Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          gbitab;
77     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
78     __m128           minushalf = _mm_set1_ps(-0.5);
79     real             *invsqrta,*dvda,*gbtab;
80     int              nvdwtype;
81     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
82     int              *vdwtype;
83     real             *vdwparam;
84     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
85     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
86     __m128i          vfitab;
87     __m128i          ifour       = _mm_set1_epi32(4);
88     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
89     real             *vftab;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     vftab            = kernel_data->table_vdw->data;
112     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
113
114     invsqrta         = fr->invsqrta;
115     dvda             = fr->dvda;
116     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
117     gbtab            = fr->gbtab.data;
118     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = jnrC = jnrD = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124     j_coord_offsetC = 0;
125     j_coord_offsetD = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     for(iidx=0;iidx<4*DIM;iidx++)
131     {
132         scratch[iidx] = 0.0;
133     }
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _mm_setzero_ps();
153         fiy0             = _mm_setzero_ps();
154         fiz0             = _mm_setzero_ps();
155
156         /* Load parameters for i particles */
157         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
158         isai0            = _mm_load1_ps(invsqrta+inr+0);
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         velecsum         = _mm_setzero_ps();
163         vgbsum           = _mm_setzero_ps();
164         vvdwsum          = _mm_setzero_ps();
165         dvdasum          = _mm_setzero_ps();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178             j_coord_offsetC  = DIM*jnrC;
179             j_coord_offsetD  = DIM*jnrD;
180
181             /* load j atom coordinates */
182             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               x+j_coord_offsetC,x+j_coord_offsetD,
184                                               &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm_sub_ps(ix0,jx0);
188             dy00             = _mm_sub_ps(iy0,jy0);
189             dz00             = _mm_sub_ps(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
193
194             rinv00           = gmx_mm_invsqrt_ps(rsq00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
198                                                               charge+jnrC+0,charge+jnrD+0);
199             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
200                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
201             vdwjidx0A        = 2*vdwtype[jnrA+0];
202             vdwjidx0B        = 2*vdwtype[jnrB+0];
203             vdwjidx0C        = 2*vdwtype[jnrC+0];
204             vdwjidx0D        = 2*vdwtype[jnrD+0];
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             r00              = _mm_mul_ps(rsq00,rinv00);
211
212             /* Compute parameters for interactions between i and j atoms */
213             qq00             = _mm_mul_ps(iq0,jq0);
214             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
215                                          vdwparam+vdwioffset0+vdwjidx0B,
216                                          vdwparam+vdwioffset0+vdwjidx0C,
217                                          vdwparam+vdwioffset0+vdwjidx0D,
218                                          &c6_00,&c12_00);
219
220             /* Calculate table index by multiplying r with table scale and truncate to integer */
221             rt               = _mm_mul_ps(r00,vftabscale);
222             vfitab           = _mm_cvttps_epi32(rt);
223 #ifdef __XOP__
224             vfeps            = _mm_frcz_ps(rt);
225 #else
226             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
227 #endif
228             twovfeps         = _mm_add_ps(vfeps,vfeps);
229             vfitab           = _mm_slli_epi32(vfitab,3);
230
231             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
232             isaprod          = _mm_mul_ps(isai0,isaj0);
233             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
234             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
235
236             /* Calculate generalized born table index - this is a separate table from the normal one,
237              * but we use the same procedure by multiplying r with scale and truncating to integer.
238              */
239             rt               = _mm_mul_ps(r00,gbscale);
240             gbitab           = _mm_cvttps_epi32(rt);
241 #ifdef __XOP__
242             gbeps            = _mm_frcz_ps(rt);
243 #else
244             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
245 #endif
246             gbitab           = _mm_slli_epi32(gbitab,2);
247
248             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
249             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
250             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
251             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
252             _MM_TRANSPOSE4_PS(Y,F,G,H);
253             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
254             VV               = _mm_macc_ps(gbeps,Fp,Y);
255             vgb              = _mm_mul_ps(gbqqfactor,VV);
256
257             twogbeps         = _mm_add_ps(gbeps,gbeps);
258             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
259             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
260             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
261             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
262             fjptrA           = dvda+jnrA;
263             fjptrB           = dvda+jnrB;
264             fjptrC           = dvda+jnrC;
265             fjptrD           = dvda+jnrD;
266             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
267             velec            = _mm_mul_ps(qq00,rinv00);
268             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
269
270             /* CUBIC SPLINE TABLE DISPERSION */
271             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
272             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
273             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
274             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
275             _MM_TRANSPOSE4_PS(Y,F,G,H);
276             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
277             VV               = _mm_macc_ps(vfeps,Fp,Y);
278             vvdw6            = _mm_mul_ps(c6_00,VV);
279             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
280             fvdw6            = _mm_mul_ps(c6_00,FF);
281
282             /* CUBIC SPLINE TABLE REPULSION */
283             vfitab           = _mm_add_epi32(vfitab,ifour);
284             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
285             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
286             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
287             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
288             _MM_TRANSPOSE4_PS(Y,F,G,H);
289             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
290             VV               = _mm_macc_ps(vfeps,Fp,Y);
291             vvdw12           = _mm_mul_ps(c12_00,VV);
292             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
293             fvdw12           = _mm_mul_ps(c12_00,FF);
294             vvdw             = _mm_add_ps(vvdw12,vvdw6);
295             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _mm_add_ps(velecsum,velec);
299             vgbsum           = _mm_add_ps(vgbsum,vgb);
300             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
301
302             fscal            = _mm_add_ps(felec,fvdw);
303
304              /* Update vectorial force */
305             fix0             = _mm_macc_ps(dx00,fscal,fix0);
306             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
307             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
308
309             fjptrA             = f+j_coord_offsetA;
310             fjptrB             = f+j_coord_offsetB;
311             fjptrC             = f+j_coord_offsetC;
312             fjptrD             = f+j_coord_offsetD;
313             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
314                                                    _mm_mul_ps(dx00,fscal),
315                                                    _mm_mul_ps(dy00,fscal),
316                                                    _mm_mul_ps(dz00,fscal));
317
318             /* Inner loop uses 95 flops */
319         }
320
321         if(jidx<j_index_end)
322         {
323
324             /* Get j neighbor index, and coordinate index */
325             jnrlistA         = jjnr[jidx];
326             jnrlistB         = jjnr[jidx+1];
327             jnrlistC         = jjnr[jidx+2];
328             jnrlistD         = jjnr[jidx+3];
329             /* Sign of each element will be negative for non-real atoms.
330              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
331              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
332              */
333             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
334             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
335             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
336             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
337             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
338             j_coord_offsetA  = DIM*jnrA;
339             j_coord_offsetB  = DIM*jnrB;
340             j_coord_offsetC  = DIM*jnrC;
341             j_coord_offsetD  = DIM*jnrD;
342
343             /* load j atom coordinates */
344             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
345                                               x+j_coord_offsetC,x+j_coord_offsetD,
346                                               &jx0,&jy0,&jz0);
347
348             /* Calculate displacement vector */
349             dx00             = _mm_sub_ps(ix0,jx0);
350             dy00             = _mm_sub_ps(iy0,jy0);
351             dz00             = _mm_sub_ps(iz0,jz0);
352
353             /* Calculate squared distance and things based on it */
354             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
355
356             rinv00           = gmx_mm_invsqrt_ps(rsq00);
357
358             /* Load parameters for j particles */
359             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
360                                                               charge+jnrC+0,charge+jnrD+0);
361             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
362                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
363             vdwjidx0A        = 2*vdwtype[jnrA+0];
364             vdwjidx0B        = 2*vdwtype[jnrB+0];
365             vdwjidx0C        = 2*vdwtype[jnrC+0];
366             vdwjidx0D        = 2*vdwtype[jnrD+0];
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             r00              = _mm_mul_ps(rsq00,rinv00);
373             r00              = _mm_andnot_ps(dummy_mask,r00);
374
375             /* Compute parameters for interactions between i and j atoms */
376             qq00             = _mm_mul_ps(iq0,jq0);
377             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
378                                          vdwparam+vdwioffset0+vdwjidx0B,
379                                          vdwparam+vdwioffset0+vdwjidx0C,
380                                          vdwparam+vdwioffset0+vdwjidx0D,
381                                          &c6_00,&c12_00);
382
383             /* Calculate table index by multiplying r with table scale and truncate to integer */
384             rt               = _mm_mul_ps(r00,vftabscale);
385             vfitab           = _mm_cvttps_epi32(rt);
386 #ifdef __XOP__
387             vfeps            = _mm_frcz_ps(rt);
388 #else
389             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
390 #endif
391             twovfeps         = _mm_add_ps(vfeps,vfeps);
392             vfitab           = _mm_slli_epi32(vfitab,3);
393
394             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
395             isaprod          = _mm_mul_ps(isai0,isaj0);
396             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
397             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
398
399             /* Calculate generalized born table index - this is a separate table from the normal one,
400              * but we use the same procedure by multiplying r with scale and truncating to integer.
401              */
402             rt               = _mm_mul_ps(r00,gbscale);
403             gbitab           = _mm_cvttps_epi32(rt);
404 #ifdef __XOP__
405             gbeps            = _mm_frcz_ps(rt);
406 #else
407             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
408 #endif
409             gbitab           = _mm_slli_epi32(gbitab,2);
410
411             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
412             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
413             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
414             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
415             _MM_TRANSPOSE4_PS(Y,F,G,H);
416             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
417             VV               = _mm_macc_ps(gbeps,Fp,Y);
418             vgb              = _mm_mul_ps(gbqqfactor,VV);
419
420             twogbeps         = _mm_add_ps(gbeps,gbeps);
421             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
422             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
423             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
424             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
425             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
426             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
427             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
428             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
429             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
430             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
431             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
432             velec            = _mm_mul_ps(qq00,rinv00);
433             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
434
435             /* CUBIC SPLINE TABLE DISPERSION */
436             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
437             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
438             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
439             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
440             _MM_TRANSPOSE4_PS(Y,F,G,H);
441             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
442             VV               = _mm_macc_ps(vfeps,Fp,Y);
443             vvdw6            = _mm_mul_ps(c6_00,VV);
444             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
445             fvdw6            = _mm_mul_ps(c6_00,FF);
446
447             /* CUBIC SPLINE TABLE REPULSION */
448             vfitab           = _mm_add_epi32(vfitab,ifour);
449             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
450             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
451             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
452             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
453             _MM_TRANSPOSE4_PS(Y,F,G,H);
454             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
455             VV               = _mm_macc_ps(vfeps,Fp,Y);
456             vvdw12           = _mm_mul_ps(c12_00,VV);
457             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
458             fvdw12           = _mm_mul_ps(c12_00,FF);
459             vvdw             = _mm_add_ps(vvdw12,vvdw6);
460             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
461
462             /* Update potential sum for this i atom from the interaction with this j atom. */
463             velec            = _mm_andnot_ps(dummy_mask,velec);
464             velecsum         = _mm_add_ps(velecsum,velec);
465             vgb              = _mm_andnot_ps(dummy_mask,vgb);
466             vgbsum           = _mm_add_ps(vgbsum,vgb);
467             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
468             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
469
470             fscal            = _mm_add_ps(felec,fvdw);
471
472             fscal            = _mm_andnot_ps(dummy_mask,fscal);
473
474              /* Update vectorial force */
475             fix0             = _mm_macc_ps(dx00,fscal,fix0);
476             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
477             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
478
479             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
480             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
481             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
482             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
483             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
484                                                    _mm_mul_ps(dx00,fscal),
485                                                    _mm_mul_ps(dy00,fscal),
486                                                    _mm_mul_ps(dz00,fscal));
487
488             /* Inner loop uses 96 flops */
489         }
490
491         /* End of innermost loop */
492
493         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
494                                               f+i_coord_offset,fshift+i_shift_offset);
495
496         ggid                        = gid[iidx];
497         /* Update potential energies */
498         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
499         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
500         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
501         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
502         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
503
504         /* Increment number of inner iterations */
505         inneriter                  += j_index_end - j_index_start;
506
507         /* Outer loop uses 10 flops */
508     }
509
510     /* Increment number of outer iterations */
511     outeriter        += nri;
512
513     /* Update outer/inner flops */
514
515     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*96);
516 }
517 /*
518  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_single
519  * Electrostatics interaction: GeneralizedBorn
520  * VdW interaction:            CubicSplineTable
521  * Geometry:                   Particle-Particle
522  * Calculate force/pot:        Force
523  */
524 void
525 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_single
526                     (t_nblist * gmx_restrict                nlist,
527                      rvec * gmx_restrict                    xx,
528                      rvec * gmx_restrict                    ff,
529                      t_forcerec * gmx_restrict              fr,
530                      t_mdatoms * gmx_restrict               mdatoms,
531                      nb_kernel_data_t * gmx_restrict        kernel_data,
532                      t_nrnb * gmx_restrict                  nrnb)
533 {
534     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
535      * just 0 for non-waters.
536      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
537      * jnr indices corresponding to data put in the four positions in the SIMD register.
538      */
539     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
540     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
541     int              jnrA,jnrB,jnrC,jnrD;
542     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
543     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
544     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
545     real             rcutoff_scalar;
546     real             *shiftvec,*fshift,*x,*f;
547     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
548     real             scratch[4*DIM];
549     __m128           fscal,rcutoff,rcutoff2,jidxall;
550     int              vdwioffset0;
551     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
552     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
553     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
554     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
555     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
556     real             *charge;
557     __m128i          gbitab;
558     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
559     __m128           minushalf = _mm_set1_ps(-0.5);
560     real             *invsqrta,*dvda,*gbtab;
561     int              nvdwtype;
562     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
563     int              *vdwtype;
564     real             *vdwparam;
565     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
566     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
567     __m128i          vfitab;
568     __m128i          ifour       = _mm_set1_epi32(4);
569     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
570     real             *vftab;
571     __m128           dummy_mask,cutoff_mask;
572     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
573     __m128           one     = _mm_set1_ps(1.0);
574     __m128           two     = _mm_set1_ps(2.0);
575     x                = xx[0];
576     f                = ff[0];
577
578     nri              = nlist->nri;
579     iinr             = nlist->iinr;
580     jindex           = nlist->jindex;
581     jjnr             = nlist->jjnr;
582     shiftidx         = nlist->shift;
583     gid              = nlist->gid;
584     shiftvec         = fr->shift_vec[0];
585     fshift           = fr->fshift[0];
586     facel            = _mm_set1_ps(fr->epsfac);
587     charge           = mdatoms->chargeA;
588     nvdwtype         = fr->ntype;
589     vdwparam         = fr->nbfp;
590     vdwtype          = mdatoms->typeA;
591
592     vftab            = kernel_data->table_vdw->data;
593     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
594
595     invsqrta         = fr->invsqrta;
596     dvda             = fr->dvda;
597     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
598     gbtab            = fr->gbtab.data;
599     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
600
601     /* Avoid stupid compiler warnings */
602     jnrA = jnrB = jnrC = jnrD = 0;
603     j_coord_offsetA = 0;
604     j_coord_offsetB = 0;
605     j_coord_offsetC = 0;
606     j_coord_offsetD = 0;
607
608     outeriter        = 0;
609     inneriter        = 0;
610
611     for(iidx=0;iidx<4*DIM;iidx++)
612     {
613         scratch[iidx] = 0.0;
614     }
615
616     /* Start outer loop over neighborlists */
617     for(iidx=0; iidx<nri; iidx++)
618     {
619         /* Load shift vector for this list */
620         i_shift_offset   = DIM*shiftidx[iidx];
621
622         /* Load limits for loop over neighbors */
623         j_index_start    = jindex[iidx];
624         j_index_end      = jindex[iidx+1];
625
626         /* Get outer coordinate index */
627         inr              = iinr[iidx];
628         i_coord_offset   = DIM*inr;
629
630         /* Load i particle coords and add shift vector */
631         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
632
633         fix0             = _mm_setzero_ps();
634         fiy0             = _mm_setzero_ps();
635         fiz0             = _mm_setzero_ps();
636
637         /* Load parameters for i particles */
638         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
639         isai0            = _mm_load1_ps(invsqrta+inr+0);
640         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
641
642         dvdasum          = _mm_setzero_ps();
643
644         /* Start inner kernel loop */
645         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
646         {
647
648             /* Get j neighbor index, and coordinate index */
649             jnrA             = jjnr[jidx];
650             jnrB             = jjnr[jidx+1];
651             jnrC             = jjnr[jidx+2];
652             jnrD             = jjnr[jidx+3];
653             j_coord_offsetA  = DIM*jnrA;
654             j_coord_offsetB  = DIM*jnrB;
655             j_coord_offsetC  = DIM*jnrC;
656             j_coord_offsetD  = DIM*jnrD;
657
658             /* load j atom coordinates */
659             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
660                                               x+j_coord_offsetC,x+j_coord_offsetD,
661                                               &jx0,&jy0,&jz0);
662
663             /* Calculate displacement vector */
664             dx00             = _mm_sub_ps(ix0,jx0);
665             dy00             = _mm_sub_ps(iy0,jy0);
666             dz00             = _mm_sub_ps(iz0,jz0);
667
668             /* Calculate squared distance and things based on it */
669             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
670
671             rinv00           = gmx_mm_invsqrt_ps(rsq00);
672
673             /* Load parameters for j particles */
674             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
675                                                               charge+jnrC+0,charge+jnrD+0);
676             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
677                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
678             vdwjidx0A        = 2*vdwtype[jnrA+0];
679             vdwjidx0B        = 2*vdwtype[jnrB+0];
680             vdwjidx0C        = 2*vdwtype[jnrC+0];
681             vdwjidx0D        = 2*vdwtype[jnrD+0];
682
683             /**************************
684              * CALCULATE INTERACTIONS *
685              **************************/
686
687             r00              = _mm_mul_ps(rsq00,rinv00);
688
689             /* Compute parameters for interactions between i and j atoms */
690             qq00             = _mm_mul_ps(iq0,jq0);
691             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
692                                          vdwparam+vdwioffset0+vdwjidx0B,
693                                          vdwparam+vdwioffset0+vdwjidx0C,
694                                          vdwparam+vdwioffset0+vdwjidx0D,
695                                          &c6_00,&c12_00);
696
697             /* Calculate table index by multiplying r with table scale and truncate to integer */
698             rt               = _mm_mul_ps(r00,vftabscale);
699             vfitab           = _mm_cvttps_epi32(rt);
700 #ifdef __XOP__
701             vfeps            = _mm_frcz_ps(rt);
702 #else
703             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
704 #endif
705             twovfeps         = _mm_add_ps(vfeps,vfeps);
706             vfitab           = _mm_slli_epi32(vfitab,3);
707
708             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
709             isaprod          = _mm_mul_ps(isai0,isaj0);
710             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
711             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
712
713             /* Calculate generalized born table index - this is a separate table from the normal one,
714              * but we use the same procedure by multiplying r with scale and truncating to integer.
715              */
716             rt               = _mm_mul_ps(r00,gbscale);
717             gbitab           = _mm_cvttps_epi32(rt);
718 #ifdef __XOP__
719             gbeps            = _mm_frcz_ps(rt);
720 #else
721             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
722 #endif
723             gbitab           = _mm_slli_epi32(gbitab,2);
724
725             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
726             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
727             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
728             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
729             _MM_TRANSPOSE4_PS(Y,F,G,H);
730             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
731             VV               = _mm_macc_ps(gbeps,Fp,Y);
732             vgb              = _mm_mul_ps(gbqqfactor,VV);
733
734             twogbeps         = _mm_add_ps(gbeps,gbeps);
735             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
736             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
737             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
738             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
739             fjptrA           = dvda+jnrA;
740             fjptrB           = dvda+jnrB;
741             fjptrC           = dvda+jnrC;
742             fjptrD           = dvda+jnrD;
743             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
744             velec            = _mm_mul_ps(qq00,rinv00);
745             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
746
747             /* CUBIC SPLINE TABLE DISPERSION */
748             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
749             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
750             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
751             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
752             _MM_TRANSPOSE4_PS(Y,F,G,H);
753             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
754             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
755             fvdw6            = _mm_mul_ps(c6_00,FF);
756
757             /* CUBIC SPLINE TABLE REPULSION */
758             vfitab           = _mm_add_epi32(vfitab,ifour);
759             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
760             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
761             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
762             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
763             _MM_TRANSPOSE4_PS(Y,F,G,H);
764             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
765             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
766             fvdw12           = _mm_mul_ps(c12_00,FF);
767             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
768
769             fscal            = _mm_add_ps(felec,fvdw);
770
771              /* Update vectorial force */
772             fix0             = _mm_macc_ps(dx00,fscal,fix0);
773             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
774             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
775
776             fjptrA             = f+j_coord_offsetA;
777             fjptrB             = f+j_coord_offsetB;
778             fjptrC             = f+j_coord_offsetC;
779             fjptrD             = f+j_coord_offsetD;
780             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
781                                                    _mm_mul_ps(dx00,fscal),
782                                                    _mm_mul_ps(dy00,fscal),
783                                                    _mm_mul_ps(dz00,fscal));
784
785             /* Inner loop uses 85 flops */
786         }
787
788         if(jidx<j_index_end)
789         {
790
791             /* Get j neighbor index, and coordinate index */
792             jnrlistA         = jjnr[jidx];
793             jnrlistB         = jjnr[jidx+1];
794             jnrlistC         = jjnr[jidx+2];
795             jnrlistD         = jjnr[jidx+3];
796             /* Sign of each element will be negative for non-real atoms.
797              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
798              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
799              */
800             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
801             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
802             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
803             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
804             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
805             j_coord_offsetA  = DIM*jnrA;
806             j_coord_offsetB  = DIM*jnrB;
807             j_coord_offsetC  = DIM*jnrC;
808             j_coord_offsetD  = DIM*jnrD;
809
810             /* load j atom coordinates */
811             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
812                                               x+j_coord_offsetC,x+j_coord_offsetD,
813                                               &jx0,&jy0,&jz0);
814
815             /* Calculate displacement vector */
816             dx00             = _mm_sub_ps(ix0,jx0);
817             dy00             = _mm_sub_ps(iy0,jy0);
818             dz00             = _mm_sub_ps(iz0,jz0);
819
820             /* Calculate squared distance and things based on it */
821             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
822
823             rinv00           = gmx_mm_invsqrt_ps(rsq00);
824
825             /* Load parameters for j particles */
826             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
827                                                               charge+jnrC+0,charge+jnrD+0);
828             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
829                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
830             vdwjidx0A        = 2*vdwtype[jnrA+0];
831             vdwjidx0B        = 2*vdwtype[jnrB+0];
832             vdwjidx0C        = 2*vdwtype[jnrC+0];
833             vdwjidx0D        = 2*vdwtype[jnrD+0];
834
835             /**************************
836              * CALCULATE INTERACTIONS *
837              **************************/
838
839             r00              = _mm_mul_ps(rsq00,rinv00);
840             r00              = _mm_andnot_ps(dummy_mask,r00);
841
842             /* Compute parameters for interactions between i and j atoms */
843             qq00             = _mm_mul_ps(iq0,jq0);
844             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
845                                          vdwparam+vdwioffset0+vdwjidx0B,
846                                          vdwparam+vdwioffset0+vdwjidx0C,
847                                          vdwparam+vdwioffset0+vdwjidx0D,
848                                          &c6_00,&c12_00);
849
850             /* Calculate table index by multiplying r with table scale and truncate to integer */
851             rt               = _mm_mul_ps(r00,vftabscale);
852             vfitab           = _mm_cvttps_epi32(rt);
853 #ifdef __XOP__
854             vfeps            = _mm_frcz_ps(rt);
855 #else
856             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
857 #endif
858             twovfeps         = _mm_add_ps(vfeps,vfeps);
859             vfitab           = _mm_slli_epi32(vfitab,3);
860
861             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
862             isaprod          = _mm_mul_ps(isai0,isaj0);
863             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
864             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
865
866             /* Calculate generalized born table index - this is a separate table from the normal one,
867              * but we use the same procedure by multiplying r with scale and truncating to integer.
868              */
869             rt               = _mm_mul_ps(r00,gbscale);
870             gbitab           = _mm_cvttps_epi32(rt);
871 #ifdef __XOP__
872             gbeps            = _mm_frcz_ps(rt);
873 #else
874             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
875 #endif
876             gbitab           = _mm_slli_epi32(gbitab,2);
877
878             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
879             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
880             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
881             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
882             _MM_TRANSPOSE4_PS(Y,F,G,H);
883             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
884             VV               = _mm_macc_ps(gbeps,Fp,Y);
885             vgb              = _mm_mul_ps(gbqqfactor,VV);
886
887             twogbeps         = _mm_add_ps(gbeps,gbeps);
888             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
889             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
890             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
891             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
892             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
893             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
894             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
895             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
896             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
897             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
898             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
899             velec            = _mm_mul_ps(qq00,rinv00);
900             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
901
902             /* CUBIC SPLINE TABLE DISPERSION */
903             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
904             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
905             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
906             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
907             _MM_TRANSPOSE4_PS(Y,F,G,H);
908             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
909             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
910             fvdw6            = _mm_mul_ps(c6_00,FF);
911
912             /* CUBIC SPLINE TABLE REPULSION */
913             vfitab           = _mm_add_epi32(vfitab,ifour);
914             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
915             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
916             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
917             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
918             _MM_TRANSPOSE4_PS(Y,F,G,H);
919             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
920             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
921             fvdw12           = _mm_mul_ps(c12_00,FF);
922             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
923
924             fscal            = _mm_add_ps(felec,fvdw);
925
926             fscal            = _mm_andnot_ps(dummy_mask,fscal);
927
928              /* Update vectorial force */
929             fix0             = _mm_macc_ps(dx00,fscal,fix0);
930             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
931             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
932
933             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
934             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
935             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
936             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
937             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
938                                                    _mm_mul_ps(dx00,fscal),
939                                                    _mm_mul_ps(dy00,fscal),
940                                                    _mm_mul_ps(dz00,fscal));
941
942             /* Inner loop uses 86 flops */
943         }
944
945         /* End of innermost loop */
946
947         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
948                                               f+i_coord_offset,fshift+i_shift_offset);
949
950         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
951         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
952
953         /* Increment number of inner iterations */
954         inneriter                  += j_index_end - j_index_start;
955
956         /* Outer loop uses 7 flops */
957     }
958
959     /* Increment number of outer iterations */
960     outeriter        += nri;
961
962     /* Update outer/inner flops */
963
964     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*86);
965 }