0253bd3e6a1534679bd8183697195aa17cb9a372
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwNone_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset1;
84     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwioffset3;
88     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     __m128i          ewitab;
97     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
99     real             *ewtab;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117
118     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
119     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
120     beta2            = _mm_mul_ps(beta,beta);
121     beta3            = _mm_mul_ps(beta,beta2);
122     ewtab            = fr->ic->tabq_coul_FDV0;
123     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
124     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
129     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
130     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
163                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
164
165         fix1             = _mm_setzero_ps();
166         fiy1             = _mm_setzero_ps();
167         fiz1             = _mm_setzero_ps();
168         fix2             = _mm_setzero_ps();
169         fiy2             = _mm_setzero_ps();
170         fiz2             = _mm_setzero_ps();
171         fix3             = _mm_setzero_ps();
172         fiy3             = _mm_setzero_ps();
173         fiz3             = _mm_setzero_ps();
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               x+j_coord_offsetC,x+j_coord_offsetD,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx10             = _mm_sub_ps(ix1,jx0);
199             dy10             = _mm_sub_ps(iy1,jy0);
200             dz10             = _mm_sub_ps(iz1,jz0);
201             dx20             = _mm_sub_ps(ix2,jx0);
202             dy20             = _mm_sub_ps(iy2,jy0);
203             dz20             = _mm_sub_ps(iz2,jz0);
204             dx30             = _mm_sub_ps(ix3,jx0);
205             dy30             = _mm_sub_ps(iy3,jy0);
206             dz30             = _mm_sub_ps(iz3,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
210             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
211             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
212
213             rinv10           = gmx_mm_invsqrt_ps(rsq10);
214             rinv20           = gmx_mm_invsqrt_ps(rsq20);
215             rinv30           = gmx_mm_invsqrt_ps(rsq30);
216
217             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
218             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
219             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
223                                                               charge+jnrC+0,charge+jnrD+0);
224
225             fjx0             = _mm_setzero_ps();
226             fjy0             = _mm_setzero_ps();
227             fjz0             = _mm_setzero_ps();
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             r10              = _mm_mul_ps(rsq10,rinv10);
234
235             /* Compute parameters for interactions between i and j atoms */
236             qq10             = _mm_mul_ps(iq1,jq0);
237
238             /* EWALD ELECTROSTATICS */
239
240             /* Analytical PME correction */
241             zeta2            = _mm_mul_ps(beta2,rsq10);
242             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
243             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
244             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
245             felec            = _mm_mul_ps(qq10,felec);
246             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
247             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
248             velec            = _mm_mul_ps(qq10,velec);
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velecsum         = _mm_add_ps(velecsum,velec);
252
253             fscal            = felec;
254
255              /* Update vectorial force */
256             fix1             = _mm_macc_ps(dx10,fscal,fix1);
257             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
258             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
259
260             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
261             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
262             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
263
264             /**************************
265              * CALCULATE INTERACTIONS *
266              **************************/
267
268             r20              = _mm_mul_ps(rsq20,rinv20);
269
270             /* Compute parameters for interactions between i and j atoms */
271             qq20             = _mm_mul_ps(iq2,jq0);
272
273             /* EWALD ELECTROSTATICS */
274
275             /* Analytical PME correction */
276             zeta2            = _mm_mul_ps(beta2,rsq20);
277             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
278             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
279             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
280             felec            = _mm_mul_ps(qq20,felec);
281             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
282             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
283             velec            = _mm_mul_ps(qq20,velec);
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             velecsum         = _mm_add_ps(velecsum,velec);
287
288             fscal            = felec;
289
290              /* Update vectorial force */
291             fix2             = _mm_macc_ps(dx20,fscal,fix2);
292             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
293             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
294
295             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
296             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
297             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             r30              = _mm_mul_ps(rsq30,rinv30);
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq30             = _mm_mul_ps(iq3,jq0);
307
308             /* EWALD ELECTROSTATICS */
309
310             /* Analytical PME correction */
311             zeta2            = _mm_mul_ps(beta2,rsq30);
312             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
313             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
314             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
315             felec            = _mm_mul_ps(qq30,felec);
316             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
317             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
318             velec            = _mm_mul_ps(qq30,velec);
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velecsum         = _mm_add_ps(velecsum,velec);
322
323             fscal            = felec;
324
325              /* Update vectorial force */
326             fix3             = _mm_macc_ps(dx30,fscal,fix3);
327             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
328             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
329
330             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
331             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
332             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
333
334             fjptrA             = f+j_coord_offsetA;
335             fjptrB             = f+j_coord_offsetB;
336             fjptrC             = f+j_coord_offsetC;
337             fjptrD             = f+j_coord_offsetD;
338
339             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
340
341             /* Inner loop uses 87 flops */
342         }
343
344         if(jidx<j_index_end)
345         {
346
347             /* Get j neighbor index, and coordinate index */
348             jnrlistA         = jjnr[jidx];
349             jnrlistB         = jjnr[jidx+1];
350             jnrlistC         = jjnr[jidx+2];
351             jnrlistD         = jjnr[jidx+3];
352             /* Sign of each element will be negative for non-real atoms.
353              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
354              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
355              */
356             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
357             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
358             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
359             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
360             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
361             j_coord_offsetA  = DIM*jnrA;
362             j_coord_offsetB  = DIM*jnrB;
363             j_coord_offsetC  = DIM*jnrC;
364             j_coord_offsetD  = DIM*jnrD;
365
366             /* load j atom coordinates */
367             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
368                                               x+j_coord_offsetC,x+j_coord_offsetD,
369                                               &jx0,&jy0,&jz0);
370
371             /* Calculate displacement vector */
372             dx10             = _mm_sub_ps(ix1,jx0);
373             dy10             = _mm_sub_ps(iy1,jy0);
374             dz10             = _mm_sub_ps(iz1,jz0);
375             dx20             = _mm_sub_ps(ix2,jx0);
376             dy20             = _mm_sub_ps(iy2,jy0);
377             dz20             = _mm_sub_ps(iz2,jz0);
378             dx30             = _mm_sub_ps(ix3,jx0);
379             dy30             = _mm_sub_ps(iy3,jy0);
380             dz30             = _mm_sub_ps(iz3,jz0);
381
382             /* Calculate squared distance and things based on it */
383             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
384             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
385             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
386
387             rinv10           = gmx_mm_invsqrt_ps(rsq10);
388             rinv20           = gmx_mm_invsqrt_ps(rsq20);
389             rinv30           = gmx_mm_invsqrt_ps(rsq30);
390
391             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
392             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
393             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
394
395             /* Load parameters for j particles */
396             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
397                                                               charge+jnrC+0,charge+jnrD+0);
398
399             fjx0             = _mm_setzero_ps();
400             fjy0             = _mm_setzero_ps();
401             fjz0             = _mm_setzero_ps();
402
403             /**************************
404              * CALCULATE INTERACTIONS *
405              **************************/
406
407             r10              = _mm_mul_ps(rsq10,rinv10);
408             r10              = _mm_andnot_ps(dummy_mask,r10);
409
410             /* Compute parameters for interactions between i and j atoms */
411             qq10             = _mm_mul_ps(iq1,jq0);
412
413             /* EWALD ELECTROSTATICS */
414
415             /* Analytical PME correction */
416             zeta2            = _mm_mul_ps(beta2,rsq10);
417             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
418             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
419             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
420             felec            = _mm_mul_ps(qq10,felec);
421             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
422             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
423             velec            = _mm_mul_ps(qq10,velec);
424
425             /* Update potential sum for this i atom from the interaction with this j atom. */
426             velec            = _mm_andnot_ps(dummy_mask,velec);
427             velecsum         = _mm_add_ps(velecsum,velec);
428
429             fscal            = felec;
430
431             fscal            = _mm_andnot_ps(dummy_mask,fscal);
432
433              /* Update vectorial force */
434             fix1             = _mm_macc_ps(dx10,fscal,fix1);
435             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
436             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
437
438             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
439             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
440             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             r20              = _mm_mul_ps(rsq20,rinv20);
447             r20              = _mm_andnot_ps(dummy_mask,r20);
448
449             /* Compute parameters for interactions between i and j atoms */
450             qq20             = _mm_mul_ps(iq2,jq0);
451
452             /* EWALD ELECTROSTATICS */
453
454             /* Analytical PME correction */
455             zeta2            = _mm_mul_ps(beta2,rsq20);
456             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
457             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
458             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
459             felec            = _mm_mul_ps(qq20,felec);
460             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
461             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
462             velec            = _mm_mul_ps(qq20,velec);
463
464             /* Update potential sum for this i atom from the interaction with this j atom. */
465             velec            = _mm_andnot_ps(dummy_mask,velec);
466             velecsum         = _mm_add_ps(velecsum,velec);
467
468             fscal            = felec;
469
470             fscal            = _mm_andnot_ps(dummy_mask,fscal);
471
472              /* Update vectorial force */
473             fix2             = _mm_macc_ps(dx20,fscal,fix2);
474             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
475             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
476
477             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
478             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
479             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             r30              = _mm_mul_ps(rsq30,rinv30);
486             r30              = _mm_andnot_ps(dummy_mask,r30);
487
488             /* Compute parameters for interactions between i and j atoms */
489             qq30             = _mm_mul_ps(iq3,jq0);
490
491             /* EWALD ELECTROSTATICS */
492
493             /* Analytical PME correction */
494             zeta2            = _mm_mul_ps(beta2,rsq30);
495             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
496             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
497             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
498             felec            = _mm_mul_ps(qq30,felec);
499             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
500             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
501             velec            = _mm_mul_ps(qq30,velec);
502
503             /* Update potential sum for this i atom from the interaction with this j atom. */
504             velec            = _mm_andnot_ps(dummy_mask,velec);
505             velecsum         = _mm_add_ps(velecsum,velec);
506
507             fscal            = felec;
508
509             fscal            = _mm_andnot_ps(dummy_mask,fscal);
510
511              /* Update vectorial force */
512             fix3             = _mm_macc_ps(dx30,fscal,fix3);
513             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
514             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
515
516             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
517             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
518             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
519
520             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
521             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
522             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
523             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
524
525             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
526
527             /* Inner loop uses 90 flops */
528         }
529
530         /* End of innermost loop */
531
532         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
533                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
534
535         ggid                        = gid[iidx];
536         /* Update potential energies */
537         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
538
539         /* Increment number of inner iterations */
540         inneriter                  += j_index_end - j_index_start;
541
542         /* Outer loop uses 19 flops */
543     }
544
545     /* Increment number of outer iterations */
546     outeriter        += nri;
547
548     /* Update outer/inner flops */
549
550     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*90);
551 }
552 /*
553  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_128_fma_single
554  * Electrostatics interaction: Ewald
555  * VdW interaction:            None
556  * Geometry:                   Water4-Particle
557  * Calculate force/pot:        Force
558  */
559 void
560 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_128_fma_single
561                     (t_nblist                    * gmx_restrict       nlist,
562                      rvec                        * gmx_restrict          xx,
563                      rvec                        * gmx_restrict          ff,
564                      t_forcerec                  * gmx_restrict          fr,
565                      t_mdatoms                   * gmx_restrict     mdatoms,
566                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
567                      t_nrnb                      * gmx_restrict        nrnb)
568 {
569     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
570      * just 0 for non-waters.
571      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
572      * jnr indices corresponding to data put in the four positions in the SIMD register.
573      */
574     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
575     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
576     int              jnrA,jnrB,jnrC,jnrD;
577     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
578     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
579     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
580     real             rcutoff_scalar;
581     real             *shiftvec,*fshift,*x,*f;
582     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
583     real             scratch[4*DIM];
584     __m128           fscal,rcutoff,rcutoff2,jidxall;
585     int              vdwioffset1;
586     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
587     int              vdwioffset2;
588     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
589     int              vdwioffset3;
590     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
591     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
592     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
593     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
594     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
595     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
596     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
597     real             *charge;
598     __m128i          ewitab;
599     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
600     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
601     real             *ewtab;
602     __m128           dummy_mask,cutoff_mask;
603     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
604     __m128           one     = _mm_set1_ps(1.0);
605     __m128           two     = _mm_set1_ps(2.0);
606     x                = xx[0];
607     f                = ff[0];
608
609     nri              = nlist->nri;
610     iinr             = nlist->iinr;
611     jindex           = nlist->jindex;
612     jjnr             = nlist->jjnr;
613     shiftidx         = nlist->shift;
614     gid              = nlist->gid;
615     shiftvec         = fr->shift_vec[0];
616     fshift           = fr->fshift[0];
617     facel            = _mm_set1_ps(fr->epsfac);
618     charge           = mdatoms->chargeA;
619
620     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
621     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
622     beta2            = _mm_mul_ps(beta,beta);
623     beta3            = _mm_mul_ps(beta,beta2);
624     ewtab            = fr->ic->tabq_coul_F;
625     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
626     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
627
628     /* Setup water-specific parameters */
629     inr              = nlist->iinr[0];
630     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
631     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
632     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
633
634     /* Avoid stupid compiler warnings */
635     jnrA = jnrB = jnrC = jnrD = 0;
636     j_coord_offsetA = 0;
637     j_coord_offsetB = 0;
638     j_coord_offsetC = 0;
639     j_coord_offsetD = 0;
640
641     outeriter        = 0;
642     inneriter        = 0;
643
644     for(iidx=0;iidx<4*DIM;iidx++)
645     {
646         scratch[iidx] = 0.0;
647     }
648
649     /* Start outer loop over neighborlists */
650     for(iidx=0; iidx<nri; iidx++)
651     {
652         /* Load shift vector for this list */
653         i_shift_offset   = DIM*shiftidx[iidx];
654
655         /* Load limits for loop over neighbors */
656         j_index_start    = jindex[iidx];
657         j_index_end      = jindex[iidx+1];
658
659         /* Get outer coordinate index */
660         inr              = iinr[iidx];
661         i_coord_offset   = DIM*inr;
662
663         /* Load i particle coords and add shift vector */
664         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
665                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
666
667         fix1             = _mm_setzero_ps();
668         fiy1             = _mm_setzero_ps();
669         fiz1             = _mm_setzero_ps();
670         fix2             = _mm_setzero_ps();
671         fiy2             = _mm_setzero_ps();
672         fiz2             = _mm_setzero_ps();
673         fix3             = _mm_setzero_ps();
674         fiy3             = _mm_setzero_ps();
675         fiz3             = _mm_setzero_ps();
676
677         /* Start inner kernel loop */
678         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
679         {
680
681             /* Get j neighbor index, and coordinate index */
682             jnrA             = jjnr[jidx];
683             jnrB             = jjnr[jidx+1];
684             jnrC             = jjnr[jidx+2];
685             jnrD             = jjnr[jidx+3];
686             j_coord_offsetA  = DIM*jnrA;
687             j_coord_offsetB  = DIM*jnrB;
688             j_coord_offsetC  = DIM*jnrC;
689             j_coord_offsetD  = DIM*jnrD;
690
691             /* load j atom coordinates */
692             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
693                                               x+j_coord_offsetC,x+j_coord_offsetD,
694                                               &jx0,&jy0,&jz0);
695
696             /* Calculate displacement vector */
697             dx10             = _mm_sub_ps(ix1,jx0);
698             dy10             = _mm_sub_ps(iy1,jy0);
699             dz10             = _mm_sub_ps(iz1,jz0);
700             dx20             = _mm_sub_ps(ix2,jx0);
701             dy20             = _mm_sub_ps(iy2,jy0);
702             dz20             = _mm_sub_ps(iz2,jz0);
703             dx30             = _mm_sub_ps(ix3,jx0);
704             dy30             = _mm_sub_ps(iy3,jy0);
705             dz30             = _mm_sub_ps(iz3,jz0);
706
707             /* Calculate squared distance and things based on it */
708             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
709             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
710             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
711
712             rinv10           = gmx_mm_invsqrt_ps(rsq10);
713             rinv20           = gmx_mm_invsqrt_ps(rsq20);
714             rinv30           = gmx_mm_invsqrt_ps(rsq30);
715
716             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
717             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
718             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
719
720             /* Load parameters for j particles */
721             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
722                                                               charge+jnrC+0,charge+jnrD+0);
723
724             fjx0             = _mm_setzero_ps();
725             fjy0             = _mm_setzero_ps();
726             fjz0             = _mm_setzero_ps();
727
728             /**************************
729              * CALCULATE INTERACTIONS *
730              **************************/
731
732             r10              = _mm_mul_ps(rsq10,rinv10);
733
734             /* Compute parameters for interactions between i and j atoms */
735             qq10             = _mm_mul_ps(iq1,jq0);
736
737             /* EWALD ELECTROSTATICS */
738
739             /* Analytical PME correction */
740             zeta2            = _mm_mul_ps(beta2,rsq10);
741             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
742             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
743             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
744             felec            = _mm_mul_ps(qq10,felec);
745
746             fscal            = felec;
747
748              /* Update vectorial force */
749             fix1             = _mm_macc_ps(dx10,fscal,fix1);
750             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
751             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
752
753             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
754             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
755             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
756
757             /**************************
758              * CALCULATE INTERACTIONS *
759              **************************/
760
761             r20              = _mm_mul_ps(rsq20,rinv20);
762
763             /* Compute parameters for interactions between i and j atoms */
764             qq20             = _mm_mul_ps(iq2,jq0);
765
766             /* EWALD ELECTROSTATICS */
767
768             /* Analytical PME correction */
769             zeta2            = _mm_mul_ps(beta2,rsq20);
770             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
771             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
772             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
773             felec            = _mm_mul_ps(qq20,felec);
774
775             fscal            = felec;
776
777              /* Update vectorial force */
778             fix2             = _mm_macc_ps(dx20,fscal,fix2);
779             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
780             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
781
782             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
783             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
784             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
785
786             /**************************
787              * CALCULATE INTERACTIONS *
788              **************************/
789
790             r30              = _mm_mul_ps(rsq30,rinv30);
791
792             /* Compute parameters for interactions between i and j atoms */
793             qq30             = _mm_mul_ps(iq3,jq0);
794
795             /* EWALD ELECTROSTATICS */
796
797             /* Analytical PME correction */
798             zeta2            = _mm_mul_ps(beta2,rsq30);
799             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
800             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
801             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
802             felec            = _mm_mul_ps(qq30,felec);
803
804             fscal            = felec;
805
806              /* Update vectorial force */
807             fix3             = _mm_macc_ps(dx30,fscal,fix3);
808             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
809             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
810
811             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
812             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
813             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
814
815             fjptrA             = f+j_coord_offsetA;
816             fjptrB             = f+j_coord_offsetB;
817             fjptrC             = f+j_coord_offsetC;
818             fjptrD             = f+j_coord_offsetD;
819
820             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
821
822             /* Inner loop uses 84 flops */
823         }
824
825         if(jidx<j_index_end)
826         {
827
828             /* Get j neighbor index, and coordinate index */
829             jnrlistA         = jjnr[jidx];
830             jnrlistB         = jjnr[jidx+1];
831             jnrlistC         = jjnr[jidx+2];
832             jnrlistD         = jjnr[jidx+3];
833             /* Sign of each element will be negative for non-real atoms.
834              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
835              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
836              */
837             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
838             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
839             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
840             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
841             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
842             j_coord_offsetA  = DIM*jnrA;
843             j_coord_offsetB  = DIM*jnrB;
844             j_coord_offsetC  = DIM*jnrC;
845             j_coord_offsetD  = DIM*jnrD;
846
847             /* load j atom coordinates */
848             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
849                                               x+j_coord_offsetC,x+j_coord_offsetD,
850                                               &jx0,&jy0,&jz0);
851
852             /* Calculate displacement vector */
853             dx10             = _mm_sub_ps(ix1,jx0);
854             dy10             = _mm_sub_ps(iy1,jy0);
855             dz10             = _mm_sub_ps(iz1,jz0);
856             dx20             = _mm_sub_ps(ix2,jx0);
857             dy20             = _mm_sub_ps(iy2,jy0);
858             dz20             = _mm_sub_ps(iz2,jz0);
859             dx30             = _mm_sub_ps(ix3,jx0);
860             dy30             = _mm_sub_ps(iy3,jy0);
861             dz30             = _mm_sub_ps(iz3,jz0);
862
863             /* Calculate squared distance and things based on it */
864             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
865             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
866             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
867
868             rinv10           = gmx_mm_invsqrt_ps(rsq10);
869             rinv20           = gmx_mm_invsqrt_ps(rsq20);
870             rinv30           = gmx_mm_invsqrt_ps(rsq30);
871
872             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
873             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
874             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
875
876             /* Load parameters for j particles */
877             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
878                                                               charge+jnrC+0,charge+jnrD+0);
879
880             fjx0             = _mm_setzero_ps();
881             fjy0             = _mm_setzero_ps();
882             fjz0             = _mm_setzero_ps();
883
884             /**************************
885              * CALCULATE INTERACTIONS *
886              **************************/
887
888             r10              = _mm_mul_ps(rsq10,rinv10);
889             r10              = _mm_andnot_ps(dummy_mask,r10);
890
891             /* Compute parameters for interactions between i and j atoms */
892             qq10             = _mm_mul_ps(iq1,jq0);
893
894             /* EWALD ELECTROSTATICS */
895
896             /* Analytical PME correction */
897             zeta2            = _mm_mul_ps(beta2,rsq10);
898             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
899             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
900             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
901             felec            = _mm_mul_ps(qq10,felec);
902
903             fscal            = felec;
904
905             fscal            = _mm_andnot_ps(dummy_mask,fscal);
906
907              /* Update vectorial force */
908             fix1             = _mm_macc_ps(dx10,fscal,fix1);
909             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
910             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
911
912             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
913             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
914             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
915
916             /**************************
917              * CALCULATE INTERACTIONS *
918              **************************/
919
920             r20              = _mm_mul_ps(rsq20,rinv20);
921             r20              = _mm_andnot_ps(dummy_mask,r20);
922
923             /* Compute parameters for interactions between i and j atoms */
924             qq20             = _mm_mul_ps(iq2,jq0);
925
926             /* EWALD ELECTROSTATICS */
927
928             /* Analytical PME correction */
929             zeta2            = _mm_mul_ps(beta2,rsq20);
930             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
931             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
932             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
933             felec            = _mm_mul_ps(qq20,felec);
934
935             fscal            = felec;
936
937             fscal            = _mm_andnot_ps(dummy_mask,fscal);
938
939              /* Update vectorial force */
940             fix2             = _mm_macc_ps(dx20,fscal,fix2);
941             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
942             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
943
944             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
945             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
946             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
947
948             /**************************
949              * CALCULATE INTERACTIONS *
950              **************************/
951
952             r30              = _mm_mul_ps(rsq30,rinv30);
953             r30              = _mm_andnot_ps(dummy_mask,r30);
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq30             = _mm_mul_ps(iq3,jq0);
957
958             /* EWALD ELECTROSTATICS */
959
960             /* Analytical PME correction */
961             zeta2            = _mm_mul_ps(beta2,rsq30);
962             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
963             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
964             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
965             felec            = _mm_mul_ps(qq30,felec);
966
967             fscal            = felec;
968
969             fscal            = _mm_andnot_ps(dummy_mask,fscal);
970
971              /* Update vectorial force */
972             fix3             = _mm_macc_ps(dx30,fscal,fix3);
973             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
974             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
975
976             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
977             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
978             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
979
980             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
981             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
982             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
983             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
984
985             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
986
987             /* Inner loop uses 87 flops */
988         }
989
990         /* End of innermost loop */
991
992         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
993                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
994
995         /* Increment number of inner iterations */
996         inneriter                  += j_index_end - j_index_start;
997
998         /* Outer loop uses 18 flops */
999     }
1000
1001     /* Increment number of outer iterations */
1002     outeriter        += nri;
1003
1004     /* Update outer/inner flops */
1005
1006     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*87);
1007 }