Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          gbitab;
91     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
92     __m128           minushalf = _mm_set1_ps(-0.5);
93     real             *invsqrta,*dvda,*gbtab;
94     int              nvdwtype;
95     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
99     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
100     __m128i          vfitab;
101     __m128i          ifour       = _mm_set1_epi32(4);
102     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
103     real             *vftab;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     vftab            = kernel_data->table_vdw->data;
126     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
127
128     invsqrta         = fr->invsqrta;
129     dvda             = fr->dvda;
130     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
131     gbtab            = fr->gbtab.data;
132     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
172         isai0            = _mm_load1_ps(invsqrta+inr+0);
173         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_ps();
177         vgbsum           = _mm_setzero_ps();
178         vvdwsum          = _mm_setzero_ps();
179         dvdasum          = _mm_setzero_ps();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192             j_coord_offsetC  = DIM*jnrC;
193             j_coord_offsetD  = DIM*jnrD;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               x+j_coord_offsetC,x+j_coord_offsetD,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_ps(ix0,jx0);
202             dy00             = _mm_sub_ps(iy0,jy0);
203             dz00             = _mm_sub_ps(iz0,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
207
208             rinv00           = gmx_mm_invsqrt_ps(rsq00);
209
210             /* Load parameters for j particles */
211             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
212                                                               charge+jnrC+0,charge+jnrD+0);
213             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
214                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
215             vdwjidx0A        = 2*vdwtype[jnrA+0];
216             vdwjidx0B        = 2*vdwtype[jnrB+0];
217             vdwjidx0C        = 2*vdwtype[jnrC+0];
218             vdwjidx0D        = 2*vdwtype[jnrD+0];
219
220             /**************************
221              * CALCULATE INTERACTIONS *
222              **************************/
223
224             r00              = _mm_mul_ps(rsq00,rinv00);
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq00             = _mm_mul_ps(iq0,jq0);
228             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
229                                          vdwparam+vdwioffset0+vdwjidx0B,
230                                          vdwparam+vdwioffset0+vdwjidx0C,
231                                          vdwparam+vdwioffset0+vdwjidx0D,
232                                          &c6_00,&c12_00);
233
234             /* Calculate table index by multiplying r with table scale and truncate to integer */
235             rt               = _mm_mul_ps(r00,vftabscale);
236             vfitab           = _mm_cvttps_epi32(rt);
237 #ifdef __XOP__
238             vfeps            = _mm_frcz_ps(rt);
239 #else
240             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
241 #endif
242             twovfeps         = _mm_add_ps(vfeps,vfeps);
243             vfitab           = _mm_slli_epi32(vfitab,3);
244
245             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
246             isaprod          = _mm_mul_ps(isai0,isaj0);
247             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
248             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
249
250             /* Calculate generalized born table index - this is a separate table from the normal one,
251              * but we use the same procedure by multiplying r with scale and truncating to integer.
252              */
253             rt               = _mm_mul_ps(r00,gbscale);
254             gbitab           = _mm_cvttps_epi32(rt);
255 #ifdef __XOP__
256             gbeps            = _mm_frcz_ps(rt);
257 #else
258             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
259 #endif
260             gbitab           = _mm_slli_epi32(gbitab,2);
261
262             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
263             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
264             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
265             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
266             _MM_TRANSPOSE4_PS(Y,F,G,H);
267             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
268             VV               = _mm_macc_ps(gbeps,Fp,Y);
269             vgb              = _mm_mul_ps(gbqqfactor,VV);
270
271             twogbeps         = _mm_add_ps(gbeps,gbeps);
272             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
273             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
274             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
275             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
276             fjptrA           = dvda+jnrA;
277             fjptrB           = dvda+jnrB;
278             fjptrC           = dvda+jnrC;
279             fjptrD           = dvda+jnrD;
280             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
281             velec            = _mm_mul_ps(qq00,rinv00);
282             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
283
284             /* CUBIC SPLINE TABLE DISPERSION */
285             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
286             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
287             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
288             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
289             _MM_TRANSPOSE4_PS(Y,F,G,H);
290             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
291             VV               = _mm_macc_ps(vfeps,Fp,Y);
292             vvdw6            = _mm_mul_ps(c6_00,VV);
293             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
294             fvdw6            = _mm_mul_ps(c6_00,FF);
295
296             /* CUBIC SPLINE TABLE REPULSION */
297             vfitab           = _mm_add_epi32(vfitab,ifour);
298             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
299             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
300             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
301             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
302             _MM_TRANSPOSE4_PS(Y,F,G,H);
303             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
304             VV               = _mm_macc_ps(vfeps,Fp,Y);
305             vvdw12           = _mm_mul_ps(c12_00,VV);
306             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
307             fvdw12           = _mm_mul_ps(c12_00,FF);
308             vvdw             = _mm_add_ps(vvdw12,vvdw6);
309             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
310
311             /* Update potential sum for this i atom from the interaction with this j atom. */
312             velecsum         = _mm_add_ps(velecsum,velec);
313             vgbsum           = _mm_add_ps(vgbsum,vgb);
314             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
315
316             fscal            = _mm_add_ps(felec,fvdw);
317
318              /* Update vectorial force */
319             fix0             = _mm_macc_ps(dx00,fscal,fix0);
320             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
321             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
322
323             fjptrA             = f+j_coord_offsetA;
324             fjptrB             = f+j_coord_offsetB;
325             fjptrC             = f+j_coord_offsetC;
326             fjptrD             = f+j_coord_offsetD;
327             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
328                                                    _mm_mul_ps(dx00,fscal),
329                                                    _mm_mul_ps(dy00,fscal),
330                                                    _mm_mul_ps(dz00,fscal));
331
332             /* Inner loop uses 95 flops */
333         }
334
335         if(jidx<j_index_end)
336         {
337
338             /* Get j neighbor index, and coordinate index */
339             jnrlistA         = jjnr[jidx];
340             jnrlistB         = jjnr[jidx+1];
341             jnrlistC         = jjnr[jidx+2];
342             jnrlistD         = jjnr[jidx+3];
343             /* Sign of each element will be negative for non-real atoms.
344              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
345              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
346              */
347             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
348             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
349             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
350             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
351             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
352             j_coord_offsetA  = DIM*jnrA;
353             j_coord_offsetB  = DIM*jnrB;
354             j_coord_offsetC  = DIM*jnrC;
355             j_coord_offsetD  = DIM*jnrD;
356
357             /* load j atom coordinates */
358             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
359                                               x+j_coord_offsetC,x+j_coord_offsetD,
360                                               &jx0,&jy0,&jz0);
361
362             /* Calculate displacement vector */
363             dx00             = _mm_sub_ps(ix0,jx0);
364             dy00             = _mm_sub_ps(iy0,jy0);
365             dz00             = _mm_sub_ps(iz0,jz0);
366
367             /* Calculate squared distance and things based on it */
368             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
369
370             rinv00           = gmx_mm_invsqrt_ps(rsq00);
371
372             /* Load parameters for j particles */
373             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
374                                                               charge+jnrC+0,charge+jnrD+0);
375             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
376                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
377             vdwjidx0A        = 2*vdwtype[jnrA+0];
378             vdwjidx0B        = 2*vdwtype[jnrB+0];
379             vdwjidx0C        = 2*vdwtype[jnrC+0];
380             vdwjidx0D        = 2*vdwtype[jnrD+0];
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             r00              = _mm_mul_ps(rsq00,rinv00);
387             r00              = _mm_andnot_ps(dummy_mask,r00);
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq00             = _mm_mul_ps(iq0,jq0);
391             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
392                                          vdwparam+vdwioffset0+vdwjidx0B,
393                                          vdwparam+vdwioffset0+vdwjidx0C,
394                                          vdwparam+vdwioffset0+vdwjidx0D,
395                                          &c6_00,&c12_00);
396
397             /* Calculate table index by multiplying r with table scale and truncate to integer */
398             rt               = _mm_mul_ps(r00,vftabscale);
399             vfitab           = _mm_cvttps_epi32(rt);
400 #ifdef __XOP__
401             vfeps            = _mm_frcz_ps(rt);
402 #else
403             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
404 #endif
405             twovfeps         = _mm_add_ps(vfeps,vfeps);
406             vfitab           = _mm_slli_epi32(vfitab,3);
407
408             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
409             isaprod          = _mm_mul_ps(isai0,isaj0);
410             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
411             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
412
413             /* Calculate generalized born table index - this is a separate table from the normal one,
414              * but we use the same procedure by multiplying r with scale and truncating to integer.
415              */
416             rt               = _mm_mul_ps(r00,gbscale);
417             gbitab           = _mm_cvttps_epi32(rt);
418 #ifdef __XOP__
419             gbeps            = _mm_frcz_ps(rt);
420 #else
421             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
422 #endif
423             gbitab           = _mm_slli_epi32(gbitab,2);
424
425             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
426             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
427             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
428             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
429             _MM_TRANSPOSE4_PS(Y,F,G,H);
430             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
431             VV               = _mm_macc_ps(gbeps,Fp,Y);
432             vgb              = _mm_mul_ps(gbqqfactor,VV);
433
434             twogbeps         = _mm_add_ps(gbeps,gbeps);
435             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
436             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
437             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
438             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
439             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
440             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
441             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
442             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
443             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
444             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
445             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
446             velec            = _mm_mul_ps(qq00,rinv00);
447             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
448
449             /* CUBIC SPLINE TABLE DISPERSION */
450             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
451             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
452             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
453             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
454             _MM_TRANSPOSE4_PS(Y,F,G,H);
455             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
456             VV               = _mm_macc_ps(vfeps,Fp,Y);
457             vvdw6            = _mm_mul_ps(c6_00,VV);
458             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
459             fvdw6            = _mm_mul_ps(c6_00,FF);
460
461             /* CUBIC SPLINE TABLE REPULSION */
462             vfitab           = _mm_add_epi32(vfitab,ifour);
463             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
464             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
465             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
466             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
467             _MM_TRANSPOSE4_PS(Y,F,G,H);
468             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
469             VV               = _mm_macc_ps(vfeps,Fp,Y);
470             vvdw12           = _mm_mul_ps(c12_00,VV);
471             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
472             fvdw12           = _mm_mul_ps(c12_00,FF);
473             vvdw             = _mm_add_ps(vvdw12,vvdw6);
474             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
475
476             /* Update potential sum for this i atom from the interaction with this j atom. */
477             velec            = _mm_andnot_ps(dummy_mask,velec);
478             velecsum         = _mm_add_ps(velecsum,velec);
479             vgb              = _mm_andnot_ps(dummy_mask,vgb);
480             vgbsum           = _mm_add_ps(vgbsum,vgb);
481             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
482             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
483
484             fscal            = _mm_add_ps(felec,fvdw);
485
486             fscal            = _mm_andnot_ps(dummy_mask,fscal);
487
488              /* Update vectorial force */
489             fix0             = _mm_macc_ps(dx00,fscal,fix0);
490             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
491             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
492
493             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
494             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
495             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
496             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
497             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
498                                                    _mm_mul_ps(dx00,fscal),
499                                                    _mm_mul_ps(dy00,fscal),
500                                                    _mm_mul_ps(dz00,fscal));
501
502             /* Inner loop uses 96 flops */
503         }
504
505         /* End of innermost loop */
506
507         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
508                                               f+i_coord_offset,fshift+i_shift_offset);
509
510         ggid                        = gid[iidx];
511         /* Update potential energies */
512         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
513         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
514         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
515         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
516         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
517
518         /* Increment number of inner iterations */
519         inneriter                  += j_index_end - j_index_start;
520
521         /* Outer loop uses 10 flops */
522     }
523
524     /* Increment number of outer iterations */
525     outeriter        += nri;
526
527     /* Update outer/inner flops */
528
529     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*96);
530 }
531 /*
532  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_single
533  * Electrostatics interaction: GeneralizedBorn
534  * VdW interaction:            CubicSplineTable
535  * Geometry:                   Particle-Particle
536  * Calculate force/pot:        Force
537  */
538 void
539 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_single
540                     (t_nblist                    * gmx_restrict       nlist,
541                      rvec                        * gmx_restrict          xx,
542                      rvec                        * gmx_restrict          ff,
543                      t_forcerec                  * gmx_restrict          fr,
544                      t_mdatoms                   * gmx_restrict     mdatoms,
545                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
546                      t_nrnb                      * gmx_restrict        nrnb)
547 {
548     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
549      * just 0 for non-waters.
550      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
551      * jnr indices corresponding to data put in the four positions in the SIMD register.
552      */
553     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
554     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
555     int              jnrA,jnrB,jnrC,jnrD;
556     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
557     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
558     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
559     real             rcutoff_scalar;
560     real             *shiftvec,*fshift,*x,*f;
561     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
562     real             scratch[4*DIM];
563     __m128           fscal,rcutoff,rcutoff2,jidxall;
564     int              vdwioffset0;
565     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
566     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
567     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
568     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
569     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
570     real             *charge;
571     __m128i          gbitab;
572     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
573     __m128           minushalf = _mm_set1_ps(-0.5);
574     real             *invsqrta,*dvda,*gbtab;
575     int              nvdwtype;
576     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
577     int              *vdwtype;
578     real             *vdwparam;
579     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
580     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
581     __m128i          vfitab;
582     __m128i          ifour       = _mm_set1_epi32(4);
583     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
584     real             *vftab;
585     __m128           dummy_mask,cutoff_mask;
586     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
587     __m128           one     = _mm_set1_ps(1.0);
588     __m128           two     = _mm_set1_ps(2.0);
589     x                = xx[0];
590     f                = ff[0];
591
592     nri              = nlist->nri;
593     iinr             = nlist->iinr;
594     jindex           = nlist->jindex;
595     jjnr             = nlist->jjnr;
596     shiftidx         = nlist->shift;
597     gid              = nlist->gid;
598     shiftvec         = fr->shift_vec[0];
599     fshift           = fr->fshift[0];
600     facel            = _mm_set1_ps(fr->epsfac);
601     charge           = mdatoms->chargeA;
602     nvdwtype         = fr->ntype;
603     vdwparam         = fr->nbfp;
604     vdwtype          = mdatoms->typeA;
605
606     vftab            = kernel_data->table_vdw->data;
607     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
608
609     invsqrta         = fr->invsqrta;
610     dvda             = fr->dvda;
611     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
612     gbtab            = fr->gbtab.data;
613     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
614
615     /* Avoid stupid compiler warnings */
616     jnrA = jnrB = jnrC = jnrD = 0;
617     j_coord_offsetA = 0;
618     j_coord_offsetB = 0;
619     j_coord_offsetC = 0;
620     j_coord_offsetD = 0;
621
622     outeriter        = 0;
623     inneriter        = 0;
624
625     for(iidx=0;iidx<4*DIM;iidx++)
626     {
627         scratch[iidx] = 0.0;
628     }
629
630     /* Start outer loop over neighborlists */
631     for(iidx=0; iidx<nri; iidx++)
632     {
633         /* Load shift vector for this list */
634         i_shift_offset   = DIM*shiftidx[iidx];
635
636         /* Load limits for loop over neighbors */
637         j_index_start    = jindex[iidx];
638         j_index_end      = jindex[iidx+1];
639
640         /* Get outer coordinate index */
641         inr              = iinr[iidx];
642         i_coord_offset   = DIM*inr;
643
644         /* Load i particle coords and add shift vector */
645         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
646
647         fix0             = _mm_setzero_ps();
648         fiy0             = _mm_setzero_ps();
649         fiz0             = _mm_setzero_ps();
650
651         /* Load parameters for i particles */
652         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
653         isai0            = _mm_load1_ps(invsqrta+inr+0);
654         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
655
656         dvdasum          = _mm_setzero_ps();
657
658         /* Start inner kernel loop */
659         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
660         {
661
662             /* Get j neighbor index, and coordinate index */
663             jnrA             = jjnr[jidx];
664             jnrB             = jjnr[jidx+1];
665             jnrC             = jjnr[jidx+2];
666             jnrD             = jjnr[jidx+3];
667             j_coord_offsetA  = DIM*jnrA;
668             j_coord_offsetB  = DIM*jnrB;
669             j_coord_offsetC  = DIM*jnrC;
670             j_coord_offsetD  = DIM*jnrD;
671
672             /* load j atom coordinates */
673             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
674                                               x+j_coord_offsetC,x+j_coord_offsetD,
675                                               &jx0,&jy0,&jz0);
676
677             /* Calculate displacement vector */
678             dx00             = _mm_sub_ps(ix0,jx0);
679             dy00             = _mm_sub_ps(iy0,jy0);
680             dz00             = _mm_sub_ps(iz0,jz0);
681
682             /* Calculate squared distance and things based on it */
683             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
684
685             rinv00           = gmx_mm_invsqrt_ps(rsq00);
686
687             /* Load parameters for j particles */
688             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
689                                                               charge+jnrC+0,charge+jnrD+0);
690             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
691                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
692             vdwjidx0A        = 2*vdwtype[jnrA+0];
693             vdwjidx0B        = 2*vdwtype[jnrB+0];
694             vdwjidx0C        = 2*vdwtype[jnrC+0];
695             vdwjidx0D        = 2*vdwtype[jnrD+0];
696
697             /**************************
698              * CALCULATE INTERACTIONS *
699              **************************/
700
701             r00              = _mm_mul_ps(rsq00,rinv00);
702
703             /* Compute parameters for interactions between i and j atoms */
704             qq00             = _mm_mul_ps(iq0,jq0);
705             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
706                                          vdwparam+vdwioffset0+vdwjidx0B,
707                                          vdwparam+vdwioffset0+vdwjidx0C,
708                                          vdwparam+vdwioffset0+vdwjidx0D,
709                                          &c6_00,&c12_00);
710
711             /* Calculate table index by multiplying r with table scale and truncate to integer */
712             rt               = _mm_mul_ps(r00,vftabscale);
713             vfitab           = _mm_cvttps_epi32(rt);
714 #ifdef __XOP__
715             vfeps            = _mm_frcz_ps(rt);
716 #else
717             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
718 #endif
719             twovfeps         = _mm_add_ps(vfeps,vfeps);
720             vfitab           = _mm_slli_epi32(vfitab,3);
721
722             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
723             isaprod          = _mm_mul_ps(isai0,isaj0);
724             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
725             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
726
727             /* Calculate generalized born table index - this is a separate table from the normal one,
728              * but we use the same procedure by multiplying r with scale and truncating to integer.
729              */
730             rt               = _mm_mul_ps(r00,gbscale);
731             gbitab           = _mm_cvttps_epi32(rt);
732 #ifdef __XOP__
733             gbeps            = _mm_frcz_ps(rt);
734 #else
735             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
736 #endif
737             gbitab           = _mm_slli_epi32(gbitab,2);
738
739             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
740             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
741             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
742             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
743             _MM_TRANSPOSE4_PS(Y,F,G,H);
744             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
745             VV               = _mm_macc_ps(gbeps,Fp,Y);
746             vgb              = _mm_mul_ps(gbqqfactor,VV);
747
748             twogbeps         = _mm_add_ps(gbeps,gbeps);
749             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
750             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
751             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
752             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
753             fjptrA           = dvda+jnrA;
754             fjptrB           = dvda+jnrB;
755             fjptrC           = dvda+jnrC;
756             fjptrD           = dvda+jnrD;
757             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
758             velec            = _mm_mul_ps(qq00,rinv00);
759             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
760
761             /* CUBIC SPLINE TABLE DISPERSION */
762             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
763             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
764             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
765             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
766             _MM_TRANSPOSE4_PS(Y,F,G,H);
767             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
768             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
769             fvdw6            = _mm_mul_ps(c6_00,FF);
770
771             /* CUBIC SPLINE TABLE REPULSION */
772             vfitab           = _mm_add_epi32(vfitab,ifour);
773             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
774             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
775             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
776             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
777             _MM_TRANSPOSE4_PS(Y,F,G,H);
778             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
779             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
780             fvdw12           = _mm_mul_ps(c12_00,FF);
781             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
782
783             fscal            = _mm_add_ps(felec,fvdw);
784
785              /* Update vectorial force */
786             fix0             = _mm_macc_ps(dx00,fscal,fix0);
787             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
788             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
789
790             fjptrA             = f+j_coord_offsetA;
791             fjptrB             = f+j_coord_offsetB;
792             fjptrC             = f+j_coord_offsetC;
793             fjptrD             = f+j_coord_offsetD;
794             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
795                                                    _mm_mul_ps(dx00,fscal),
796                                                    _mm_mul_ps(dy00,fscal),
797                                                    _mm_mul_ps(dz00,fscal));
798
799             /* Inner loop uses 85 flops */
800         }
801
802         if(jidx<j_index_end)
803         {
804
805             /* Get j neighbor index, and coordinate index */
806             jnrlistA         = jjnr[jidx];
807             jnrlistB         = jjnr[jidx+1];
808             jnrlistC         = jjnr[jidx+2];
809             jnrlistD         = jjnr[jidx+3];
810             /* Sign of each element will be negative for non-real atoms.
811              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
812              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
813              */
814             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
815             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
816             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
817             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
818             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
819             j_coord_offsetA  = DIM*jnrA;
820             j_coord_offsetB  = DIM*jnrB;
821             j_coord_offsetC  = DIM*jnrC;
822             j_coord_offsetD  = DIM*jnrD;
823
824             /* load j atom coordinates */
825             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
826                                               x+j_coord_offsetC,x+j_coord_offsetD,
827                                               &jx0,&jy0,&jz0);
828
829             /* Calculate displacement vector */
830             dx00             = _mm_sub_ps(ix0,jx0);
831             dy00             = _mm_sub_ps(iy0,jy0);
832             dz00             = _mm_sub_ps(iz0,jz0);
833
834             /* Calculate squared distance and things based on it */
835             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
836
837             rinv00           = gmx_mm_invsqrt_ps(rsq00);
838
839             /* Load parameters for j particles */
840             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
841                                                               charge+jnrC+0,charge+jnrD+0);
842             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
843                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
844             vdwjidx0A        = 2*vdwtype[jnrA+0];
845             vdwjidx0B        = 2*vdwtype[jnrB+0];
846             vdwjidx0C        = 2*vdwtype[jnrC+0];
847             vdwjidx0D        = 2*vdwtype[jnrD+0];
848
849             /**************************
850              * CALCULATE INTERACTIONS *
851              **************************/
852
853             r00              = _mm_mul_ps(rsq00,rinv00);
854             r00              = _mm_andnot_ps(dummy_mask,r00);
855
856             /* Compute parameters for interactions between i and j atoms */
857             qq00             = _mm_mul_ps(iq0,jq0);
858             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
859                                          vdwparam+vdwioffset0+vdwjidx0B,
860                                          vdwparam+vdwioffset0+vdwjidx0C,
861                                          vdwparam+vdwioffset0+vdwjidx0D,
862                                          &c6_00,&c12_00);
863
864             /* Calculate table index by multiplying r with table scale and truncate to integer */
865             rt               = _mm_mul_ps(r00,vftabscale);
866             vfitab           = _mm_cvttps_epi32(rt);
867 #ifdef __XOP__
868             vfeps            = _mm_frcz_ps(rt);
869 #else
870             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
871 #endif
872             twovfeps         = _mm_add_ps(vfeps,vfeps);
873             vfitab           = _mm_slli_epi32(vfitab,3);
874
875             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
876             isaprod          = _mm_mul_ps(isai0,isaj0);
877             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
878             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
879
880             /* Calculate generalized born table index - this is a separate table from the normal one,
881              * but we use the same procedure by multiplying r with scale and truncating to integer.
882              */
883             rt               = _mm_mul_ps(r00,gbscale);
884             gbitab           = _mm_cvttps_epi32(rt);
885 #ifdef __XOP__
886             gbeps            = _mm_frcz_ps(rt);
887 #else
888             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
889 #endif
890             gbitab           = _mm_slli_epi32(gbitab,2);
891
892             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
893             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
894             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
895             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
896             _MM_TRANSPOSE4_PS(Y,F,G,H);
897             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
898             VV               = _mm_macc_ps(gbeps,Fp,Y);
899             vgb              = _mm_mul_ps(gbqqfactor,VV);
900
901             twogbeps         = _mm_add_ps(gbeps,gbeps);
902             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
903             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
904             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
905             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
906             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
907             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
908             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
909             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
910             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
911             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
912             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
913             velec            = _mm_mul_ps(qq00,rinv00);
914             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
915
916             /* CUBIC SPLINE TABLE DISPERSION */
917             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
918             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
919             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
920             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
921             _MM_TRANSPOSE4_PS(Y,F,G,H);
922             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
923             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
924             fvdw6            = _mm_mul_ps(c6_00,FF);
925
926             /* CUBIC SPLINE TABLE REPULSION */
927             vfitab           = _mm_add_epi32(vfitab,ifour);
928             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
929             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
930             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
931             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
932             _MM_TRANSPOSE4_PS(Y,F,G,H);
933             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
934             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
935             fvdw12           = _mm_mul_ps(c12_00,FF);
936             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
937
938             fscal            = _mm_add_ps(felec,fvdw);
939
940             fscal            = _mm_andnot_ps(dummy_mask,fscal);
941
942              /* Update vectorial force */
943             fix0             = _mm_macc_ps(dx00,fscal,fix0);
944             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
945             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
946
947             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
948             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
949             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
950             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
951             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
952                                                    _mm_mul_ps(dx00,fscal),
953                                                    _mm_mul_ps(dy00,fscal),
954                                                    _mm_mul_ps(dz00,fscal));
955
956             /* Inner loop uses 86 flops */
957         }
958
959         /* End of innermost loop */
960
961         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
962                                               f+i_coord_offset,fshift+i_shift_offset);
963
964         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
965         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
966
967         /* Increment number of inner iterations */
968         inneriter                  += j_index_end - j_index_start;
969
970         /* Outer loop uses 7 flops */
971     }
972
973     /* Increment number of outer iterations */
974     outeriter        += nri;
975
976     /* Update outer/inner flops */
977
978     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*86);
979 }