1e7160bc96711361465e73fb8c54182629ca147f
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
91     __m128           minushalf = _mm_set1_ps(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
98     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
102     real             *vftab;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
126
127     invsqrta         = fr->invsqrta;
128     dvda             = fr->dvda;
129     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
130     gbtab            = fr->gbtab->data;
131     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164
165         fix0             = _mm_setzero_ps();
166         fiy0             = _mm_setzero_ps();
167         fiz0             = _mm_setzero_ps();
168
169         /* Load parameters for i particles */
170         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
171         isai0            = _mm_load1_ps(invsqrta+inr+0);
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176         vgbsum           = _mm_setzero_ps();
177         vvdwsum          = _mm_setzero_ps();
178         dvdasum          = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               x+j_coord_offsetC,x+j_coord_offsetD,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_ps(ix0,jx0);
201             dy00             = _mm_sub_ps(iy0,jy0);
202             dz00             = _mm_sub_ps(iz0,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206
207             rinv00           = avx128fma_invsqrt_f(rsq00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211                                                               charge+jnrC+0,charge+jnrD+0);
212             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
213                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216             vdwjidx0C        = 2*vdwtype[jnrC+0];
217             vdwjidx0D        = 2*vdwtype[jnrD+0];
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             r00              = _mm_mul_ps(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_ps(iq0,jq0);
227             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
228                                          vdwparam+vdwioffset0+vdwjidx0B,
229                                          vdwparam+vdwioffset0+vdwjidx0C,
230                                          vdwparam+vdwioffset0+vdwjidx0D,
231                                          &c6_00,&c12_00);
232
233             /* Calculate table index by multiplying r with table scale and truncate to integer */
234             rt               = _mm_mul_ps(r00,vftabscale);
235             vfitab           = _mm_cvttps_epi32(rt);
236 #ifdef __XOP__
237             vfeps            = _mm_frcz_ps(rt);
238 #else
239             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
240 #endif
241             twovfeps         = _mm_add_ps(vfeps,vfeps);
242             vfitab           = _mm_slli_epi32(vfitab,3);
243
244             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
245             isaprod          = _mm_mul_ps(isai0,isaj0);
246             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
247             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
248
249             /* Calculate generalized born table index - this is a separate table from the normal one,
250              * but we use the same procedure by multiplying r with scale and truncating to integer.
251              */
252             rt               = _mm_mul_ps(r00,gbscale);
253             gbitab           = _mm_cvttps_epi32(rt);
254 #ifdef __XOP__
255             gbeps            = _mm_frcz_ps(rt);
256 #else
257             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
258 #endif
259             gbitab           = _mm_slli_epi32(gbitab,2);
260
261             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
262             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
263             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
264             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
265             _MM_TRANSPOSE4_PS(Y,F,G,H);
266             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
267             VV               = _mm_macc_ps(gbeps,Fp,Y);
268             vgb              = _mm_mul_ps(gbqqfactor,VV);
269
270             twogbeps         = _mm_add_ps(gbeps,gbeps);
271             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
272             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
273             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
274             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
275             fjptrA           = dvda+jnrA;
276             fjptrB           = dvda+jnrB;
277             fjptrC           = dvda+jnrC;
278             fjptrD           = dvda+jnrD;
279             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
280             velec            = _mm_mul_ps(qq00,rinv00);
281             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
282
283             /* CUBIC SPLINE TABLE DISPERSION */
284             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
285             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
286             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
287             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
288             _MM_TRANSPOSE4_PS(Y,F,G,H);
289             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
290             VV               = _mm_macc_ps(vfeps,Fp,Y);
291             vvdw6            = _mm_mul_ps(c6_00,VV);
292             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
293             fvdw6            = _mm_mul_ps(c6_00,FF);
294
295             /* CUBIC SPLINE TABLE REPULSION */
296             vfitab           = _mm_add_epi32(vfitab,ifour);
297             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
298             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
299             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
300             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
301             _MM_TRANSPOSE4_PS(Y,F,G,H);
302             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
303             VV               = _mm_macc_ps(vfeps,Fp,Y);
304             vvdw12           = _mm_mul_ps(c12_00,VV);
305             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
306             fvdw12           = _mm_mul_ps(c12_00,FF);
307             vvdw             = _mm_add_ps(vvdw12,vvdw6);
308             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             velecsum         = _mm_add_ps(velecsum,velec);
312             vgbsum           = _mm_add_ps(vgbsum,vgb);
313             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
314
315             fscal            = _mm_add_ps(felec,fvdw);
316
317              /* Update vectorial force */
318             fix0             = _mm_macc_ps(dx00,fscal,fix0);
319             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
320             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
321
322             fjptrA             = f+j_coord_offsetA;
323             fjptrB             = f+j_coord_offsetB;
324             fjptrC             = f+j_coord_offsetC;
325             fjptrD             = f+j_coord_offsetD;
326             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
327                                                    _mm_mul_ps(dx00,fscal),
328                                                    _mm_mul_ps(dy00,fscal),
329                                                    _mm_mul_ps(dz00,fscal));
330
331             /* Inner loop uses 95 flops */
332         }
333
334         if(jidx<j_index_end)
335         {
336
337             /* Get j neighbor index, and coordinate index */
338             jnrlistA         = jjnr[jidx];
339             jnrlistB         = jjnr[jidx+1];
340             jnrlistC         = jjnr[jidx+2];
341             jnrlistD         = jjnr[jidx+3];
342             /* Sign of each element will be negative for non-real atoms.
343              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
344              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
345              */
346             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
347             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
348             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
349             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
350             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
351             j_coord_offsetA  = DIM*jnrA;
352             j_coord_offsetB  = DIM*jnrB;
353             j_coord_offsetC  = DIM*jnrC;
354             j_coord_offsetD  = DIM*jnrD;
355
356             /* load j atom coordinates */
357             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
358                                               x+j_coord_offsetC,x+j_coord_offsetD,
359                                               &jx0,&jy0,&jz0);
360
361             /* Calculate displacement vector */
362             dx00             = _mm_sub_ps(ix0,jx0);
363             dy00             = _mm_sub_ps(iy0,jy0);
364             dz00             = _mm_sub_ps(iz0,jz0);
365
366             /* Calculate squared distance and things based on it */
367             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
368
369             rinv00           = avx128fma_invsqrt_f(rsq00);
370
371             /* Load parameters for j particles */
372             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
373                                                               charge+jnrC+0,charge+jnrD+0);
374             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
375                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
376             vdwjidx0A        = 2*vdwtype[jnrA+0];
377             vdwjidx0B        = 2*vdwtype[jnrB+0];
378             vdwjidx0C        = 2*vdwtype[jnrC+0];
379             vdwjidx0D        = 2*vdwtype[jnrD+0];
380
381             /**************************
382              * CALCULATE INTERACTIONS *
383              **************************/
384
385             r00              = _mm_mul_ps(rsq00,rinv00);
386             r00              = _mm_andnot_ps(dummy_mask,r00);
387
388             /* Compute parameters for interactions between i and j atoms */
389             qq00             = _mm_mul_ps(iq0,jq0);
390             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
391                                          vdwparam+vdwioffset0+vdwjidx0B,
392                                          vdwparam+vdwioffset0+vdwjidx0C,
393                                          vdwparam+vdwioffset0+vdwjidx0D,
394                                          &c6_00,&c12_00);
395
396             /* Calculate table index by multiplying r with table scale and truncate to integer */
397             rt               = _mm_mul_ps(r00,vftabscale);
398             vfitab           = _mm_cvttps_epi32(rt);
399 #ifdef __XOP__
400             vfeps            = _mm_frcz_ps(rt);
401 #else
402             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
403 #endif
404             twovfeps         = _mm_add_ps(vfeps,vfeps);
405             vfitab           = _mm_slli_epi32(vfitab,3);
406
407             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
408             isaprod          = _mm_mul_ps(isai0,isaj0);
409             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
410             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
411
412             /* Calculate generalized born table index - this is a separate table from the normal one,
413              * but we use the same procedure by multiplying r with scale and truncating to integer.
414              */
415             rt               = _mm_mul_ps(r00,gbscale);
416             gbitab           = _mm_cvttps_epi32(rt);
417 #ifdef __XOP__
418             gbeps            = _mm_frcz_ps(rt);
419 #else
420             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
421 #endif
422             gbitab           = _mm_slli_epi32(gbitab,2);
423
424             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
425             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
426             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
427             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
428             _MM_TRANSPOSE4_PS(Y,F,G,H);
429             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
430             VV               = _mm_macc_ps(gbeps,Fp,Y);
431             vgb              = _mm_mul_ps(gbqqfactor,VV);
432
433             twogbeps         = _mm_add_ps(gbeps,gbeps);
434             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
435             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
436             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
437             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
438             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
439             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
440             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
441             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
442             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
443             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
444             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
445             velec            = _mm_mul_ps(qq00,rinv00);
446             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
447
448             /* CUBIC SPLINE TABLE DISPERSION */
449             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
450             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
451             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
452             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
453             _MM_TRANSPOSE4_PS(Y,F,G,H);
454             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
455             VV               = _mm_macc_ps(vfeps,Fp,Y);
456             vvdw6            = _mm_mul_ps(c6_00,VV);
457             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
458             fvdw6            = _mm_mul_ps(c6_00,FF);
459
460             /* CUBIC SPLINE TABLE REPULSION */
461             vfitab           = _mm_add_epi32(vfitab,ifour);
462             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
463             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
464             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
465             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
466             _MM_TRANSPOSE4_PS(Y,F,G,H);
467             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
468             VV               = _mm_macc_ps(vfeps,Fp,Y);
469             vvdw12           = _mm_mul_ps(c12_00,VV);
470             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
471             fvdw12           = _mm_mul_ps(c12_00,FF);
472             vvdw             = _mm_add_ps(vvdw12,vvdw6);
473             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             velec            = _mm_andnot_ps(dummy_mask,velec);
477             velecsum         = _mm_add_ps(velecsum,velec);
478             vgb              = _mm_andnot_ps(dummy_mask,vgb);
479             vgbsum           = _mm_add_ps(vgbsum,vgb);
480             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
481             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
482
483             fscal            = _mm_add_ps(felec,fvdw);
484
485             fscal            = _mm_andnot_ps(dummy_mask,fscal);
486
487              /* Update vectorial force */
488             fix0             = _mm_macc_ps(dx00,fscal,fix0);
489             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
490             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
491
492             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
493             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
494             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
495             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
496             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
497                                                    _mm_mul_ps(dx00,fscal),
498                                                    _mm_mul_ps(dy00,fscal),
499                                                    _mm_mul_ps(dz00,fscal));
500
501             /* Inner loop uses 96 flops */
502         }
503
504         /* End of innermost loop */
505
506         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
507                                               f+i_coord_offset,fshift+i_shift_offset);
508
509         ggid                        = gid[iidx];
510         /* Update potential energies */
511         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
512         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
513         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
514         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
515         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
516
517         /* Increment number of inner iterations */
518         inneriter                  += j_index_end - j_index_start;
519
520         /* Outer loop uses 10 flops */
521     }
522
523     /* Increment number of outer iterations */
524     outeriter        += nri;
525
526     /* Update outer/inner flops */
527
528     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*96);
529 }
530 /*
531  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_single
532  * Electrostatics interaction: GeneralizedBorn
533  * VdW interaction:            CubicSplineTable
534  * Geometry:                   Particle-Particle
535  * Calculate force/pot:        Force
536  */
537 void
538 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_single
539                     (t_nblist                    * gmx_restrict       nlist,
540                      rvec                        * gmx_restrict          xx,
541                      rvec                        * gmx_restrict          ff,
542                      struct t_forcerec           * gmx_restrict          fr,
543                      t_mdatoms                   * gmx_restrict     mdatoms,
544                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
545                      t_nrnb                      * gmx_restrict        nrnb)
546 {
547     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
548      * just 0 for non-waters.
549      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
550      * jnr indices corresponding to data put in the four positions in the SIMD register.
551      */
552     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
553     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
554     int              jnrA,jnrB,jnrC,jnrD;
555     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
556     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
557     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
558     real             rcutoff_scalar;
559     real             *shiftvec,*fshift,*x,*f;
560     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
561     real             scratch[4*DIM];
562     __m128           fscal,rcutoff,rcutoff2,jidxall;
563     int              vdwioffset0;
564     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
565     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
566     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
567     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
568     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
569     real             *charge;
570     __m128i          gbitab;
571     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
572     __m128           minushalf = _mm_set1_ps(-0.5);
573     real             *invsqrta,*dvda,*gbtab;
574     int              nvdwtype;
575     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
576     int              *vdwtype;
577     real             *vdwparam;
578     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
579     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
580     __m128i          vfitab;
581     __m128i          ifour       = _mm_set1_epi32(4);
582     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
583     real             *vftab;
584     __m128           dummy_mask,cutoff_mask;
585     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
586     __m128           one     = _mm_set1_ps(1.0);
587     __m128           two     = _mm_set1_ps(2.0);
588     x                = xx[0];
589     f                = ff[0];
590
591     nri              = nlist->nri;
592     iinr             = nlist->iinr;
593     jindex           = nlist->jindex;
594     jjnr             = nlist->jjnr;
595     shiftidx         = nlist->shift;
596     gid              = nlist->gid;
597     shiftvec         = fr->shift_vec[0];
598     fshift           = fr->fshift[0];
599     facel            = _mm_set1_ps(fr->ic->epsfac);
600     charge           = mdatoms->chargeA;
601     nvdwtype         = fr->ntype;
602     vdwparam         = fr->nbfp;
603     vdwtype          = mdatoms->typeA;
604
605     vftab            = kernel_data->table_vdw->data;
606     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
607
608     invsqrta         = fr->invsqrta;
609     dvda             = fr->dvda;
610     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
611     gbtab            = fr->gbtab->data;
612     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
613
614     /* Avoid stupid compiler warnings */
615     jnrA = jnrB = jnrC = jnrD = 0;
616     j_coord_offsetA = 0;
617     j_coord_offsetB = 0;
618     j_coord_offsetC = 0;
619     j_coord_offsetD = 0;
620
621     outeriter        = 0;
622     inneriter        = 0;
623
624     for(iidx=0;iidx<4*DIM;iidx++)
625     {
626         scratch[iidx] = 0.0;
627     }
628
629     /* Start outer loop over neighborlists */
630     for(iidx=0; iidx<nri; iidx++)
631     {
632         /* Load shift vector for this list */
633         i_shift_offset   = DIM*shiftidx[iidx];
634
635         /* Load limits for loop over neighbors */
636         j_index_start    = jindex[iidx];
637         j_index_end      = jindex[iidx+1];
638
639         /* Get outer coordinate index */
640         inr              = iinr[iidx];
641         i_coord_offset   = DIM*inr;
642
643         /* Load i particle coords and add shift vector */
644         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
645
646         fix0             = _mm_setzero_ps();
647         fiy0             = _mm_setzero_ps();
648         fiz0             = _mm_setzero_ps();
649
650         /* Load parameters for i particles */
651         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
652         isai0            = _mm_load1_ps(invsqrta+inr+0);
653         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
654
655         dvdasum          = _mm_setzero_ps();
656
657         /* Start inner kernel loop */
658         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
659         {
660
661             /* Get j neighbor index, and coordinate index */
662             jnrA             = jjnr[jidx];
663             jnrB             = jjnr[jidx+1];
664             jnrC             = jjnr[jidx+2];
665             jnrD             = jjnr[jidx+3];
666             j_coord_offsetA  = DIM*jnrA;
667             j_coord_offsetB  = DIM*jnrB;
668             j_coord_offsetC  = DIM*jnrC;
669             j_coord_offsetD  = DIM*jnrD;
670
671             /* load j atom coordinates */
672             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
673                                               x+j_coord_offsetC,x+j_coord_offsetD,
674                                               &jx0,&jy0,&jz0);
675
676             /* Calculate displacement vector */
677             dx00             = _mm_sub_ps(ix0,jx0);
678             dy00             = _mm_sub_ps(iy0,jy0);
679             dz00             = _mm_sub_ps(iz0,jz0);
680
681             /* Calculate squared distance and things based on it */
682             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
683
684             rinv00           = avx128fma_invsqrt_f(rsq00);
685
686             /* Load parameters for j particles */
687             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
688                                                               charge+jnrC+0,charge+jnrD+0);
689             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
690                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
691             vdwjidx0A        = 2*vdwtype[jnrA+0];
692             vdwjidx0B        = 2*vdwtype[jnrB+0];
693             vdwjidx0C        = 2*vdwtype[jnrC+0];
694             vdwjidx0D        = 2*vdwtype[jnrD+0];
695
696             /**************************
697              * CALCULATE INTERACTIONS *
698              **************************/
699
700             r00              = _mm_mul_ps(rsq00,rinv00);
701
702             /* Compute parameters for interactions between i and j atoms */
703             qq00             = _mm_mul_ps(iq0,jq0);
704             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
705                                          vdwparam+vdwioffset0+vdwjidx0B,
706                                          vdwparam+vdwioffset0+vdwjidx0C,
707                                          vdwparam+vdwioffset0+vdwjidx0D,
708                                          &c6_00,&c12_00);
709
710             /* Calculate table index by multiplying r with table scale and truncate to integer */
711             rt               = _mm_mul_ps(r00,vftabscale);
712             vfitab           = _mm_cvttps_epi32(rt);
713 #ifdef __XOP__
714             vfeps            = _mm_frcz_ps(rt);
715 #else
716             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
717 #endif
718             twovfeps         = _mm_add_ps(vfeps,vfeps);
719             vfitab           = _mm_slli_epi32(vfitab,3);
720
721             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
722             isaprod          = _mm_mul_ps(isai0,isaj0);
723             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
724             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
725
726             /* Calculate generalized born table index - this is a separate table from the normal one,
727              * but we use the same procedure by multiplying r with scale and truncating to integer.
728              */
729             rt               = _mm_mul_ps(r00,gbscale);
730             gbitab           = _mm_cvttps_epi32(rt);
731 #ifdef __XOP__
732             gbeps            = _mm_frcz_ps(rt);
733 #else
734             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
735 #endif
736             gbitab           = _mm_slli_epi32(gbitab,2);
737
738             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
739             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
740             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
741             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
742             _MM_TRANSPOSE4_PS(Y,F,G,H);
743             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
744             VV               = _mm_macc_ps(gbeps,Fp,Y);
745             vgb              = _mm_mul_ps(gbqqfactor,VV);
746
747             twogbeps         = _mm_add_ps(gbeps,gbeps);
748             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
749             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
750             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
751             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
752             fjptrA           = dvda+jnrA;
753             fjptrB           = dvda+jnrB;
754             fjptrC           = dvda+jnrC;
755             fjptrD           = dvda+jnrD;
756             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
757             velec            = _mm_mul_ps(qq00,rinv00);
758             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
759
760             /* CUBIC SPLINE TABLE DISPERSION */
761             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
762             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
763             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
764             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
765             _MM_TRANSPOSE4_PS(Y,F,G,H);
766             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
767             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
768             fvdw6            = _mm_mul_ps(c6_00,FF);
769
770             /* CUBIC SPLINE TABLE REPULSION */
771             vfitab           = _mm_add_epi32(vfitab,ifour);
772             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
773             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
774             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
775             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
776             _MM_TRANSPOSE4_PS(Y,F,G,H);
777             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
778             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
779             fvdw12           = _mm_mul_ps(c12_00,FF);
780             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
781
782             fscal            = _mm_add_ps(felec,fvdw);
783
784              /* Update vectorial force */
785             fix0             = _mm_macc_ps(dx00,fscal,fix0);
786             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
787             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
788
789             fjptrA             = f+j_coord_offsetA;
790             fjptrB             = f+j_coord_offsetB;
791             fjptrC             = f+j_coord_offsetC;
792             fjptrD             = f+j_coord_offsetD;
793             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
794                                                    _mm_mul_ps(dx00,fscal),
795                                                    _mm_mul_ps(dy00,fscal),
796                                                    _mm_mul_ps(dz00,fscal));
797
798             /* Inner loop uses 85 flops */
799         }
800
801         if(jidx<j_index_end)
802         {
803
804             /* Get j neighbor index, and coordinate index */
805             jnrlistA         = jjnr[jidx];
806             jnrlistB         = jjnr[jidx+1];
807             jnrlistC         = jjnr[jidx+2];
808             jnrlistD         = jjnr[jidx+3];
809             /* Sign of each element will be negative for non-real atoms.
810              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
811              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
812              */
813             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
814             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
815             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
816             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
817             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
818             j_coord_offsetA  = DIM*jnrA;
819             j_coord_offsetB  = DIM*jnrB;
820             j_coord_offsetC  = DIM*jnrC;
821             j_coord_offsetD  = DIM*jnrD;
822
823             /* load j atom coordinates */
824             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
825                                               x+j_coord_offsetC,x+j_coord_offsetD,
826                                               &jx0,&jy0,&jz0);
827
828             /* Calculate displacement vector */
829             dx00             = _mm_sub_ps(ix0,jx0);
830             dy00             = _mm_sub_ps(iy0,jy0);
831             dz00             = _mm_sub_ps(iz0,jz0);
832
833             /* Calculate squared distance and things based on it */
834             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
835
836             rinv00           = avx128fma_invsqrt_f(rsq00);
837
838             /* Load parameters for j particles */
839             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
840                                                               charge+jnrC+0,charge+jnrD+0);
841             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
842                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
843             vdwjidx0A        = 2*vdwtype[jnrA+0];
844             vdwjidx0B        = 2*vdwtype[jnrB+0];
845             vdwjidx0C        = 2*vdwtype[jnrC+0];
846             vdwjidx0D        = 2*vdwtype[jnrD+0];
847
848             /**************************
849              * CALCULATE INTERACTIONS *
850              **************************/
851
852             r00              = _mm_mul_ps(rsq00,rinv00);
853             r00              = _mm_andnot_ps(dummy_mask,r00);
854
855             /* Compute parameters for interactions between i and j atoms */
856             qq00             = _mm_mul_ps(iq0,jq0);
857             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
858                                          vdwparam+vdwioffset0+vdwjidx0B,
859                                          vdwparam+vdwioffset0+vdwjidx0C,
860                                          vdwparam+vdwioffset0+vdwjidx0D,
861                                          &c6_00,&c12_00);
862
863             /* Calculate table index by multiplying r with table scale and truncate to integer */
864             rt               = _mm_mul_ps(r00,vftabscale);
865             vfitab           = _mm_cvttps_epi32(rt);
866 #ifdef __XOP__
867             vfeps            = _mm_frcz_ps(rt);
868 #else
869             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
870 #endif
871             twovfeps         = _mm_add_ps(vfeps,vfeps);
872             vfitab           = _mm_slli_epi32(vfitab,3);
873
874             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
875             isaprod          = _mm_mul_ps(isai0,isaj0);
876             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
877             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
878
879             /* Calculate generalized born table index - this is a separate table from the normal one,
880              * but we use the same procedure by multiplying r with scale and truncating to integer.
881              */
882             rt               = _mm_mul_ps(r00,gbscale);
883             gbitab           = _mm_cvttps_epi32(rt);
884 #ifdef __XOP__
885             gbeps            = _mm_frcz_ps(rt);
886 #else
887             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
888 #endif
889             gbitab           = _mm_slli_epi32(gbitab,2);
890
891             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
892             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
893             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
894             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
895             _MM_TRANSPOSE4_PS(Y,F,G,H);
896             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
897             VV               = _mm_macc_ps(gbeps,Fp,Y);
898             vgb              = _mm_mul_ps(gbqqfactor,VV);
899
900             twogbeps         = _mm_add_ps(gbeps,gbeps);
901             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
902             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
903             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
904             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
905             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
906             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
907             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
908             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
909             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
910             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
911             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
912             velec            = _mm_mul_ps(qq00,rinv00);
913             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
914
915             /* CUBIC SPLINE TABLE DISPERSION */
916             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
917             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
918             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
919             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
920             _MM_TRANSPOSE4_PS(Y,F,G,H);
921             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
922             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
923             fvdw6            = _mm_mul_ps(c6_00,FF);
924
925             /* CUBIC SPLINE TABLE REPULSION */
926             vfitab           = _mm_add_epi32(vfitab,ifour);
927             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
928             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
929             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
930             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
931             _MM_TRANSPOSE4_PS(Y,F,G,H);
932             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
933             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
934             fvdw12           = _mm_mul_ps(c12_00,FF);
935             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
936
937             fscal            = _mm_add_ps(felec,fvdw);
938
939             fscal            = _mm_andnot_ps(dummy_mask,fscal);
940
941              /* Update vectorial force */
942             fix0             = _mm_macc_ps(dx00,fscal,fix0);
943             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
944             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
945
946             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
947             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
948             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
949             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
950             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
951                                                    _mm_mul_ps(dx00,fscal),
952                                                    _mm_mul_ps(dy00,fscal),
953                                                    _mm_mul_ps(dz00,fscal));
954
955             /* Inner loop uses 86 flops */
956         }
957
958         /* End of innermost loop */
959
960         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
961                                               f+i_coord_offset,fshift+i_shift_offset);
962
963         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
964         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
965
966         /* Increment number of inner iterations */
967         inneriter                  += j_index_end - j_index_start;
968
969         /* Outer loop uses 7 flops */
970     }
971
972     /* Increment number of outer iterations */
973     outeriter        += nri;
974
975     /* Update outer/inner flops */
976
977     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*86);
978 }