Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          gbitab;
91     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
92     __m128           minushalf = _mm_set1_ps(-0.5);
93     real             *invsqrta,*dvda,*gbtab;
94     int              nvdwtype;
95     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
99     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
100     __m128i          vfitab;
101     __m128i          ifour       = _mm_set1_epi32(4);
102     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
103     real             *vftab;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     invsqrta         = fr->invsqrta;
126     dvda             = fr->dvda;
127     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
128     gbtab            = fr->gbtab.data;
129     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162
163         fix0             = _mm_setzero_ps();
164         fiy0             = _mm_setzero_ps();
165         fiz0             = _mm_setzero_ps();
166
167         /* Load parameters for i particles */
168         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
169         isai0            = _mm_load1_ps(invsqrta+inr+0);
170         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174         vgbsum           = _mm_setzero_ps();
175         vvdwsum          = _mm_setzero_ps();
176         dvdasum          = _mm_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               x+j_coord_offsetC,x+j_coord_offsetD,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_ps(ix0,jx0);
199             dy00             = _mm_sub_ps(iy0,jy0);
200             dz00             = _mm_sub_ps(iz0,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206
207             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211                                                               charge+jnrC+0,charge+jnrD+0);
212             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
213                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216             vdwjidx0C        = 2*vdwtype[jnrC+0];
217             vdwjidx0D        = 2*vdwtype[jnrD+0];
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             r00              = _mm_mul_ps(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_ps(iq0,jq0);
227             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
228                                          vdwparam+vdwioffset0+vdwjidx0B,
229                                          vdwparam+vdwioffset0+vdwjidx0C,
230                                          vdwparam+vdwioffset0+vdwjidx0D,
231                                          &c6_00,&c12_00);
232
233             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
234             isaprod          = _mm_mul_ps(isai0,isaj0);
235             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
236             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
237
238             /* Calculate generalized born table index - this is a separate table from the normal one,
239              * but we use the same procedure by multiplying r with scale and truncating to integer.
240              */
241             rt               = _mm_mul_ps(r00,gbscale);
242             gbitab           = _mm_cvttps_epi32(rt);
243 #ifdef __XOP__
244             gbeps            = _mm_frcz_ps(rt);
245 #else
246             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
247 #endif
248             gbitab           = _mm_slli_epi32(gbitab,2);
249
250             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
251             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
252             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
253             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
254             _MM_TRANSPOSE4_PS(Y,F,G,H);
255             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
256             VV               = _mm_macc_ps(gbeps,Fp,Y);
257             vgb              = _mm_mul_ps(gbqqfactor,VV);
258
259             twogbeps         = _mm_add_ps(gbeps,gbeps);
260             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
261             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
262             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
263             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
264             fjptrA           = dvda+jnrA;
265             fjptrB           = dvda+jnrB;
266             fjptrC           = dvda+jnrC;
267             fjptrD           = dvda+jnrD;
268             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
269             velec            = _mm_mul_ps(qq00,rinv00);
270             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
271
272             /* LENNARD-JONES DISPERSION/REPULSION */
273
274             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
275             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
276             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
277             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
278             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm_add_ps(velecsum,velec);
282             vgbsum           = _mm_add_ps(vgbsum,vgb);
283             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
284
285             fscal            = _mm_add_ps(felec,fvdw);
286
287              /* Update vectorial force */
288             fix0             = _mm_macc_ps(dx00,fscal,fix0);
289             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
290             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
291
292             fjptrA             = f+j_coord_offsetA;
293             fjptrB             = f+j_coord_offsetB;
294             fjptrC             = f+j_coord_offsetC;
295             fjptrD             = f+j_coord_offsetD;
296             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
297                                                    _mm_mul_ps(dx00,fscal),
298                                                    _mm_mul_ps(dy00,fscal),
299                                                    _mm_mul_ps(dz00,fscal));
300
301             /* Inner loop uses 74 flops */
302         }
303
304         if(jidx<j_index_end)
305         {
306
307             /* Get j neighbor index, and coordinate index */
308             jnrlistA         = jjnr[jidx];
309             jnrlistB         = jjnr[jidx+1];
310             jnrlistC         = jjnr[jidx+2];
311             jnrlistD         = jjnr[jidx+3];
312             /* Sign of each element will be negative for non-real atoms.
313              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
314              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
315              */
316             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
317             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
318             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
319             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
320             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
321             j_coord_offsetA  = DIM*jnrA;
322             j_coord_offsetB  = DIM*jnrB;
323             j_coord_offsetC  = DIM*jnrC;
324             j_coord_offsetD  = DIM*jnrD;
325
326             /* load j atom coordinates */
327             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
328                                               x+j_coord_offsetC,x+j_coord_offsetD,
329                                               &jx0,&jy0,&jz0);
330
331             /* Calculate displacement vector */
332             dx00             = _mm_sub_ps(ix0,jx0);
333             dy00             = _mm_sub_ps(iy0,jy0);
334             dz00             = _mm_sub_ps(iz0,jz0);
335
336             /* Calculate squared distance and things based on it */
337             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
338
339             rinv00           = gmx_mm_invsqrt_ps(rsq00);
340
341             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
342
343             /* Load parameters for j particles */
344             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
345                                                               charge+jnrC+0,charge+jnrD+0);
346             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
347                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
348             vdwjidx0A        = 2*vdwtype[jnrA+0];
349             vdwjidx0B        = 2*vdwtype[jnrB+0];
350             vdwjidx0C        = 2*vdwtype[jnrC+0];
351             vdwjidx0D        = 2*vdwtype[jnrD+0];
352
353             /**************************
354              * CALCULATE INTERACTIONS *
355              **************************/
356
357             r00              = _mm_mul_ps(rsq00,rinv00);
358             r00              = _mm_andnot_ps(dummy_mask,r00);
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq00             = _mm_mul_ps(iq0,jq0);
362             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
363                                          vdwparam+vdwioffset0+vdwjidx0B,
364                                          vdwparam+vdwioffset0+vdwjidx0C,
365                                          vdwparam+vdwioffset0+vdwjidx0D,
366                                          &c6_00,&c12_00);
367
368             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
369             isaprod          = _mm_mul_ps(isai0,isaj0);
370             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
371             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
372
373             /* Calculate generalized born table index - this is a separate table from the normal one,
374              * but we use the same procedure by multiplying r with scale and truncating to integer.
375              */
376             rt               = _mm_mul_ps(r00,gbscale);
377             gbitab           = _mm_cvttps_epi32(rt);
378 #ifdef __XOP__
379             gbeps            = _mm_frcz_ps(rt);
380 #else
381             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
382 #endif
383             gbitab           = _mm_slli_epi32(gbitab,2);
384
385             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
386             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
387             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
388             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
389             _MM_TRANSPOSE4_PS(Y,F,G,H);
390             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
391             VV               = _mm_macc_ps(gbeps,Fp,Y);
392             vgb              = _mm_mul_ps(gbqqfactor,VV);
393
394             twogbeps         = _mm_add_ps(gbeps,gbeps);
395             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
396             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
397             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
398             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
399             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
400             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
401             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
402             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
403             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
404             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
405             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
406             velec            = _mm_mul_ps(qq00,rinv00);
407             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
408
409             /* LENNARD-JONES DISPERSION/REPULSION */
410
411             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
412             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
413             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
414             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
415             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             velec            = _mm_andnot_ps(dummy_mask,velec);
419             velecsum         = _mm_add_ps(velecsum,velec);
420             vgb              = _mm_andnot_ps(dummy_mask,vgb);
421             vgbsum           = _mm_add_ps(vgbsum,vgb);
422             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
423             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
424
425             fscal            = _mm_add_ps(felec,fvdw);
426
427             fscal            = _mm_andnot_ps(dummy_mask,fscal);
428
429              /* Update vectorial force */
430             fix0             = _mm_macc_ps(dx00,fscal,fix0);
431             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
432             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
433
434             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
435             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
436             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
437             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
438             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
439                                                    _mm_mul_ps(dx00,fscal),
440                                                    _mm_mul_ps(dy00,fscal),
441                                                    _mm_mul_ps(dz00,fscal));
442
443             /* Inner loop uses 75 flops */
444         }
445
446         /* End of innermost loop */
447
448         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
449                                               f+i_coord_offset,fshift+i_shift_offset);
450
451         ggid                        = gid[iidx];
452         /* Update potential energies */
453         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
454         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
455         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
456         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
457         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
458
459         /* Increment number of inner iterations */
460         inneriter                  += j_index_end - j_index_start;
461
462         /* Outer loop uses 10 flops */
463     }
464
465     /* Increment number of outer iterations */
466     outeriter        += nri;
467
468     /* Update outer/inner flops */
469
470     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*75);
471 }
472 /*
473  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_single
474  * Electrostatics interaction: GeneralizedBorn
475  * VdW interaction:            LennardJones
476  * Geometry:                   Particle-Particle
477  * Calculate force/pot:        Force
478  */
479 void
480 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_single
481                     (t_nblist                    * gmx_restrict       nlist,
482                      rvec                        * gmx_restrict          xx,
483                      rvec                        * gmx_restrict          ff,
484                      t_forcerec                  * gmx_restrict          fr,
485                      t_mdatoms                   * gmx_restrict     mdatoms,
486                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
487                      t_nrnb                      * gmx_restrict        nrnb)
488 {
489     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
490      * just 0 for non-waters.
491      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
492      * jnr indices corresponding to data put in the four positions in the SIMD register.
493      */
494     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
495     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
496     int              jnrA,jnrB,jnrC,jnrD;
497     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
498     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
499     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
500     real             rcutoff_scalar;
501     real             *shiftvec,*fshift,*x,*f;
502     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
503     real             scratch[4*DIM];
504     __m128           fscal,rcutoff,rcutoff2,jidxall;
505     int              vdwioffset0;
506     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
507     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
508     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
509     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
510     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
511     real             *charge;
512     __m128i          gbitab;
513     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
514     __m128           minushalf = _mm_set1_ps(-0.5);
515     real             *invsqrta,*dvda,*gbtab;
516     int              nvdwtype;
517     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
518     int              *vdwtype;
519     real             *vdwparam;
520     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
521     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
522     __m128i          vfitab;
523     __m128i          ifour       = _mm_set1_epi32(4);
524     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
525     real             *vftab;
526     __m128           dummy_mask,cutoff_mask;
527     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
528     __m128           one     = _mm_set1_ps(1.0);
529     __m128           two     = _mm_set1_ps(2.0);
530     x                = xx[0];
531     f                = ff[0];
532
533     nri              = nlist->nri;
534     iinr             = nlist->iinr;
535     jindex           = nlist->jindex;
536     jjnr             = nlist->jjnr;
537     shiftidx         = nlist->shift;
538     gid              = nlist->gid;
539     shiftvec         = fr->shift_vec[0];
540     fshift           = fr->fshift[0];
541     facel            = _mm_set1_ps(fr->epsfac);
542     charge           = mdatoms->chargeA;
543     nvdwtype         = fr->ntype;
544     vdwparam         = fr->nbfp;
545     vdwtype          = mdatoms->typeA;
546
547     invsqrta         = fr->invsqrta;
548     dvda             = fr->dvda;
549     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
550     gbtab            = fr->gbtab.data;
551     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
552
553     /* Avoid stupid compiler warnings */
554     jnrA = jnrB = jnrC = jnrD = 0;
555     j_coord_offsetA = 0;
556     j_coord_offsetB = 0;
557     j_coord_offsetC = 0;
558     j_coord_offsetD = 0;
559
560     outeriter        = 0;
561     inneriter        = 0;
562
563     for(iidx=0;iidx<4*DIM;iidx++)
564     {
565         scratch[iidx] = 0.0;
566     }
567
568     /* Start outer loop over neighborlists */
569     for(iidx=0; iidx<nri; iidx++)
570     {
571         /* Load shift vector for this list */
572         i_shift_offset   = DIM*shiftidx[iidx];
573
574         /* Load limits for loop over neighbors */
575         j_index_start    = jindex[iidx];
576         j_index_end      = jindex[iidx+1];
577
578         /* Get outer coordinate index */
579         inr              = iinr[iidx];
580         i_coord_offset   = DIM*inr;
581
582         /* Load i particle coords and add shift vector */
583         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
584
585         fix0             = _mm_setzero_ps();
586         fiy0             = _mm_setzero_ps();
587         fiz0             = _mm_setzero_ps();
588
589         /* Load parameters for i particles */
590         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
591         isai0            = _mm_load1_ps(invsqrta+inr+0);
592         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
593
594         dvdasum          = _mm_setzero_ps();
595
596         /* Start inner kernel loop */
597         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
598         {
599
600             /* Get j neighbor index, and coordinate index */
601             jnrA             = jjnr[jidx];
602             jnrB             = jjnr[jidx+1];
603             jnrC             = jjnr[jidx+2];
604             jnrD             = jjnr[jidx+3];
605             j_coord_offsetA  = DIM*jnrA;
606             j_coord_offsetB  = DIM*jnrB;
607             j_coord_offsetC  = DIM*jnrC;
608             j_coord_offsetD  = DIM*jnrD;
609
610             /* load j atom coordinates */
611             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
612                                               x+j_coord_offsetC,x+j_coord_offsetD,
613                                               &jx0,&jy0,&jz0);
614
615             /* Calculate displacement vector */
616             dx00             = _mm_sub_ps(ix0,jx0);
617             dy00             = _mm_sub_ps(iy0,jy0);
618             dz00             = _mm_sub_ps(iz0,jz0);
619
620             /* Calculate squared distance and things based on it */
621             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
622
623             rinv00           = gmx_mm_invsqrt_ps(rsq00);
624
625             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
626
627             /* Load parameters for j particles */
628             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
629                                                               charge+jnrC+0,charge+jnrD+0);
630             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
631                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
632             vdwjidx0A        = 2*vdwtype[jnrA+0];
633             vdwjidx0B        = 2*vdwtype[jnrB+0];
634             vdwjidx0C        = 2*vdwtype[jnrC+0];
635             vdwjidx0D        = 2*vdwtype[jnrD+0];
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             r00              = _mm_mul_ps(rsq00,rinv00);
642
643             /* Compute parameters for interactions between i and j atoms */
644             qq00             = _mm_mul_ps(iq0,jq0);
645             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
646                                          vdwparam+vdwioffset0+vdwjidx0B,
647                                          vdwparam+vdwioffset0+vdwjidx0C,
648                                          vdwparam+vdwioffset0+vdwjidx0D,
649                                          &c6_00,&c12_00);
650
651             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
652             isaprod          = _mm_mul_ps(isai0,isaj0);
653             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
654             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
655
656             /* Calculate generalized born table index - this is a separate table from the normal one,
657              * but we use the same procedure by multiplying r with scale and truncating to integer.
658              */
659             rt               = _mm_mul_ps(r00,gbscale);
660             gbitab           = _mm_cvttps_epi32(rt);
661 #ifdef __XOP__
662             gbeps            = _mm_frcz_ps(rt);
663 #else
664             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
665 #endif
666             gbitab           = _mm_slli_epi32(gbitab,2);
667
668             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
669             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
670             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
671             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
672             _MM_TRANSPOSE4_PS(Y,F,G,H);
673             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
674             VV               = _mm_macc_ps(gbeps,Fp,Y);
675             vgb              = _mm_mul_ps(gbqqfactor,VV);
676
677             twogbeps         = _mm_add_ps(gbeps,gbeps);
678             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
679             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
680             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
681             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
682             fjptrA           = dvda+jnrA;
683             fjptrB           = dvda+jnrB;
684             fjptrC           = dvda+jnrC;
685             fjptrD           = dvda+jnrD;
686             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
687             velec            = _mm_mul_ps(qq00,rinv00);
688             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
689
690             /* LENNARD-JONES DISPERSION/REPULSION */
691
692             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
693             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
694
695             fscal            = _mm_add_ps(felec,fvdw);
696
697              /* Update vectorial force */
698             fix0             = _mm_macc_ps(dx00,fscal,fix0);
699             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
700             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
701
702             fjptrA             = f+j_coord_offsetA;
703             fjptrB             = f+j_coord_offsetB;
704             fjptrC             = f+j_coord_offsetC;
705             fjptrD             = f+j_coord_offsetD;
706             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
707                                                    _mm_mul_ps(dx00,fscal),
708                                                    _mm_mul_ps(dy00,fscal),
709                                                    _mm_mul_ps(dz00,fscal));
710
711             /* Inner loop uses 67 flops */
712         }
713
714         if(jidx<j_index_end)
715         {
716
717             /* Get j neighbor index, and coordinate index */
718             jnrlistA         = jjnr[jidx];
719             jnrlistB         = jjnr[jidx+1];
720             jnrlistC         = jjnr[jidx+2];
721             jnrlistD         = jjnr[jidx+3];
722             /* Sign of each element will be negative for non-real atoms.
723              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
724              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
725              */
726             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
727             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
728             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
729             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
730             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
731             j_coord_offsetA  = DIM*jnrA;
732             j_coord_offsetB  = DIM*jnrB;
733             j_coord_offsetC  = DIM*jnrC;
734             j_coord_offsetD  = DIM*jnrD;
735
736             /* load j atom coordinates */
737             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
738                                               x+j_coord_offsetC,x+j_coord_offsetD,
739                                               &jx0,&jy0,&jz0);
740
741             /* Calculate displacement vector */
742             dx00             = _mm_sub_ps(ix0,jx0);
743             dy00             = _mm_sub_ps(iy0,jy0);
744             dz00             = _mm_sub_ps(iz0,jz0);
745
746             /* Calculate squared distance and things based on it */
747             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
748
749             rinv00           = gmx_mm_invsqrt_ps(rsq00);
750
751             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
752
753             /* Load parameters for j particles */
754             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
755                                                               charge+jnrC+0,charge+jnrD+0);
756             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
757                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
758             vdwjidx0A        = 2*vdwtype[jnrA+0];
759             vdwjidx0B        = 2*vdwtype[jnrB+0];
760             vdwjidx0C        = 2*vdwtype[jnrC+0];
761             vdwjidx0D        = 2*vdwtype[jnrD+0];
762
763             /**************************
764              * CALCULATE INTERACTIONS *
765              **************************/
766
767             r00              = _mm_mul_ps(rsq00,rinv00);
768             r00              = _mm_andnot_ps(dummy_mask,r00);
769
770             /* Compute parameters for interactions between i and j atoms */
771             qq00             = _mm_mul_ps(iq0,jq0);
772             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
773                                          vdwparam+vdwioffset0+vdwjidx0B,
774                                          vdwparam+vdwioffset0+vdwjidx0C,
775                                          vdwparam+vdwioffset0+vdwjidx0D,
776                                          &c6_00,&c12_00);
777
778             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
779             isaprod          = _mm_mul_ps(isai0,isaj0);
780             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
781             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
782
783             /* Calculate generalized born table index - this is a separate table from the normal one,
784              * but we use the same procedure by multiplying r with scale and truncating to integer.
785              */
786             rt               = _mm_mul_ps(r00,gbscale);
787             gbitab           = _mm_cvttps_epi32(rt);
788 #ifdef __XOP__
789             gbeps            = _mm_frcz_ps(rt);
790 #else
791             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
792 #endif
793             gbitab           = _mm_slli_epi32(gbitab,2);
794
795             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
796             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
797             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
798             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
799             _MM_TRANSPOSE4_PS(Y,F,G,H);
800             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
801             VV               = _mm_macc_ps(gbeps,Fp,Y);
802             vgb              = _mm_mul_ps(gbqqfactor,VV);
803
804             twogbeps         = _mm_add_ps(gbeps,gbeps);
805             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
806             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
807             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
808             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
809             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
810             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
811             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
812             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
813             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
814             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
815             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
816             velec            = _mm_mul_ps(qq00,rinv00);
817             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
818
819             /* LENNARD-JONES DISPERSION/REPULSION */
820
821             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
822             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
823
824             fscal            = _mm_add_ps(felec,fvdw);
825
826             fscal            = _mm_andnot_ps(dummy_mask,fscal);
827
828              /* Update vectorial force */
829             fix0             = _mm_macc_ps(dx00,fscal,fix0);
830             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
831             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
832
833             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
834             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
835             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
836             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
837             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
838                                                    _mm_mul_ps(dx00,fscal),
839                                                    _mm_mul_ps(dy00,fscal),
840                                                    _mm_mul_ps(dz00,fscal));
841
842             /* Inner loop uses 68 flops */
843         }
844
845         /* End of innermost loop */
846
847         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
848                                               f+i_coord_offset,fshift+i_shift_offset);
849
850         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
851         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
852
853         /* Increment number of inner iterations */
854         inneriter                  += j_index_end - j_index_start;
855
856         /* Outer loop uses 7 flops */
857     }
858
859     /* Increment number of outer iterations */
860     outeriter        += nri;
861
862     /* Update outer/inner flops */
863
864     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*68);
865 }