Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwNone_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     __m128i          ewitab;
99     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
101     real             *ewtab;
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119
120     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
121     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
122     beta2            = _mm_mul_ps(beta,beta);
123     beta3            = _mm_mul_ps(beta,beta2);
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
126     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
131     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
132     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
165                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
166
167         fix1             = _mm_setzero_ps();
168         fiy1             = _mm_setzero_ps();
169         fiz1             = _mm_setzero_ps();
170         fix2             = _mm_setzero_ps();
171         fiy2             = _mm_setzero_ps();
172         fiz2             = _mm_setzero_ps();
173         fix3             = _mm_setzero_ps();
174         fiy3             = _mm_setzero_ps();
175         fiz3             = _mm_setzero_ps();
176
177         /* Reset potential sums */
178         velecsum         = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               x+j_coord_offsetC,x+j_coord_offsetD,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx10             = _mm_sub_ps(ix1,jx0);
201             dy10             = _mm_sub_ps(iy1,jy0);
202             dz10             = _mm_sub_ps(iz1,jz0);
203             dx20             = _mm_sub_ps(ix2,jx0);
204             dy20             = _mm_sub_ps(iy2,jy0);
205             dz20             = _mm_sub_ps(iz2,jz0);
206             dx30             = _mm_sub_ps(ix3,jx0);
207             dy30             = _mm_sub_ps(iy3,jy0);
208             dz30             = _mm_sub_ps(iz3,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
213             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
214
215             rinv10           = gmx_mm_invsqrt_ps(rsq10);
216             rinv20           = gmx_mm_invsqrt_ps(rsq20);
217             rinv30           = gmx_mm_invsqrt_ps(rsq30);
218
219             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
220             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
221             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
225                                                               charge+jnrC+0,charge+jnrD+0);
226
227             fjx0             = _mm_setzero_ps();
228             fjy0             = _mm_setzero_ps();
229             fjz0             = _mm_setzero_ps();
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             r10              = _mm_mul_ps(rsq10,rinv10);
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq10             = _mm_mul_ps(iq1,jq0);
239
240             /* EWALD ELECTROSTATICS */
241
242             /* Analytical PME correction */
243             zeta2            = _mm_mul_ps(beta2,rsq10);
244             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
245             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
246             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
247             felec            = _mm_mul_ps(qq10,felec);
248             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
249             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
250             velec            = _mm_mul_ps(qq10,velec);
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             velecsum         = _mm_add_ps(velecsum,velec);
254
255             fscal            = felec;
256
257              /* Update vectorial force */
258             fix1             = _mm_macc_ps(dx10,fscal,fix1);
259             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
260             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
261
262             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
263             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
264             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             r20              = _mm_mul_ps(rsq20,rinv20);
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq20             = _mm_mul_ps(iq2,jq0);
274
275             /* EWALD ELECTROSTATICS */
276
277             /* Analytical PME correction */
278             zeta2            = _mm_mul_ps(beta2,rsq20);
279             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
280             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
281             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
282             felec            = _mm_mul_ps(qq20,felec);
283             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
284             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
285             velec            = _mm_mul_ps(qq20,velec);
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             velecsum         = _mm_add_ps(velecsum,velec);
289
290             fscal            = felec;
291
292              /* Update vectorial force */
293             fix2             = _mm_macc_ps(dx20,fscal,fix2);
294             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
295             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
296
297             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
298             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
299             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             r30              = _mm_mul_ps(rsq30,rinv30);
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq30             = _mm_mul_ps(iq3,jq0);
309
310             /* EWALD ELECTROSTATICS */
311
312             /* Analytical PME correction */
313             zeta2            = _mm_mul_ps(beta2,rsq30);
314             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
315             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
316             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
317             felec            = _mm_mul_ps(qq30,felec);
318             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
319             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
320             velec            = _mm_mul_ps(qq30,velec);
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             velecsum         = _mm_add_ps(velecsum,velec);
324
325             fscal            = felec;
326
327              /* Update vectorial force */
328             fix3             = _mm_macc_ps(dx30,fscal,fix3);
329             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
330             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
331
332             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
333             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
334             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
335
336             fjptrA             = f+j_coord_offsetA;
337             fjptrB             = f+j_coord_offsetB;
338             fjptrC             = f+j_coord_offsetC;
339             fjptrD             = f+j_coord_offsetD;
340
341             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
342
343             /* Inner loop uses 87 flops */
344         }
345
346         if(jidx<j_index_end)
347         {
348
349             /* Get j neighbor index, and coordinate index */
350             jnrlistA         = jjnr[jidx];
351             jnrlistB         = jjnr[jidx+1];
352             jnrlistC         = jjnr[jidx+2];
353             jnrlistD         = jjnr[jidx+3];
354             /* Sign of each element will be negative for non-real atoms.
355              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
356              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
357              */
358             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
359             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
360             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
361             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
362             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
363             j_coord_offsetA  = DIM*jnrA;
364             j_coord_offsetB  = DIM*jnrB;
365             j_coord_offsetC  = DIM*jnrC;
366             j_coord_offsetD  = DIM*jnrD;
367
368             /* load j atom coordinates */
369             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
370                                               x+j_coord_offsetC,x+j_coord_offsetD,
371                                               &jx0,&jy0,&jz0);
372
373             /* Calculate displacement vector */
374             dx10             = _mm_sub_ps(ix1,jx0);
375             dy10             = _mm_sub_ps(iy1,jy0);
376             dz10             = _mm_sub_ps(iz1,jz0);
377             dx20             = _mm_sub_ps(ix2,jx0);
378             dy20             = _mm_sub_ps(iy2,jy0);
379             dz20             = _mm_sub_ps(iz2,jz0);
380             dx30             = _mm_sub_ps(ix3,jx0);
381             dy30             = _mm_sub_ps(iy3,jy0);
382             dz30             = _mm_sub_ps(iz3,jz0);
383
384             /* Calculate squared distance and things based on it */
385             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
386             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
387             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
388
389             rinv10           = gmx_mm_invsqrt_ps(rsq10);
390             rinv20           = gmx_mm_invsqrt_ps(rsq20);
391             rinv30           = gmx_mm_invsqrt_ps(rsq30);
392
393             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
394             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
395             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
396
397             /* Load parameters for j particles */
398             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
399                                                               charge+jnrC+0,charge+jnrD+0);
400
401             fjx0             = _mm_setzero_ps();
402             fjy0             = _mm_setzero_ps();
403             fjz0             = _mm_setzero_ps();
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             r10              = _mm_mul_ps(rsq10,rinv10);
410             r10              = _mm_andnot_ps(dummy_mask,r10);
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq10             = _mm_mul_ps(iq1,jq0);
414
415             /* EWALD ELECTROSTATICS */
416
417             /* Analytical PME correction */
418             zeta2            = _mm_mul_ps(beta2,rsq10);
419             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
420             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
421             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
422             felec            = _mm_mul_ps(qq10,felec);
423             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
424             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
425             velec            = _mm_mul_ps(qq10,velec);
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velec            = _mm_andnot_ps(dummy_mask,velec);
429             velecsum         = _mm_add_ps(velecsum,velec);
430
431             fscal            = felec;
432
433             fscal            = _mm_andnot_ps(dummy_mask,fscal);
434
435              /* Update vectorial force */
436             fix1             = _mm_macc_ps(dx10,fscal,fix1);
437             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
438             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
439
440             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
441             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
442             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             r20              = _mm_mul_ps(rsq20,rinv20);
449             r20              = _mm_andnot_ps(dummy_mask,r20);
450
451             /* Compute parameters for interactions between i and j atoms */
452             qq20             = _mm_mul_ps(iq2,jq0);
453
454             /* EWALD ELECTROSTATICS */
455
456             /* Analytical PME correction */
457             zeta2            = _mm_mul_ps(beta2,rsq20);
458             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
459             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
460             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
461             felec            = _mm_mul_ps(qq20,felec);
462             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
463             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
464             velec            = _mm_mul_ps(qq20,velec);
465
466             /* Update potential sum for this i atom from the interaction with this j atom. */
467             velec            = _mm_andnot_ps(dummy_mask,velec);
468             velecsum         = _mm_add_ps(velecsum,velec);
469
470             fscal            = felec;
471
472             fscal            = _mm_andnot_ps(dummy_mask,fscal);
473
474              /* Update vectorial force */
475             fix2             = _mm_macc_ps(dx20,fscal,fix2);
476             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
477             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
478
479             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
480             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
481             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
482
483             /**************************
484              * CALCULATE INTERACTIONS *
485              **************************/
486
487             r30              = _mm_mul_ps(rsq30,rinv30);
488             r30              = _mm_andnot_ps(dummy_mask,r30);
489
490             /* Compute parameters for interactions between i and j atoms */
491             qq30             = _mm_mul_ps(iq3,jq0);
492
493             /* EWALD ELECTROSTATICS */
494
495             /* Analytical PME correction */
496             zeta2            = _mm_mul_ps(beta2,rsq30);
497             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
498             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
499             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
500             felec            = _mm_mul_ps(qq30,felec);
501             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
502             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
503             velec            = _mm_mul_ps(qq30,velec);
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             velec            = _mm_andnot_ps(dummy_mask,velec);
507             velecsum         = _mm_add_ps(velecsum,velec);
508
509             fscal            = felec;
510
511             fscal            = _mm_andnot_ps(dummy_mask,fscal);
512
513              /* Update vectorial force */
514             fix3             = _mm_macc_ps(dx30,fscal,fix3);
515             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
516             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
517
518             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
519             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
520             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
521
522             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
523             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
524             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
525             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
526
527             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
528
529             /* Inner loop uses 90 flops */
530         }
531
532         /* End of innermost loop */
533
534         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
535                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
536
537         ggid                        = gid[iidx];
538         /* Update potential energies */
539         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
540
541         /* Increment number of inner iterations */
542         inneriter                  += j_index_end - j_index_start;
543
544         /* Outer loop uses 19 flops */
545     }
546
547     /* Increment number of outer iterations */
548     outeriter        += nri;
549
550     /* Update outer/inner flops */
551
552     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*90);
553 }
554 /*
555  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_128_fma_single
556  * Electrostatics interaction: Ewald
557  * VdW interaction:            None
558  * Geometry:                   Water4-Particle
559  * Calculate force/pot:        Force
560  */
561 void
562 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_128_fma_single
563                     (t_nblist                    * gmx_restrict       nlist,
564                      rvec                        * gmx_restrict          xx,
565                      rvec                        * gmx_restrict          ff,
566                      t_forcerec                  * gmx_restrict          fr,
567                      t_mdatoms                   * gmx_restrict     mdatoms,
568                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
569                      t_nrnb                      * gmx_restrict        nrnb)
570 {
571     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
572      * just 0 for non-waters.
573      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
574      * jnr indices corresponding to data put in the four positions in the SIMD register.
575      */
576     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
577     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
578     int              jnrA,jnrB,jnrC,jnrD;
579     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
580     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
581     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
582     real             rcutoff_scalar;
583     real             *shiftvec,*fshift,*x,*f;
584     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
585     real             scratch[4*DIM];
586     __m128           fscal,rcutoff,rcutoff2,jidxall;
587     int              vdwioffset1;
588     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
589     int              vdwioffset2;
590     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
591     int              vdwioffset3;
592     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
593     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
594     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
595     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
596     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
597     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
598     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
599     real             *charge;
600     __m128i          ewitab;
601     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
602     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
603     real             *ewtab;
604     __m128           dummy_mask,cutoff_mask;
605     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
606     __m128           one     = _mm_set1_ps(1.0);
607     __m128           two     = _mm_set1_ps(2.0);
608     x                = xx[0];
609     f                = ff[0];
610
611     nri              = nlist->nri;
612     iinr             = nlist->iinr;
613     jindex           = nlist->jindex;
614     jjnr             = nlist->jjnr;
615     shiftidx         = nlist->shift;
616     gid              = nlist->gid;
617     shiftvec         = fr->shift_vec[0];
618     fshift           = fr->fshift[0];
619     facel            = _mm_set1_ps(fr->epsfac);
620     charge           = mdatoms->chargeA;
621
622     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
623     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
624     beta2            = _mm_mul_ps(beta,beta);
625     beta3            = _mm_mul_ps(beta,beta2);
626     ewtab            = fr->ic->tabq_coul_F;
627     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
628     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
629
630     /* Setup water-specific parameters */
631     inr              = nlist->iinr[0];
632     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
633     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
634     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
635
636     /* Avoid stupid compiler warnings */
637     jnrA = jnrB = jnrC = jnrD = 0;
638     j_coord_offsetA = 0;
639     j_coord_offsetB = 0;
640     j_coord_offsetC = 0;
641     j_coord_offsetD = 0;
642
643     outeriter        = 0;
644     inneriter        = 0;
645
646     for(iidx=0;iidx<4*DIM;iidx++)
647     {
648         scratch[iidx] = 0.0;
649     }
650
651     /* Start outer loop over neighborlists */
652     for(iidx=0; iidx<nri; iidx++)
653     {
654         /* Load shift vector for this list */
655         i_shift_offset   = DIM*shiftidx[iidx];
656
657         /* Load limits for loop over neighbors */
658         j_index_start    = jindex[iidx];
659         j_index_end      = jindex[iidx+1];
660
661         /* Get outer coordinate index */
662         inr              = iinr[iidx];
663         i_coord_offset   = DIM*inr;
664
665         /* Load i particle coords and add shift vector */
666         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
667                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
668
669         fix1             = _mm_setzero_ps();
670         fiy1             = _mm_setzero_ps();
671         fiz1             = _mm_setzero_ps();
672         fix2             = _mm_setzero_ps();
673         fiy2             = _mm_setzero_ps();
674         fiz2             = _mm_setzero_ps();
675         fix3             = _mm_setzero_ps();
676         fiy3             = _mm_setzero_ps();
677         fiz3             = _mm_setzero_ps();
678
679         /* Start inner kernel loop */
680         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
681         {
682
683             /* Get j neighbor index, and coordinate index */
684             jnrA             = jjnr[jidx];
685             jnrB             = jjnr[jidx+1];
686             jnrC             = jjnr[jidx+2];
687             jnrD             = jjnr[jidx+3];
688             j_coord_offsetA  = DIM*jnrA;
689             j_coord_offsetB  = DIM*jnrB;
690             j_coord_offsetC  = DIM*jnrC;
691             j_coord_offsetD  = DIM*jnrD;
692
693             /* load j atom coordinates */
694             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
695                                               x+j_coord_offsetC,x+j_coord_offsetD,
696                                               &jx0,&jy0,&jz0);
697
698             /* Calculate displacement vector */
699             dx10             = _mm_sub_ps(ix1,jx0);
700             dy10             = _mm_sub_ps(iy1,jy0);
701             dz10             = _mm_sub_ps(iz1,jz0);
702             dx20             = _mm_sub_ps(ix2,jx0);
703             dy20             = _mm_sub_ps(iy2,jy0);
704             dz20             = _mm_sub_ps(iz2,jz0);
705             dx30             = _mm_sub_ps(ix3,jx0);
706             dy30             = _mm_sub_ps(iy3,jy0);
707             dz30             = _mm_sub_ps(iz3,jz0);
708
709             /* Calculate squared distance and things based on it */
710             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
711             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
712             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
713
714             rinv10           = gmx_mm_invsqrt_ps(rsq10);
715             rinv20           = gmx_mm_invsqrt_ps(rsq20);
716             rinv30           = gmx_mm_invsqrt_ps(rsq30);
717
718             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
719             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
720             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
721
722             /* Load parameters for j particles */
723             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
724                                                               charge+jnrC+0,charge+jnrD+0);
725
726             fjx0             = _mm_setzero_ps();
727             fjy0             = _mm_setzero_ps();
728             fjz0             = _mm_setzero_ps();
729
730             /**************************
731              * CALCULATE INTERACTIONS *
732              **************************/
733
734             r10              = _mm_mul_ps(rsq10,rinv10);
735
736             /* Compute parameters for interactions between i and j atoms */
737             qq10             = _mm_mul_ps(iq1,jq0);
738
739             /* EWALD ELECTROSTATICS */
740
741             /* Analytical PME correction */
742             zeta2            = _mm_mul_ps(beta2,rsq10);
743             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
744             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
745             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
746             felec            = _mm_mul_ps(qq10,felec);
747
748             fscal            = felec;
749
750              /* Update vectorial force */
751             fix1             = _mm_macc_ps(dx10,fscal,fix1);
752             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
753             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
754
755             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
756             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
757             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
758
759             /**************************
760              * CALCULATE INTERACTIONS *
761              **************************/
762
763             r20              = _mm_mul_ps(rsq20,rinv20);
764
765             /* Compute parameters for interactions between i and j atoms */
766             qq20             = _mm_mul_ps(iq2,jq0);
767
768             /* EWALD ELECTROSTATICS */
769
770             /* Analytical PME correction */
771             zeta2            = _mm_mul_ps(beta2,rsq20);
772             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
773             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
774             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
775             felec            = _mm_mul_ps(qq20,felec);
776
777             fscal            = felec;
778
779              /* Update vectorial force */
780             fix2             = _mm_macc_ps(dx20,fscal,fix2);
781             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
782             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
783
784             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
785             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
786             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
787
788             /**************************
789              * CALCULATE INTERACTIONS *
790              **************************/
791
792             r30              = _mm_mul_ps(rsq30,rinv30);
793
794             /* Compute parameters for interactions between i and j atoms */
795             qq30             = _mm_mul_ps(iq3,jq0);
796
797             /* EWALD ELECTROSTATICS */
798
799             /* Analytical PME correction */
800             zeta2            = _mm_mul_ps(beta2,rsq30);
801             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
802             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
803             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
804             felec            = _mm_mul_ps(qq30,felec);
805
806             fscal            = felec;
807
808              /* Update vectorial force */
809             fix3             = _mm_macc_ps(dx30,fscal,fix3);
810             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
811             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
812
813             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
814             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
815             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
816
817             fjptrA             = f+j_coord_offsetA;
818             fjptrB             = f+j_coord_offsetB;
819             fjptrC             = f+j_coord_offsetC;
820             fjptrD             = f+j_coord_offsetD;
821
822             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
823
824             /* Inner loop uses 84 flops */
825         }
826
827         if(jidx<j_index_end)
828         {
829
830             /* Get j neighbor index, and coordinate index */
831             jnrlistA         = jjnr[jidx];
832             jnrlistB         = jjnr[jidx+1];
833             jnrlistC         = jjnr[jidx+2];
834             jnrlistD         = jjnr[jidx+3];
835             /* Sign of each element will be negative for non-real atoms.
836              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
837              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
838              */
839             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
840             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
841             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
842             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
843             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
844             j_coord_offsetA  = DIM*jnrA;
845             j_coord_offsetB  = DIM*jnrB;
846             j_coord_offsetC  = DIM*jnrC;
847             j_coord_offsetD  = DIM*jnrD;
848
849             /* load j atom coordinates */
850             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
851                                               x+j_coord_offsetC,x+j_coord_offsetD,
852                                               &jx0,&jy0,&jz0);
853
854             /* Calculate displacement vector */
855             dx10             = _mm_sub_ps(ix1,jx0);
856             dy10             = _mm_sub_ps(iy1,jy0);
857             dz10             = _mm_sub_ps(iz1,jz0);
858             dx20             = _mm_sub_ps(ix2,jx0);
859             dy20             = _mm_sub_ps(iy2,jy0);
860             dz20             = _mm_sub_ps(iz2,jz0);
861             dx30             = _mm_sub_ps(ix3,jx0);
862             dy30             = _mm_sub_ps(iy3,jy0);
863             dz30             = _mm_sub_ps(iz3,jz0);
864
865             /* Calculate squared distance and things based on it */
866             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
867             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
868             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
869
870             rinv10           = gmx_mm_invsqrt_ps(rsq10);
871             rinv20           = gmx_mm_invsqrt_ps(rsq20);
872             rinv30           = gmx_mm_invsqrt_ps(rsq30);
873
874             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
875             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
876             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
877
878             /* Load parameters for j particles */
879             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
880                                                               charge+jnrC+0,charge+jnrD+0);
881
882             fjx0             = _mm_setzero_ps();
883             fjy0             = _mm_setzero_ps();
884             fjz0             = _mm_setzero_ps();
885
886             /**************************
887              * CALCULATE INTERACTIONS *
888              **************************/
889
890             r10              = _mm_mul_ps(rsq10,rinv10);
891             r10              = _mm_andnot_ps(dummy_mask,r10);
892
893             /* Compute parameters for interactions between i and j atoms */
894             qq10             = _mm_mul_ps(iq1,jq0);
895
896             /* EWALD ELECTROSTATICS */
897
898             /* Analytical PME correction */
899             zeta2            = _mm_mul_ps(beta2,rsq10);
900             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
901             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
902             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
903             felec            = _mm_mul_ps(qq10,felec);
904
905             fscal            = felec;
906
907             fscal            = _mm_andnot_ps(dummy_mask,fscal);
908
909              /* Update vectorial force */
910             fix1             = _mm_macc_ps(dx10,fscal,fix1);
911             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
912             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
913
914             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
915             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
916             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
917
918             /**************************
919              * CALCULATE INTERACTIONS *
920              **************************/
921
922             r20              = _mm_mul_ps(rsq20,rinv20);
923             r20              = _mm_andnot_ps(dummy_mask,r20);
924
925             /* Compute parameters for interactions between i and j atoms */
926             qq20             = _mm_mul_ps(iq2,jq0);
927
928             /* EWALD ELECTROSTATICS */
929
930             /* Analytical PME correction */
931             zeta2            = _mm_mul_ps(beta2,rsq20);
932             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
933             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
934             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
935             felec            = _mm_mul_ps(qq20,felec);
936
937             fscal            = felec;
938
939             fscal            = _mm_andnot_ps(dummy_mask,fscal);
940
941              /* Update vectorial force */
942             fix2             = _mm_macc_ps(dx20,fscal,fix2);
943             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
944             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
945
946             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
947             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
948             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             r30              = _mm_mul_ps(rsq30,rinv30);
955             r30              = _mm_andnot_ps(dummy_mask,r30);
956
957             /* Compute parameters for interactions between i and j atoms */
958             qq30             = _mm_mul_ps(iq3,jq0);
959
960             /* EWALD ELECTROSTATICS */
961
962             /* Analytical PME correction */
963             zeta2            = _mm_mul_ps(beta2,rsq30);
964             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
965             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
966             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
967             felec            = _mm_mul_ps(qq30,felec);
968
969             fscal            = felec;
970
971             fscal            = _mm_andnot_ps(dummy_mask,fscal);
972
973              /* Update vectorial force */
974             fix3             = _mm_macc_ps(dx30,fscal,fix3);
975             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
976             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
977
978             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
979             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
980             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
981
982             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
983             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
984             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
985             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
986
987             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
988
989             /* Inner loop uses 87 flops */
990         }
991
992         /* End of innermost loop */
993
994         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
995                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
996
997         /* Increment number of inner iterations */
998         inneriter                  += j_index_end - j_index_start;
999
1000         /* Outer loop uses 18 flops */
1001     }
1002
1003     /* Increment number of outer iterations */
1004     outeriter        += nri;
1005
1006     /* Update outer/inner flops */
1007
1008     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*87);
1009 }