Remove topology support for implicit solvation
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_single
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
91     __m128           minushalf = _mm_set1_ps(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
98     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
102     real             *vftab;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     invsqrta         = fr->invsqrta;
125     dvda             = fr->dvda;
126     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
127     gbtab            = fr->gbtab->data;
128     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
161
162         fix0             = _mm_setzero_ps();
163         fiy0             = _mm_setzero_ps();
164         fiz0             = _mm_setzero_ps();
165
166         /* Load parameters for i particles */
167         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
168         isai0            = _mm_load1_ps(invsqrta+inr+0);
169         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_ps();
173         vgbsum           = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175         dvdasum          = _mm_setzero_ps();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               x+j_coord_offsetC,x+j_coord_offsetD,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_ps(ix0,jx0);
198             dy00             = _mm_sub_ps(iy0,jy0);
199             dz00             = _mm_sub_ps(iz0,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
203
204             rinv00           = avx128fma_invsqrt_f(rsq00);
205
206             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
210                                                               charge+jnrC+0,charge+jnrD+0);
211             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
212                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
213             vdwjidx0A        = 2*vdwtype[jnrA+0];
214             vdwjidx0B        = 2*vdwtype[jnrB+0];
215             vdwjidx0C        = 2*vdwtype[jnrC+0];
216             vdwjidx0D        = 2*vdwtype[jnrD+0];
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             r00              = _mm_mul_ps(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm_mul_ps(iq0,jq0);
226             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
227                                          vdwparam+vdwioffset0+vdwjidx0B,
228                                          vdwparam+vdwioffset0+vdwjidx0C,
229                                          vdwparam+vdwioffset0+vdwjidx0D,
230                                          &c6_00,&c12_00);
231
232             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
233             isaprod          = _mm_mul_ps(isai0,isaj0);
234             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
235             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
236
237             /* Calculate generalized born table index - this is a separate table from the normal one,
238              * but we use the same procedure by multiplying r with scale and truncating to integer.
239              */
240             rt               = _mm_mul_ps(r00,gbscale);
241             gbitab           = _mm_cvttps_epi32(rt);
242 #ifdef __XOP__
243             gbeps            = _mm_frcz_ps(rt);
244 #else
245             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
246 #endif
247             gbitab           = _mm_slli_epi32(gbitab,2);
248
249             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
250             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
251             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
252             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
253             _MM_TRANSPOSE4_PS(Y,F,G,H);
254             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
255             VV               = _mm_macc_ps(gbeps,Fp,Y);
256             vgb              = _mm_mul_ps(gbqqfactor,VV);
257
258             twogbeps         = _mm_add_ps(gbeps,gbeps);
259             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
260             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
261             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
262             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
263             fjptrA           = dvda+jnrA;
264             fjptrB           = dvda+jnrB;
265             fjptrC           = dvda+jnrC;
266             fjptrD           = dvda+jnrD;
267             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
268             velec            = _mm_mul_ps(qq00,rinv00);
269             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
270
271             /* LENNARD-JONES DISPERSION/REPULSION */
272
273             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
274             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
275             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
276             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
277             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             velecsum         = _mm_add_ps(velecsum,velec);
281             vgbsum           = _mm_add_ps(vgbsum,vgb);
282             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
283
284             fscal            = _mm_add_ps(felec,fvdw);
285
286              /* Update vectorial force */
287             fix0             = _mm_macc_ps(dx00,fscal,fix0);
288             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
289             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
290
291             fjptrA             = f+j_coord_offsetA;
292             fjptrB             = f+j_coord_offsetB;
293             fjptrC             = f+j_coord_offsetC;
294             fjptrD             = f+j_coord_offsetD;
295             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
296                                                    _mm_mul_ps(dx00,fscal),
297                                                    _mm_mul_ps(dy00,fscal),
298                                                    _mm_mul_ps(dz00,fscal));
299
300             /* Inner loop uses 74 flops */
301         }
302
303         if(jidx<j_index_end)
304         {
305
306             /* Get j neighbor index, and coordinate index */
307             jnrlistA         = jjnr[jidx];
308             jnrlistB         = jjnr[jidx+1];
309             jnrlistC         = jjnr[jidx+2];
310             jnrlistD         = jjnr[jidx+3];
311             /* Sign of each element will be negative for non-real atoms.
312              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
313              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
314              */
315             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
316             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
317             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
318             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
319             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
320             j_coord_offsetA  = DIM*jnrA;
321             j_coord_offsetB  = DIM*jnrB;
322             j_coord_offsetC  = DIM*jnrC;
323             j_coord_offsetD  = DIM*jnrD;
324
325             /* load j atom coordinates */
326             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
327                                               x+j_coord_offsetC,x+j_coord_offsetD,
328                                               &jx0,&jy0,&jz0);
329
330             /* Calculate displacement vector */
331             dx00             = _mm_sub_ps(ix0,jx0);
332             dy00             = _mm_sub_ps(iy0,jy0);
333             dz00             = _mm_sub_ps(iz0,jz0);
334
335             /* Calculate squared distance and things based on it */
336             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
337
338             rinv00           = avx128fma_invsqrt_f(rsq00);
339
340             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
341
342             /* Load parameters for j particles */
343             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
344                                                               charge+jnrC+0,charge+jnrD+0);
345             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
346                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
347             vdwjidx0A        = 2*vdwtype[jnrA+0];
348             vdwjidx0B        = 2*vdwtype[jnrB+0];
349             vdwjidx0C        = 2*vdwtype[jnrC+0];
350             vdwjidx0D        = 2*vdwtype[jnrD+0];
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             r00              = _mm_mul_ps(rsq00,rinv00);
357             r00              = _mm_andnot_ps(dummy_mask,r00);
358
359             /* Compute parameters for interactions between i and j atoms */
360             qq00             = _mm_mul_ps(iq0,jq0);
361             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
362                                          vdwparam+vdwioffset0+vdwjidx0B,
363                                          vdwparam+vdwioffset0+vdwjidx0C,
364                                          vdwparam+vdwioffset0+vdwjidx0D,
365                                          &c6_00,&c12_00);
366
367             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
368             isaprod          = _mm_mul_ps(isai0,isaj0);
369             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
370             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
371
372             /* Calculate generalized born table index - this is a separate table from the normal one,
373              * but we use the same procedure by multiplying r with scale and truncating to integer.
374              */
375             rt               = _mm_mul_ps(r00,gbscale);
376             gbitab           = _mm_cvttps_epi32(rt);
377 #ifdef __XOP__
378             gbeps            = _mm_frcz_ps(rt);
379 #else
380             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
381 #endif
382             gbitab           = _mm_slli_epi32(gbitab,2);
383
384             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
385             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
386             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
387             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
388             _MM_TRANSPOSE4_PS(Y,F,G,H);
389             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
390             VV               = _mm_macc_ps(gbeps,Fp,Y);
391             vgb              = _mm_mul_ps(gbqqfactor,VV);
392
393             twogbeps         = _mm_add_ps(gbeps,gbeps);
394             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
395             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
396             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
397             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
398             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
399             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
400             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
401             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
402             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
403             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
404             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
405             velec            = _mm_mul_ps(qq00,rinv00);
406             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
407
408             /* LENNARD-JONES DISPERSION/REPULSION */
409
410             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
411             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
412             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
413             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
414             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
415
416             /* Update potential sum for this i atom from the interaction with this j atom. */
417             velec            = _mm_andnot_ps(dummy_mask,velec);
418             velecsum         = _mm_add_ps(velecsum,velec);
419             vgb              = _mm_andnot_ps(dummy_mask,vgb);
420             vgbsum           = _mm_add_ps(vgbsum,vgb);
421             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
422             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
423
424             fscal            = _mm_add_ps(felec,fvdw);
425
426             fscal            = _mm_andnot_ps(dummy_mask,fscal);
427
428              /* Update vectorial force */
429             fix0             = _mm_macc_ps(dx00,fscal,fix0);
430             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
431             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
432
433             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
434             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
435             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
436             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
437             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
438                                                    _mm_mul_ps(dx00,fscal),
439                                                    _mm_mul_ps(dy00,fscal),
440                                                    _mm_mul_ps(dz00,fscal));
441
442             /* Inner loop uses 75 flops */
443         }
444
445         /* End of innermost loop */
446
447         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
448                                               f+i_coord_offset,fshift+i_shift_offset);
449
450         ggid                        = gid[iidx];
451         /* Update potential energies */
452         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
453         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
454         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
455         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
456         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
457
458         /* Increment number of inner iterations */
459         inneriter                  += j_index_end - j_index_start;
460
461         /* Outer loop uses 10 flops */
462     }
463
464     /* Increment number of outer iterations */
465     outeriter        += nri;
466
467     /* Update outer/inner flops */
468
469     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*75);
470 }
471 /*
472  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_single
473  * Electrostatics interaction: GeneralizedBorn
474  * VdW interaction:            LennardJones
475  * Geometry:                   Particle-Particle
476  * Calculate force/pot:        Force
477  */
478 void
479 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_single
480                     (t_nblist                    * gmx_restrict       nlist,
481                      rvec                        * gmx_restrict          xx,
482                      rvec                        * gmx_restrict          ff,
483                      struct t_forcerec           * gmx_restrict          fr,
484                      t_mdatoms                   * gmx_restrict     mdatoms,
485                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
486                      t_nrnb                      * gmx_restrict        nrnb)
487 {
488     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
489      * just 0 for non-waters.
490      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
491      * jnr indices corresponding to data put in the four positions in the SIMD register.
492      */
493     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
494     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
495     int              jnrA,jnrB,jnrC,jnrD;
496     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
497     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
498     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
499     real             rcutoff_scalar;
500     real             *shiftvec,*fshift,*x,*f;
501     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
502     real             scratch[4*DIM];
503     __m128           fscal,rcutoff,rcutoff2,jidxall;
504     int              vdwioffset0;
505     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
506     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
507     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
508     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
509     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
510     real             *charge;
511     __m128i          gbitab;
512     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
513     __m128           minushalf = _mm_set1_ps(-0.5);
514     real             *invsqrta,*dvda,*gbtab;
515     int              nvdwtype;
516     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
517     int              *vdwtype;
518     real             *vdwparam;
519     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
520     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
521     __m128i          vfitab;
522     __m128i          ifour       = _mm_set1_epi32(4);
523     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
524     real             *vftab;
525     __m128           dummy_mask,cutoff_mask;
526     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
527     __m128           one     = _mm_set1_ps(1.0);
528     __m128           two     = _mm_set1_ps(2.0);
529     x                = xx[0];
530     f                = ff[0];
531
532     nri              = nlist->nri;
533     iinr             = nlist->iinr;
534     jindex           = nlist->jindex;
535     jjnr             = nlist->jjnr;
536     shiftidx         = nlist->shift;
537     gid              = nlist->gid;
538     shiftvec         = fr->shift_vec[0];
539     fshift           = fr->fshift[0];
540     facel            = _mm_set1_ps(fr->ic->epsfac);
541     charge           = mdatoms->chargeA;
542     nvdwtype         = fr->ntype;
543     vdwparam         = fr->nbfp;
544     vdwtype          = mdatoms->typeA;
545
546     invsqrta         = fr->invsqrta;
547     dvda             = fr->dvda;
548     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
549     gbtab            = fr->gbtab->data;
550     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
551
552     /* Avoid stupid compiler warnings */
553     jnrA = jnrB = jnrC = jnrD = 0;
554     j_coord_offsetA = 0;
555     j_coord_offsetB = 0;
556     j_coord_offsetC = 0;
557     j_coord_offsetD = 0;
558
559     outeriter        = 0;
560     inneriter        = 0;
561
562     for(iidx=0;iidx<4*DIM;iidx++)
563     {
564         scratch[iidx] = 0.0;
565     }
566
567     /* Start outer loop over neighborlists */
568     for(iidx=0; iidx<nri; iidx++)
569     {
570         /* Load shift vector for this list */
571         i_shift_offset   = DIM*shiftidx[iidx];
572
573         /* Load limits for loop over neighbors */
574         j_index_start    = jindex[iidx];
575         j_index_end      = jindex[iidx+1];
576
577         /* Get outer coordinate index */
578         inr              = iinr[iidx];
579         i_coord_offset   = DIM*inr;
580
581         /* Load i particle coords and add shift vector */
582         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
583
584         fix0             = _mm_setzero_ps();
585         fiy0             = _mm_setzero_ps();
586         fiz0             = _mm_setzero_ps();
587
588         /* Load parameters for i particles */
589         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
590         isai0            = _mm_load1_ps(invsqrta+inr+0);
591         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
592
593         dvdasum          = _mm_setzero_ps();
594
595         /* Start inner kernel loop */
596         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
597         {
598
599             /* Get j neighbor index, and coordinate index */
600             jnrA             = jjnr[jidx];
601             jnrB             = jjnr[jidx+1];
602             jnrC             = jjnr[jidx+2];
603             jnrD             = jjnr[jidx+3];
604             j_coord_offsetA  = DIM*jnrA;
605             j_coord_offsetB  = DIM*jnrB;
606             j_coord_offsetC  = DIM*jnrC;
607             j_coord_offsetD  = DIM*jnrD;
608
609             /* load j atom coordinates */
610             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
611                                               x+j_coord_offsetC,x+j_coord_offsetD,
612                                               &jx0,&jy0,&jz0);
613
614             /* Calculate displacement vector */
615             dx00             = _mm_sub_ps(ix0,jx0);
616             dy00             = _mm_sub_ps(iy0,jy0);
617             dz00             = _mm_sub_ps(iz0,jz0);
618
619             /* Calculate squared distance and things based on it */
620             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
621
622             rinv00           = avx128fma_invsqrt_f(rsq00);
623
624             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
625
626             /* Load parameters for j particles */
627             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
628                                                               charge+jnrC+0,charge+jnrD+0);
629             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
630                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
631             vdwjidx0A        = 2*vdwtype[jnrA+0];
632             vdwjidx0B        = 2*vdwtype[jnrB+0];
633             vdwjidx0C        = 2*vdwtype[jnrC+0];
634             vdwjidx0D        = 2*vdwtype[jnrD+0];
635
636             /**************************
637              * CALCULATE INTERACTIONS *
638              **************************/
639
640             r00              = _mm_mul_ps(rsq00,rinv00);
641
642             /* Compute parameters for interactions between i and j atoms */
643             qq00             = _mm_mul_ps(iq0,jq0);
644             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
645                                          vdwparam+vdwioffset0+vdwjidx0B,
646                                          vdwparam+vdwioffset0+vdwjidx0C,
647                                          vdwparam+vdwioffset0+vdwjidx0D,
648                                          &c6_00,&c12_00);
649
650             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
651             isaprod          = _mm_mul_ps(isai0,isaj0);
652             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
653             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
654
655             /* Calculate generalized born table index - this is a separate table from the normal one,
656              * but we use the same procedure by multiplying r with scale and truncating to integer.
657              */
658             rt               = _mm_mul_ps(r00,gbscale);
659             gbitab           = _mm_cvttps_epi32(rt);
660 #ifdef __XOP__
661             gbeps            = _mm_frcz_ps(rt);
662 #else
663             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
664 #endif
665             gbitab           = _mm_slli_epi32(gbitab,2);
666
667             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
668             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
669             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
670             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
671             _MM_TRANSPOSE4_PS(Y,F,G,H);
672             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
673             VV               = _mm_macc_ps(gbeps,Fp,Y);
674             vgb              = _mm_mul_ps(gbqqfactor,VV);
675
676             twogbeps         = _mm_add_ps(gbeps,gbeps);
677             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
678             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
679             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
680             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
681             fjptrA           = dvda+jnrA;
682             fjptrB           = dvda+jnrB;
683             fjptrC           = dvda+jnrC;
684             fjptrD           = dvda+jnrD;
685             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
686             velec            = _mm_mul_ps(qq00,rinv00);
687             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
688
689             /* LENNARD-JONES DISPERSION/REPULSION */
690
691             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
692             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
693
694             fscal            = _mm_add_ps(felec,fvdw);
695
696              /* Update vectorial force */
697             fix0             = _mm_macc_ps(dx00,fscal,fix0);
698             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
699             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
700
701             fjptrA             = f+j_coord_offsetA;
702             fjptrB             = f+j_coord_offsetB;
703             fjptrC             = f+j_coord_offsetC;
704             fjptrD             = f+j_coord_offsetD;
705             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
706                                                    _mm_mul_ps(dx00,fscal),
707                                                    _mm_mul_ps(dy00,fscal),
708                                                    _mm_mul_ps(dz00,fscal));
709
710             /* Inner loop uses 67 flops */
711         }
712
713         if(jidx<j_index_end)
714         {
715
716             /* Get j neighbor index, and coordinate index */
717             jnrlistA         = jjnr[jidx];
718             jnrlistB         = jjnr[jidx+1];
719             jnrlistC         = jjnr[jidx+2];
720             jnrlistD         = jjnr[jidx+3];
721             /* Sign of each element will be negative for non-real atoms.
722              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
723              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
724              */
725             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
726             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
727             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
728             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
729             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
730             j_coord_offsetA  = DIM*jnrA;
731             j_coord_offsetB  = DIM*jnrB;
732             j_coord_offsetC  = DIM*jnrC;
733             j_coord_offsetD  = DIM*jnrD;
734
735             /* load j atom coordinates */
736             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
737                                               x+j_coord_offsetC,x+j_coord_offsetD,
738                                               &jx0,&jy0,&jz0);
739
740             /* Calculate displacement vector */
741             dx00             = _mm_sub_ps(ix0,jx0);
742             dy00             = _mm_sub_ps(iy0,jy0);
743             dz00             = _mm_sub_ps(iz0,jz0);
744
745             /* Calculate squared distance and things based on it */
746             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
747
748             rinv00           = avx128fma_invsqrt_f(rsq00);
749
750             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
751
752             /* Load parameters for j particles */
753             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
754                                                               charge+jnrC+0,charge+jnrD+0);
755             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
756                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
757             vdwjidx0A        = 2*vdwtype[jnrA+0];
758             vdwjidx0B        = 2*vdwtype[jnrB+0];
759             vdwjidx0C        = 2*vdwtype[jnrC+0];
760             vdwjidx0D        = 2*vdwtype[jnrD+0];
761
762             /**************************
763              * CALCULATE INTERACTIONS *
764              **************************/
765
766             r00              = _mm_mul_ps(rsq00,rinv00);
767             r00              = _mm_andnot_ps(dummy_mask,r00);
768
769             /* Compute parameters for interactions between i and j atoms */
770             qq00             = _mm_mul_ps(iq0,jq0);
771             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
772                                          vdwparam+vdwioffset0+vdwjidx0B,
773                                          vdwparam+vdwioffset0+vdwjidx0C,
774                                          vdwparam+vdwioffset0+vdwjidx0D,
775                                          &c6_00,&c12_00);
776
777             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
778             isaprod          = _mm_mul_ps(isai0,isaj0);
779             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
780             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
781
782             /* Calculate generalized born table index - this is a separate table from the normal one,
783              * but we use the same procedure by multiplying r with scale and truncating to integer.
784              */
785             rt               = _mm_mul_ps(r00,gbscale);
786             gbitab           = _mm_cvttps_epi32(rt);
787 #ifdef __XOP__
788             gbeps            = _mm_frcz_ps(rt);
789 #else
790             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
791 #endif
792             gbitab           = _mm_slli_epi32(gbitab,2);
793
794             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
795             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
796             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
797             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
798             _MM_TRANSPOSE4_PS(Y,F,G,H);
799             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
800             VV               = _mm_macc_ps(gbeps,Fp,Y);
801             vgb              = _mm_mul_ps(gbqqfactor,VV);
802
803             twogbeps         = _mm_add_ps(gbeps,gbeps);
804             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
805             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
806             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
807             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
808             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
809             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
810             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
811             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
812             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
813             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
814             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
815             velec            = _mm_mul_ps(qq00,rinv00);
816             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
817
818             /* LENNARD-JONES DISPERSION/REPULSION */
819
820             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
821             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
822
823             fscal            = _mm_add_ps(felec,fvdw);
824
825             fscal            = _mm_andnot_ps(dummy_mask,fscal);
826
827              /* Update vectorial force */
828             fix0             = _mm_macc_ps(dx00,fscal,fix0);
829             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
830             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
831
832             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
833             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
834             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
835             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
836             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
837                                                    _mm_mul_ps(dx00,fscal),
838                                                    _mm_mul_ps(dy00,fscal),
839                                                    _mm_mul_ps(dz00,fscal));
840
841             /* Inner loop uses 68 flops */
842         }
843
844         /* End of innermost loop */
845
846         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
847                                               f+i_coord_offset,fshift+i_shift_offset);
848
849         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
850         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
851
852         /* Increment number of inner iterations */
853         inneriter                  += j_index_end - j_index_start;
854
855         /* Outer loop uses 7 flops */
856     }
857
858     /* Increment number of outer iterations */
859     outeriter        += nri;
860
861     /* Update outer/inner flops */
862
863     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*68);
864 }