             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
715             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
716             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
717             j_coord_offsetA  = DIM*jnrA;
718             j_coord_offsetB  = DIM*jnrB;
719             j_coord_offsetC  = DIM*jnrC;
720             j_coord_offsetD  = DIM*jnrD;
721
722             /* load j atom coordinates */
723             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
724                                               x+j_coord_offsetC,x+j_coord_offsetD,
725                                               &jx0,&jy0,&jz0);
726
727             /* Calculate displacement vector */
728             dx00             = _mm_sub_ps(ix0,jx0);
729             dy00             = _mm_sub_ps(iy0,jy0);
730             dz00             = _mm_sub_ps(iz0,jz0);
731
732             /* Calculate squared distance and things based on it */
733             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
734
735             rinv00           = gmx_mm_invsqrt_ps(rsq00);
736
737             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
738
739             /* Load parameters for j particles */
740             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
741                                                               charge+jnrC+0,charge+jnrD+0);
742             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
743                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
744             vdwjidx0A        = 2*vdwtype[jnrA+0];
745             vdwjidx0B        = 2*vdwtype[jnrB+0];
746             vdwjidx0C        = 2*vdwtype[jnrC+0];
747             vdwjidx0D        = 2*vdwtype[jnrD+0];
748
749             /**************************
750              * CALCULATE INTERACTIONS *
751              **************************/
752
753             r00              = _mm_mul_ps(rsq00,rinv00);
754             r00              = _mm_andnot_ps(dummy_mask,r00);
755
756             /* Compute parameters for interactions between i and j atoms */
757             qq00             = _mm_mul_ps(iq0,jq0);
758             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
759                                          vdwparam+vdwioffset0+vdwjidx0B,
760                                          vdwparam+vdwioffset0+vdwjidx0C,
761                                          vdwparam+vdwioffset0+vdwjidx0D,
762                                          &c6_00,&c12_00);
763
764             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
765             isaprod          = _mm_mul_ps(isai0,isaj0);
766             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
767             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
768
769             /* Calculate generalized born table index - this is a separate table from the normal one,
770              * but we use the same procedure by multiplying r with scale and truncating to integer.
771              */
772             rt               = _mm_mul_ps(r00,gbscale);
773             gbitab           = _mm_cvttps_epi32(rt);
774 #ifdef __XOP__
775             gbeps            = _mm_frcz_ps(rt);
776 #else
777             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
778 #endif
779             gbitab           = _mm_slli_epi32(gbitab,2);
780
781             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
782             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
783             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
784             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
785             _MM_TRANSPOSE4_PS(Y,F,G,H);
786             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
787             VV               = _mm_macc_ps(gbeps,Fp,Y);
788             vgb              = _mm_mul_ps(gbqqfactor,VV);
789
790             twogbeps         = _mm_add_ps(gbeps,gbeps);
791             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
792             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
793             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
794             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
795             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
796             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
797             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
798             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
799             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
800             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
801             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
802             velec            = _mm_mul_ps(qq00,rinv00);
803             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
804
805             /* LENNARD-JONES DISPERSION/REPULSION */
806
807             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
808             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
809
810             fscal            = _mm_add_ps(felec,fvdw);
811
812             fscal            = _mm_andnot_ps(dummy_mask,fscal);
813
814              /* Update vectorial force */
815             fix0             = _mm_macc_ps(dx00,fscal,fix0);
816             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
817             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
818
819             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
820             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
821             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
822             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
823             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
824                                                    _mm_mul_ps(dx00,fscal),
825                                                    _mm_mul_ps(dy00,fscal),
826                                                    _mm_mul_ps(dz00,fscal));
827
828             /* Inner loop uses 68 flops */
829         }
830
831         /* End of innermost loop */
832
833         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
834                                               f+i_coord_offset,fshift+i_shift_offset);
835
836         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
837         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
838
839         /* Increment number of inner iterations */
840         inneriter                  += j_index_end - j_index_start;
841
842         /* Outer loop uses 7 flops */
843     }
844
845     /* Increment number of outer iterations */
846     outeriter        += nri;
847
848     /* Update outer/inner flops */
849
850     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*68);
851 }