Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128i          gbitab;
93     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
94     __m128           minushalf = _mm_set1_ps(-0.5);
95     real             *invsqrta,*dvda,*gbtab;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
105     real             *vftab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     invsqrta         = fr->invsqrta;
128     dvda             = fr->dvda;
129     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
130     gbtab            = fr->gbtab.data;
131     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164
165         fix0             = _mm_setzero_ps();
166         fiy0             = _mm_setzero_ps();
167         fiz0             = _mm_setzero_ps();
168
169         /* Load parameters for i particles */
170         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
171         isai0            = _mm_load1_ps(invsqrta+inr+0);
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176         vgbsum           = _mm_setzero_ps();
177         vvdwsum          = _mm_setzero_ps();
178         dvdasum          = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               x+j_coord_offsetC,x+j_coord_offsetD,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_ps(ix0,jx0);
201             dy00             = _mm_sub_ps(iy0,jy0);
202             dz00             = _mm_sub_ps(iz0,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206
207             rinv00           = gmx_mm_invsqrt_ps(rsq00);
208
209             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
213                                                               charge+jnrC+0,charge+jnrD+0);
214             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
215                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218             vdwjidx0C        = 2*vdwtype[jnrC+0];
219             vdwjidx0D        = 2*vdwtype[jnrD+0];
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm_mul_ps(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm_mul_ps(iq0,jq0);
229             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
230                                          vdwparam+vdwioffset0+vdwjidx0B,
231                                          vdwparam+vdwioffset0+vdwjidx0C,
232                                          vdwparam+vdwioffset0+vdwjidx0D,
233                                          &c6_00,&c12_00);
234
235             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
236             isaprod          = _mm_mul_ps(isai0,isaj0);
237             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
238             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
239
240             /* Calculate generalized born table index - this is a separate table from the normal one,
241              * but we use the same procedure by multiplying r with scale and truncating to integer.
242              */
243             rt               = _mm_mul_ps(r00,gbscale);
244             gbitab           = _mm_cvttps_epi32(rt);
245 #ifdef __XOP__
246             gbeps            = _mm_frcz_ps(rt);
247 #else
248             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
249 #endif
250             gbitab           = _mm_slli_epi32(gbitab,2);
251
252             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
253             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
254             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
255             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
256             _MM_TRANSPOSE4_PS(Y,F,G,H);
257             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
258             VV               = _mm_macc_ps(gbeps,Fp,Y);
259             vgb              = _mm_mul_ps(gbqqfactor,VV);
260
261             twogbeps         = _mm_add_ps(gbeps,gbeps);
262             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
263             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
264             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
265             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
266             fjptrA           = dvda+jnrA;
267             fjptrB           = dvda+jnrB;
268             fjptrC           = dvda+jnrC;
269             fjptrD           = dvda+jnrD;
270             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
271             velec            = _mm_mul_ps(qq00,rinv00);
272             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
273
274             /* LENNARD-JONES DISPERSION/REPULSION */
275
276             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
277             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
278             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
279             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
280             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _mm_add_ps(velecsum,velec);
284             vgbsum           = _mm_add_ps(vgbsum,vgb);
285             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
286
287             fscal            = _mm_add_ps(felec,fvdw);
288
289              /* Update vectorial force */
290             fix0             = _mm_macc_ps(dx00,fscal,fix0);
291             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
292             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
293
294             fjptrA             = f+j_coord_offsetA;
295             fjptrB             = f+j_coord_offsetB;
296             fjptrC             = f+j_coord_offsetC;
297             fjptrD             = f+j_coord_offsetD;
298             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
299                                                    _mm_mul_ps(dx00,fscal),
300                                                    _mm_mul_ps(dy00,fscal),
301                                                    _mm_mul_ps(dz00,fscal));
302
303             /* Inner loop uses 74 flops */
304         }
305
306         if(jidx<j_index_end)
307         {
308
309             /* Get j neighbor index, and coordinate index */
310             jnrlistA         = jjnr[jidx];
311             jnrlistB         = jjnr[jidx+1];
312             jnrlistC         = jjnr[jidx+2];
313             jnrlistD         = jjnr[jidx+3];
314             /* Sign of each element will be negative for non-real atoms.
315              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
316              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
317              */
318             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
319             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
320             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
321             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
322             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
323             j_coord_offsetA  = DIM*jnrA;
324             j_coord_offsetB  = DIM*jnrB;
325             j_coord_offsetC  = DIM*jnrC;
326             j_coord_offsetD  = DIM*jnrD;
327
328             /* load j atom coordinates */
329             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
330                                               x+j_coord_offsetC,x+j_coord_offsetD,
331                                               &jx0,&jy0,&jz0);
332
333             /* Calculate displacement vector */
334             dx00             = _mm_sub_ps(ix0,jx0);
335             dy00             = _mm_sub_ps(iy0,jy0);
336             dz00             = _mm_sub_ps(iz0,jz0);
337
338             /* Calculate squared distance and things based on it */
339             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
340
341             rinv00           = gmx_mm_invsqrt_ps(rsq00);
342
343             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
344
345             /* Load parameters for j particles */
346             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
347                                                               charge+jnrC+0,charge+jnrD+0);
348             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
349                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
350             vdwjidx0A        = 2*vdwtype[jnrA+0];
351             vdwjidx0B        = 2*vdwtype[jnrB+0];
352             vdwjidx0C        = 2*vdwtype[jnrC+0];
353             vdwjidx0D        = 2*vdwtype[jnrD+0];
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             r00              = _mm_mul_ps(rsq00,rinv00);
360             r00              = _mm_andnot_ps(dummy_mask,r00);
361
362             /* Compute parameters for interactions between i and j atoms */
363             qq00             = _mm_mul_ps(iq0,jq0);
364             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
365                                          vdwparam+vdwioffset0+vdwjidx0B,
366                                          vdwparam+vdwioffset0+vdwjidx0C,
367                                          vdwparam+vdwioffset0+vdwjidx0D,
368                                          &c6_00,&c12_00);
369
370             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
371             isaprod          = _mm_mul_ps(isai0,isaj0);
372             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
373             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
374
375             /* Calculate generalized born table index - this is a separate table from the normal one,
376              * but we use the same procedure by multiplying r with scale and truncating to integer.
377              */
378             rt               = _mm_mul_ps(r00,gbscale);
379             gbitab           = _mm_cvttps_epi32(rt);
380 #ifdef __XOP__
381             gbeps            = _mm_frcz_ps(rt);
382 #else
383             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
384 #endif
385             gbitab           = _mm_slli_epi32(gbitab,2);
386
387             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
388             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
389             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
390             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
391             _MM_TRANSPOSE4_PS(Y,F,G,H);
392             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
393             VV               = _mm_macc_ps(gbeps,Fp,Y);
394             vgb              = _mm_mul_ps(gbqqfactor,VV);
395
396             twogbeps         = _mm_add_ps(gbeps,gbeps);
397             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
398             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
399             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
400             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
401             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
402             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
403             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
404             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
405             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
406             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
407             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
408             velec            = _mm_mul_ps(qq00,rinv00);
409             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
410
411             /* LENNARD-JONES DISPERSION/REPULSION */
412
413             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
414             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
415             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
416             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
417             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             velec            = _mm_andnot_ps(dummy_mask,velec);
421             velecsum         = _mm_add_ps(velecsum,velec);
422             vgb              = _mm_andnot_ps(dummy_mask,vgb);
423             vgbsum           = _mm_add_ps(vgbsum,vgb);
424             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
425             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
426
427             fscal            = _mm_add_ps(felec,fvdw);
428
429             fscal            = _mm_andnot_ps(dummy_mask,fscal);
430
431              /* Update vectorial force */
432             fix0             = _mm_macc_ps(dx00,fscal,fix0);
433             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
434             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
435
436             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
437             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
438             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
439             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
440             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
441                                                    _mm_mul_ps(dx00,fscal),
442                                                    _mm_mul_ps(dy00,fscal),
443                                                    _mm_mul_ps(dz00,fscal));
444
445             /* Inner loop uses 75 flops */
446         }
447
448         /* End of innermost loop */
449
450         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
451                                               f+i_coord_offset,fshift+i_shift_offset);
452
453         ggid                        = gid[iidx];
454         /* Update potential energies */
455         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
456         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
457         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
458         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
459         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
460
461         /* Increment number of inner iterations */
462         inneriter                  += j_index_end - j_index_start;
463
464         /* Outer loop uses 10 flops */
465     }
466
467     /* Increment number of outer iterations */
468     outeriter        += nri;
469
470     /* Update outer/inner flops */
471
472     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*75);
473 }
474 /*
475  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_single
476  * Electrostatics interaction: GeneralizedBorn
477  * VdW interaction:            LennardJones
478  * Geometry:                   Particle-Particle
479  * Calculate force/pot:        Force
480  */
481 void
482 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_single
483                     (t_nblist                    * gmx_restrict       nlist,
484                      rvec                        * gmx_restrict          xx,
485                      rvec                        * gmx_restrict          ff,
486                      t_forcerec                  * gmx_restrict          fr,
487                      t_mdatoms                   * gmx_restrict     mdatoms,
488                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
489                      t_nrnb                      * gmx_restrict        nrnb)
490 {
491     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
492      * just 0 for non-waters.
493      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
494      * jnr indices corresponding to data put in the four positions in the SIMD register.
495      */
496     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
497     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
498     int              jnrA,jnrB,jnrC,jnrD;
499     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
500     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
501     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
502     real             rcutoff_scalar;
503     real             *shiftvec,*fshift,*x,*f;
504     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
505     real             scratch[4*DIM];
506     __m128           fscal,rcutoff,rcutoff2,jidxall;
507     int              vdwioffset0;
508     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
509     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
510     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
511     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
512     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
513     real             *charge;
514     __m128i          gbitab;
515     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
516     __m128           minushalf = _mm_set1_ps(-0.5);
517     real             *invsqrta,*dvda,*gbtab;
518     int              nvdwtype;
519     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
520     int              *vdwtype;
521     real             *vdwparam;
522     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
523     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
524     __m128i          vfitab;
525     __m128i          ifour       = _mm_set1_epi32(4);
526     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
527     real             *vftab;
528     __m128           dummy_mask,cutoff_mask;
529     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
530     __m128           one     = _mm_set1_ps(1.0);
531     __m128           two     = _mm_set1_ps(2.0);
532     x                = xx[0];
533     f                = ff[0];
534
535     nri              = nlist->nri;
536     iinr             = nlist->iinr;
537     jindex           = nlist->jindex;
538     jjnr             = nlist->jjnr;
539     shiftidx         = nlist->shift;
540     gid              = nlist->gid;
541     shiftvec         = fr->shift_vec[0];
542     fshift           = fr->fshift[0];
543     facel            = _mm_set1_ps(fr->epsfac);
544     charge           = mdatoms->chargeA;
545     nvdwtype         = fr->ntype;
546     vdwparam         = fr->nbfp;
547     vdwtype          = mdatoms->typeA;
548
549     invsqrta         = fr->invsqrta;
550     dvda             = fr->dvda;
551     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
552     gbtab            = fr->gbtab.data;
553     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
554
555     /* Avoid stupid compiler warnings */
556     jnrA = jnrB = jnrC = jnrD = 0;
557     j_coord_offsetA = 0;
558     j_coord_offsetB = 0;
559     j_coord_offsetC = 0;
560     j_coord_offsetD = 0;
561
562     outeriter        = 0;
563     inneriter        = 0;
564
565     for(iidx=0;iidx<4*DIM;iidx++)
566     {
567         scratch[iidx] = 0.0;
568     }
569
570     /* Start outer loop over neighborlists */
571     for(iidx=0; iidx<nri; iidx++)
572     {
573         /* Load shift vector for this list */
574         i_shift_offset   = DIM*shiftidx[iidx];
575
576         /* Load limits for loop over neighbors */
577         j_index_start    = jindex[iidx];
578         j_index_end      = jindex[iidx+1];
579
580         /* Get outer coordinate index */
581         inr              = iinr[iidx];
582         i_coord_offset   = DIM*inr;
583
584         /* Load i particle coords and add shift vector */
585         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
586
587         fix0             = _mm_setzero_ps();
588         fiy0             = _mm_setzero_ps();
589         fiz0             = _mm_setzero_ps();
590
591         /* Load parameters for i particles */
592         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
593         isai0            = _mm_load1_ps(invsqrta+inr+0);
594         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
595
596         dvdasum          = _mm_setzero_ps();
597
598         /* Start inner kernel loop */
599         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
600         {
601
602             /* Get j neighbor index, and coordinate index */
603             jnrA             = jjnr[jidx];
604             jnrB             = jjnr[jidx+1];
605             jnrC             = jjnr[jidx+2];
606             jnrD             = jjnr[jidx+3];
607             j_coord_offsetA  = DIM*jnrA;
608             j_coord_offsetB  = DIM*jnrB;
609             j_coord_offsetC  = DIM*jnrC;
610             j_coord_offsetD  = DIM*jnrD;
611
612             /* load j atom coordinates */
613             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
614                                               x+j_coord_offsetC,x+j_coord_offsetD,
615                                               &jx0,&jy0,&jz0);
616
617             /* Calculate displacement vector */
618             dx00             = _mm_sub_ps(ix0,jx0);
619             dy00             = _mm_sub_ps(iy0,jy0);
620             dz00             = _mm_sub_ps(iz0,jz0);
621
622             /* Calculate squared distance and things based on it */
623             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
624
625             rinv00           = gmx_mm_invsqrt_ps(rsq00);
626
627             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
628
629             /* Load parameters for j particles */
630             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
631                                                               charge+jnrC+0,charge+jnrD+0);
632             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
633                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
634             vdwjidx0A        = 2*vdwtype[jnrA+0];
635             vdwjidx0B        = 2*vdwtype[jnrB+0];
636             vdwjidx0C        = 2*vdwtype[jnrC+0];
637             vdwjidx0D        = 2*vdwtype[jnrD+0];
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             r00              = _mm_mul_ps(rsq00,rinv00);
644
645             /* Compute parameters for interactions between i and j atoms */
646             qq00             = _mm_mul_ps(iq0,jq0);
647             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
648                                          vdwparam+vdwioffset0+vdwjidx0B,
649                                          vdwparam+vdwioffset0+vdwjidx0C,
650                                          vdwparam+vdwioffset0+vdwjidx0D,
651                                          &c6_00,&c12_00);
652
653             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
654             isaprod          = _mm_mul_ps(isai0,isaj0);
655             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
656             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
657
658             /* Calculate generalized born table index - this is a separate table from the normal one,
659              * but we use the same procedure by multiplying r with scale and truncating to integer.
660              */
661             rt               = _mm_mul_ps(r00,gbscale);
662             gbitab           = _mm_cvttps_epi32(rt);
663 #ifdef __XOP__
664             gbeps            = _mm_frcz_ps(rt);
665 #else
666             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
667 #endif
668             gbitab           = _mm_slli_epi32(gbitab,2);
669
670             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
671             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
672             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
673             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
674             _MM_TRANSPOSE4_PS(Y,F,G,H);
675             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
676             VV               = _mm_macc_ps(gbeps,Fp,Y);
677             vgb              = _mm_mul_ps(gbqqfactor,VV);
678
679             twogbeps         = _mm_add_ps(gbeps,gbeps);
680             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
681             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
682             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
683             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
684             fjptrA           = dvda+jnrA;
685             fjptrB           = dvda+jnrB;
686             fjptrC           = dvda+jnrC;
687             fjptrD           = dvda+jnrD;
688             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
689             velec            = _mm_mul_ps(qq00,rinv00);
690             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
691
692             /* LENNARD-JONES DISPERSION/REPULSION */
693
694             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
695             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
696
697             fscal            = _mm_add_ps(felec,fvdw);
698
699              /* Update vectorial force */
700             fix0             = _mm_macc_ps(dx00,fscal,fix0);
701             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
702             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
703
704             fjptrA             = f+j_coord_offsetA;
705             fjptrB             = f+j_coord_offsetB;
706             fjptrC             = f+j_coord_offsetC;
707             fjptrD             = f+j_coord_offsetD;
708             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
709                                                    _mm_mul_ps(dx00,fscal),
710                                                    _mm_mul_ps(dy00,fscal),
711                                                    _mm_mul_ps(dz00,fscal));
712
713             /* Inner loop uses 67 flops */
714         }
715
716         if(jidx<j_index_end)
717         {
718
719             /* Get j neighbor index, and coordinate index */
720             jnrlistA         = jjnr[jidx];
721             jnrlistB         = jjnr[jidx+1];
722             jnrlistC         = jjnr[jidx+2];
723             jnrlistD         = jjnr[jidx+3];
724             /* Sign of each element will be negative for non-real atoms.
725              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
726              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
727              */
728             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
729             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
730             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
731             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
732             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
733             j_coord_offsetA  = DIM*jnrA;
734             j_coord_offsetB  = DIM*jnrB;
735             j_coord_offsetC  = DIM*jnrC;
736             j_coord_offsetD  = DIM*jnrD;
737
738             /* load j atom coordinates */
739             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
740                                               x+j_coord_offsetC,x+j_coord_offsetD,
741                                               &jx0,&jy0,&jz0);
742
743             /* Calculate displacement vector */
744             dx00             = _mm_sub_ps(ix0,jx0);
745             dy00             = _mm_sub_ps(iy0,jy0);
746             dz00             = _mm_sub_ps(iz0,jz0);
747
748             /* Calculate squared distance and things based on it */
749             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
750
751             rinv00           = gmx_mm_invsqrt_ps(rsq00);
752
753             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
754
755             /* Load parameters for j particles */
756             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
757                                                               charge+jnrC+0,charge+jnrD+0);
758             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
759                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
760             vdwjidx0A        = 2*vdwtype[jnrA+0];
761             vdwjidx0B        = 2*vdwtype[jnrB+0];
762             vdwjidx0C        = 2*vdwtype[jnrC+0];
763             vdwjidx0D        = 2*vdwtype[jnrD+0];
764
765             /**************************
766              * CALCULATE INTERACTIONS *
767              **************************/
768
769             r00              = _mm_mul_ps(rsq00,rinv00);
770             r00              = _mm_andnot_ps(dummy_mask,r00);
771
772             /* Compute parameters for interactions between i and j atoms */
773             qq00             = _mm_mul_ps(iq0,jq0);
774             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
775                                          vdwparam+vdwioffset0+vdwjidx0B,
776                                          vdwparam+vdwioffset0+vdwjidx0C,
777                                          vdwparam+vdwioffset0+vdwjidx0D,
778                                          &c6_00,&c12_00);
779
780             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
781             isaprod          = _mm_mul_ps(isai0,isaj0);
782             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
783             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
784
785             /* Calculate generalized born table index - this is a separate table from the normal one,
786              * but we use the same procedure by multiplying r with scale and truncating to integer.
787              */
788             rt               = _mm_mul_ps(r00,gbscale);
789             gbitab           = _mm_cvttps_epi32(rt);
790 #ifdef __XOP__
791             gbeps            = _mm_frcz_ps(rt);
792 #else
793             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
794 #endif
795             gbitab           = _mm_slli_epi32(gbitab,2);
796
797             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
798             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
799             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
800             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
801             _MM_TRANSPOSE4_PS(Y,F,G,H);
802             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
803             VV               = _mm_macc_ps(gbeps,Fp,Y);
804             vgb              = _mm_mul_ps(gbqqfactor,VV);
805
806             twogbeps         = _mm_add_ps(gbeps,gbeps);
807             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
808             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
809             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
810             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
811             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
812             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
813             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
814             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
815             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
816             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
817             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
818             velec            = _mm_mul_ps(qq00,rinv00);
819             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
820
821             /* LENNARD-JONES DISPERSION/REPULSION */
822
823             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
824             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
825
826             fscal            = _mm_add_ps(felec,fvdw);
827
828             fscal            = _mm_andnot_ps(dummy_mask,fscal);
829
830              /* Update vectorial force */
831             fix0             = _mm_macc_ps(dx00,fscal,fix0);
832             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
833             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
834
835             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
836             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
837             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
838             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
839             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
840                                                    _mm_mul_ps(dx00,fscal),
841                                                    _mm_mul_ps(dy00,fscal),
842                                                    _mm_mul_ps(dz00,fscal));
843
844             /* Inner loop uses 68 flops */
845         }
846
847         /* End of innermost loop */
848
849         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
850                                               f+i_coord_offset,fshift+i_shift_offset);
851
852         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
853         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
854
855         /* Increment number of inner iterations */
856         inneriter                  += j_index_end - j_index_start;
857
858         /* Outer loop uses 7 flops */
859     }
860
861     /* Increment number of outer iterations */
862     outeriter        += nri;
863
864     /* Update outer/inner flops */
865
866     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*68);
867 }