Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJ_GeomW4P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          ewitab;
92     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
94     real             *ewtab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
117     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
118     beta2            = _mm_mul_ps(beta,beta);
119     beta3            = _mm_mul_ps(beta,beta2);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
127     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
128     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
129     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
163
164         fix0             = _mm_setzero_ps();
165         fiy0             = _mm_setzero_ps();
166         fiz0             = _mm_setzero_ps();
167         fix1             = _mm_setzero_ps();
168         fiy1             = _mm_setzero_ps();
169         fiz1             = _mm_setzero_ps();
170         fix2             = _mm_setzero_ps();
171         fiy2             = _mm_setzero_ps();
172         fiz2             = _mm_setzero_ps();
173         fix3             = _mm_setzero_ps();
174         fiy3             = _mm_setzero_ps();
175         fiz3             = _mm_setzero_ps();
176
177         /* Reset potential sums */
178         velecsum         = _mm_setzero_ps();
179         vvdwsum          = _mm_setzero_ps();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192             j_coord_offsetC  = DIM*jnrC;
193             j_coord_offsetD  = DIM*jnrD;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               x+j_coord_offsetC,x+j_coord_offsetD,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_ps(ix0,jx0);
202             dy00             = _mm_sub_ps(iy0,jy0);
203             dz00             = _mm_sub_ps(iz0,jz0);
204             dx10             = _mm_sub_ps(ix1,jx0);
205             dy10             = _mm_sub_ps(iy1,jy0);
206             dz10             = _mm_sub_ps(iz1,jz0);
207             dx20             = _mm_sub_ps(ix2,jx0);
208             dy20             = _mm_sub_ps(iy2,jy0);
209             dz20             = _mm_sub_ps(iz2,jz0);
210             dx30             = _mm_sub_ps(ix3,jx0);
211             dy30             = _mm_sub_ps(iy3,jy0);
212             dz30             = _mm_sub_ps(iz3,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
216             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
217             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
218             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
219
220             rinv10           = gmx_mm_invsqrt_ps(rsq10);
221             rinv20           = gmx_mm_invsqrt_ps(rsq20);
222             rinv30           = gmx_mm_invsqrt_ps(rsq30);
223
224             rinvsq00         = gmx_mm_inv_ps(rsq00);
225             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
226             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
227             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
228
229             /* Load parameters for j particles */
230             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
231                                                               charge+jnrC+0,charge+jnrD+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233             vdwjidx0B        = 2*vdwtype[jnrB+0];
234             vdwjidx0C        = 2*vdwtype[jnrC+0];
235             vdwjidx0D        = 2*vdwtype[jnrD+0];
236
237             fjx0             = _mm_setzero_ps();
238             fjy0             = _mm_setzero_ps();
239             fjz0             = _mm_setzero_ps();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             /* Compute parameters for interactions between i and j atoms */
246             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
247                                          vdwparam+vdwioffset0+vdwjidx0B,
248                                          vdwparam+vdwioffset0+vdwjidx0C,
249                                          vdwparam+vdwioffset0+vdwjidx0D,
250                                          &c6_00,&c12_00);
251
252             /* LENNARD-JONES DISPERSION/REPULSION */
253
254             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
255             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
256             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
257             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
258             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
259
260             /* Update potential sum for this i atom from the interaction with this j atom. */
261             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
262
263             fscal            = fvdw;
264
265              /* Update vectorial force */
266             fix0             = _mm_macc_ps(dx00,fscal,fix0);
267             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
268             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
269
270             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
271             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
272             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
273
274             /**************************
275              * CALCULATE INTERACTIONS *
276              **************************/
277
278             r10              = _mm_mul_ps(rsq10,rinv10);
279
280             /* Compute parameters for interactions between i and j atoms */
281             qq10             = _mm_mul_ps(iq1,jq0);
282
283             /* EWALD ELECTROSTATICS */
284
285             /* Analytical PME correction */
286             zeta2            = _mm_mul_ps(beta2,rsq10);
287             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
288             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
289             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
290             felec            = _mm_mul_ps(qq10,felec);
291             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
292             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
293             velec            = _mm_mul_ps(qq10,velec);
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm_add_ps(velecsum,velec);
297
298             fscal            = felec;
299
300              /* Update vectorial force */
301             fix1             = _mm_macc_ps(dx10,fscal,fix1);
302             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
303             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
304
305             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
306             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
307             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             r20              = _mm_mul_ps(rsq20,rinv20);
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq20             = _mm_mul_ps(iq2,jq0);
317
318             /* EWALD ELECTROSTATICS */
319
320             /* Analytical PME correction */
321             zeta2            = _mm_mul_ps(beta2,rsq20);
322             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
323             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
324             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
325             felec            = _mm_mul_ps(qq20,felec);
326             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
327             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
328             velec            = _mm_mul_ps(qq20,velec);
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _mm_add_ps(velecsum,velec);
332
333             fscal            = felec;
334
335              /* Update vectorial force */
336             fix2             = _mm_macc_ps(dx20,fscal,fix2);
337             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
338             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
339
340             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
341             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
342             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r30              = _mm_mul_ps(rsq30,rinv30);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq30             = _mm_mul_ps(iq3,jq0);
352
353             /* EWALD ELECTROSTATICS */
354
355             /* Analytical PME correction */
356             zeta2            = _mm_mul_ps(beta2,rsq30);
357             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
358             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
359             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
360             felec            = _mm_mul_ps(qq30,felec);
361             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
362             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
363             velec            = _mm_mul_ps(qq30,velec);
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velecsum         = _mm_add_ps(velecsum,velec);
367
368             fscal            = felec;
369
370              /* Update vectorial force */
371             fix3             = _mm_macc_ps(dx30,fscal,fix3);
372             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
373             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
374
375             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
376             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
377             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
378
379             fjptrA             = f+j_coord_offsetA;
380             fjptrB             = f+j_coord_offsetB;
381             fjptrC             = f+j_coord_offsetC;
382             fjptrD             = f+j_coord_offsetD;
383
384             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
385
386             /* Inner loop uses 122 flops */
387         }
388
389         if(jidx<j_index_end)
390         {
391
392             /* Get j neighbor index, and coordinate index */
393             jnrlistA         = jjnr[jidx];
394             jnrlistB         = jjnr[jidx+1];
395             jnrlistC         = jjnr[jidx+2];
396             jnrlistD         = jjnr[jidx+3];
397             /* Sign of each element will be negative for non-real atoms.
398              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
399              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
400              */
401             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
402             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
403             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
404             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
405             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
406             j_coord_offsetA  = DIM*jnrA;
407             j_coord_offsetB  = DIM*jnrB;
408             j_coord_offsetC  = DIM*jnrC;
409             j_coord_offsetD  = DIM*jnrD;
410
411             /* load j atom coordinates */
412             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
413                                               x+j_coord_offsetC,x+j_coord_offsetD,
414                                               &jx0,&jy0,&jz0);
415
416             /* Calculate displacement vector */
417             dx00             = _mm_sub_ps(ix0,jx0);
418             dy00             = _mm_sub_ps(iy0,jy0);
419             dz00             = _mm_sub_ps(iz0,jz0);
420             dx10             = _mm_sub_ps(ix1,jx0);
421             dy10             = _mm_sub_ps(iy1,jy0);
422             dz10             = _mm_sub_ps(iz1,jz0);
423             dx20             = _mm_sub_ps(ix2,jx0);
424             dy20             = _mm_sub_ps(iy2,jy0);
425             dz20             = _mm_sub_ps(iz2,jz0);
426             dx30             = _mm_sub_ps(ix3,jx0);
427             dy30             = _mm_sub_ps(iy3,jy0);
428             dz30             = _mm_sub_ps(iz3,jz0);
429
430             /* Calculate squared distance and things based on it */
431             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
432             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
433             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
434             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
435
436             rinv10           = gmx_mm_invsqrt_ps(rsq10);
437             rinv20           = gmx_mm_invsqrt_ps(rsq20);
438             rinv30           = gmx_mm_invsqrt_ps(rsq30);
439
440             rinvsq00         = gmx_mm_inv_ps(rsq00);
441             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
442             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
443             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
444
445             /* Load parameters for j particles */
446             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
447                                                               charge+jnrC+0,charge+jnrD+0);
448             vdwjidx0A        = 2*vdwtype[jnrA+0];
449             vdwjidx0B        = 2*vdwtype[jnrB+0];
450             vdwjidx0C        = 2*vdwtype[jnrC+0];
451             vdwjidx0D        = 2*vdwtype[jnrD+0];
452
453             fjx0             = _mm_setzero_ps();
454             fjy0             = _mm_setzero_ps();
455             fjz0             = _mm_setzero_ps();
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             /* Compute parameters for interactions between i and j atoms */
462             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
463                                          vdwparam+vdwioffset0+vdwjidx0B,
464                                          vdwparam+vdwioffset0+vdwjidx0C,
465                                          vdwparam+vdwioffset0+vdwjidx0D,
466                                          &c6_00,&c12_00);
467
468             /* LENNARD-JONES DISPERSION/REPULSION */
469
470             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
471             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
472             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
473             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
474             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
475
476             /* Update potential sum for this i atom from the interaction with this j atom. */
477             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
478             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
479
480             fscal            = fvdw;
481
482             fscal            = _mm_andnot_ps(dummy_mask,fscal);
483
484              /* Update vectorial force */
485             fix0             = _mm_macc_ps(dx00,fscal,fix0);
486             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
487             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
488
489             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
490             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
491             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             r10              = _mm_mul_ps(rsq10,rinv10);
498             r10              = _mm_andnot_ps(dummy_mask,r10);
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq10             = _mm_mul_ps(iq1,jq0);
502
503             /* EWALD ELECTROSTATICS */
504
505             /* Analytical PME correction */
506             zeta2            = _mm_mul_ps(beta2,rsq10);
507             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
508             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
509             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
510             felec            = _mm_mul_ps(qq10,felec);
511             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
512             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
513             velec            = _mm_mul_ps(qq10,velec);
514
515             /* Update potential sum for this i atom from the interaction with this j atom. */
516             velec            = _mm_andnot_ps(dummy_mask,velec);
517             velecsum         = _mm_add_ps(velecsum,velec);
518
519             fscal            = felec;
520
521             fscal            = _mm_andnot_ps(dummy_mask,fscal);
522
523              /* Update vectorial force */
524             fix1             = _mm_macc_ps(dx10,fscal,fix1);
525             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
526             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
527
528             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
529             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
530             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             r20              = _mm_mul_ps(rsq20,rinv20);
537             r20              = _mm_andnot_ps(dummy_mask,r20);
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq20             = _mm_mul_ps(iq2,jq0);
541
542             /* EWALD ELECTROSTATICS */
543
544             /* Analytical PME correction */
545             zeta2            = _mm_mul_ps(beta2,rsq20);
546             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
547             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
548             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
549             felec            = _mm_mul_ps(qq20,felec);
550             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
551             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
552             velec            = _mm_mul_ps(qq20,velec);
553
554             /* Update potential sum for this i atom from the interaction with this j atom. */
555             velec            = _mm_andnot_ps(dummy_mask,velec);
556             velecsum         = _mm_add_ps(velecsum,velec);
557
558             fscal            = felec;
559
560             fscal            = _mm_andnot_ps(dummy_mask,fscal);
561
562              /* Update vectorial force */
563             fix2             = _mm_macc_ps(dx20,fscal,fix2);
564             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
565             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
566
567             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
568             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
569             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
570
571             /**************************
572              * CALCULATE INTERACTIONS *
573              **************************/
574
575             r30              = _mm_mul_ps(rsq30,rinv30);
576             r30              = _mm_andnot_ps(dummy_mask,r30);
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq30             = _mm_mul_ps(iq3,jq0);
580
581             /* EWALD ELECTROSTATICS */
582
583             /* Analytical PME correction */
584             zeta2            = _mm_mul_ps(beta2,rsq30);
585             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
586             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
587             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
588             felec            = _mm_mul_ps(qq30,felec);
589             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
590             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
591             velec            = _mm_mul_ps(qq30,velec);
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             velec            = _mm_andnot_ps(dummy_mask,velec);
595             velecsum         = _mm_add_ps(velecsum,velec);
596
597             fscal            = felec;
598
599             fscal            = _mm_andnot_ps(dummy_mask,fscal);
600
601              /* Update vectorial force */
602             fix3             = _mm_macc_ps(dx30,fscal,fix3);
603             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
604             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
605
606             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
607             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
608             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
609
610             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
611             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
612             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
613             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
614
615             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
616
617             /* Inner loop uses 125 flops */
618         }
619
620         /* End of innermost loop */
621
622         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
623                                               f+i_coord_offset,fshift+i_shift_offset);
624
625         ggid                        = gid[iidx];
626         /* Update potential energies */
627         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
628         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
629
630         /* Increment number of inner iterations */
631         inneriter                  += j_index_end - j_index_start;
632
633         /* Outer loop uses 26 flops */
634     }
635
636     /* Increment number of outer iterations */
637     outeriter        += nri;
638
639     /* Update outer/inner flops */
640
641     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*125);
642 }
643 /*
644  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_128_fma_single
645  * Electrostatics interaction: Ewald
646  * VdW interaction:            LennardJones
647  * Geometry:                   Water4-Particle
648  * Calculate force/pot:        Force
649  */
650 void
651 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_128_fma_single
652                     (t_nblist * gmx_restrict                nlist,
653                      rvec * gmx_restrict                    xx,
654                      rvec * gmx_restrict                    ff,
655                      t_forcerec * gmx_restrict              fr,
656                      t_mdatoms * gmx_restrict               mdatoms,
657                      nb_kernel_data_t * gmx_restrict        kernel_data,
658                      t_nrnb * gmx_restrict                  nrnb)
659 {
660     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
661      * just 0 for non-waters.
662      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
663      * jnr indices corresponding to data put in the four positions in the SIMD register.
664      */
665     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
666     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
667     int              jnrA,jnrB,jnrC,jnrD;
668     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
669     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
670     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
671     real             rcutoff_scalar;
672     real             *shiftvec,*fshift,*x,*f;
673     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
674     real             scratch[4*DIM];
675     __m128           fscal,rcutoff,rcutoff2,jidxall;
676     int              vdwioffset0;
677     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
678     int              vdwioffset1;
679     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
680     int              vdwioffset2;
681     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
682     int              vdwioffset3;
683     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
684     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
685     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
686     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
687     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
688     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
689     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
690     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
691     real             *charge;
692     int              nvdwtype;
693     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
694     int              *vdwtype;
695     real             *vdwparam;
696     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
697     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
698     __m128i          ewitab;
699     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
700     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
701     real             *ewtab;
702     __m128           dummy_mask,cutoff_mask;
703     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
704     __m128           one     = _mm_set1_ps(1.0);
705     __m128           two     = _mm_set1_ps(2.0);
706     x                = xx[0];
707     f                = ff[0];
708
709     nri              = nlist->nri;
710     iinr             = nlist->iinr;
711     jindex           = nlist->jindex;
712     jjnr             = nlist->jjnr;
713     shiftidx         = nlist->shift;
714     gid              = nlist->gid;
715     shiftvec         = fr->shift_vec[0];
716     fshift           = fr->fshift[0];
717     facel            = _mm_set1_ps(fr->epsfac);
718     charge           = mdatoms->chargeA;
719     nvdwtype         = fr->ntype;
720     vdwparam         = fr->nbfp;
721     vdwtype          = mdatoms->typeA;
722
723     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
724     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
725     beta2            = _mm_mul_ps(beta,beta);
726     beta3            = _mm_mul_ps(beta,beta2);
727     ewtab            = fr->ic->tabq_coul_F;
728     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
729     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
730
731     /* Setup water-specific parameters */
732     inr              = nlist->iinr[0];
733     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
734     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
735     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
736     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
737
738     /* Avoid stupid compiler warnings */
739     jnrA = jnrB = jnrC = jnrD = 0;
740     j_coord_offsetA = 0;
741     j_coord_offsetB = 0;
742     j_coord_offsetC = 0;
743     j_coord_offsetD = 0;
744
745     outeriter        = 0;
746     inneriter        = 0;
747
748     for(iidx=0;iidx<4*DIM;iidx++)
749     {
750         scratch[iidx] = 0.0;
751     }
752
753     /* Start outer loop over neighborlists */
754     for(iidx=0; iidx<nri; iidx++)
755     {
756         /* Load shift vector for this list */
757         i_shift_offset   = DIM*shiftidx[iidx];
758
759         /* Load limits for loop over neighbors */
760         j_index_start    = jindex[iidx];
761         j_index_end      = jindex[iidx+1];
762
763         /* Get outer coordinate index */
764         inr              = iinr[iidx];
765         i_coord_offset   = DIM*inr;
766
767         /* Load i particle coords and add shift vector */
768         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
769                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
770
771         fix0             = _mm_setzero_ps();
772         fiy0             = _mm_setzero_ps();
773         fiz0             = _mm_setzero_ps();
774         fix1             = _mm_setzero_ps();
775         fiy1             = _mm_setzero_ps();
776         fiz1             = _mm_setzero_ps();
777         fix2             = _mm_setzero_ps();
778         fiy2             = _mm_setzero_ps();
779         fiz2             = _mm_setzero_ps();
780         fix3             = _mm_setzero_ps();
781         fiy3             = _mm_setzero_ps();
782         fiz3             = _mm_setzero_ps();
783
784         /* Start inner kernel loop */
785         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
786         {
787
788             /* Get j neighbor index, and coordinate index */
789             jnrA             = jjnr[jidx];
790             jnrB             = jjnr[jidx+1];
791             jnrC             = jjnr[jidx+2];
792             jnrD             = jjnr[jidx+3];
793             j_coord_offsetA  = DIM*jnrA;
794             j_coord_offsetB  = DIM*jnrB;
795             j_coord_offsetC  = DIM*jnrC;
796             j_coord_offsetD  = DIM*jnrD;
797
798             /* load j atom coordinates */
799             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
800                                               x+j_coord_offsetC,x+j_coord_offsetD,
801                                               &jx0,&jy0,&jz0);
802
803             /* Calculate displacement vector */
804             dx00             = _mm_sub_ps(ix0,jx0);
805             dy00             = _mm_sub_ps(iy0,jy0);
806             dz00             = _mm_sub_ps(iz0,jz0);
807             dx10             = _mm_sub_ps(ix1,jx0);
808             dy10             = _mm_sub_ps(iy1,jy0);
809             dz10             = _mm_sub_ps(iz1,jz0);
810             dx20             = _mm_sub_ps(ix2,jx0);
811             dy20             = _mm_sub_ps(iy2,jy0);
812             dz20             = _mm_sub_ps(iz2,jz0);
813             dx30             = _mm_sub_ps(ix3,jx0);
814             dy30             = _mm_sub_ps(iy3,jy0);
815             dz30             = _mm_sub_ps(iz3,jz0);
816
817             /* Calculate squared distance and things based on it */
818             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
819             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
820             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
821             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
822
823             rinv10           = gmx_mm_invsqrt_ps(rsq10);
824             rinv20           = gmx_mm_invsqrt_ps(rsq20);
825             rinv30           = gmx_mm_invsqrt_ps(rsq30);
826
827             rinvsq00         = gmx_mm_inv_ps(rsq00);
828             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
829             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
830             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
831
832             /* Load parameters for j particles */
833             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
834                                                               charge+jnrC+0,charge+jnrD+0);
835             vdwjidx0A        = 2*vdwtype[jnrA+0];
836             vdwjidx0B        = 2*vdwtype[jnrB+0];
837             vdwjidx0C        = 2*vdwtype[jnrC+0];
838             vdwjidx0D        = 2*vdwtype[jnrD+0];
839
840             fjx0             = _mm_setzero_ps();
841             fjy0             = _mm_setzero_ps();
842             fjz0             = _mm_setzero_ps();
843
844             /**************************
845              * CALCULATE INTERACTIONS *
846              **************************/
847
848             /* Compute parameters for interactions between i and j atoms */
849             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
850                                          vdwparam+vdwioffset0+vdwjidx0B,
851                                          vdwparam+vdwioffset0+vdwjidx0C,
852                                          vdwparam+vdwioffset0+vdwjidx0D,
853                                          &c6_00,&c12_00);
854
855             /* LENNARD-JONES DISPERSION/REPULSION */
856
857             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
858             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
859
860             fscal            = fvdw;
861
862              /* Update vectorial force */
863             fix0             = _mm_macc_ps(dx00,fscal,fix0);
864             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
865             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
866
867             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
868             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
869             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
870
871             /**************************
872              * CALCULATE INTERACTIONS *
873              **************************/
874
875             r10              = _mm_mul_ps(rsq10,rinv10);
876
877             /* Compute parameters for interactions between i and j atoms */
878             qq10             = _mm_mul_ps(iq1,jq0);
879
880             /* EWALD ELECTROSTATICS */
881
882             /* Analytical PME correction */
883             zeta2            = _mm_mul_ps(beta2,rsq10);
884             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
885             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
886             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
887             felec            = _mm_mul_ps(qq10,felec);
888
889             fscal            = felec;
890
891              /* Update vectorial force */
892             fix1             = _mm_macc_ps(dx10,fscal,fix1);
893             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
894             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
895
896             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
897             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
898             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             r20              = _mm_mul_ps(rsq20,rinv20);
905
906             /* Compute parameters for interactions between i and j atoms */
907             qq20             = _mm_mul_ps(iq2,jq0);
908
909             /* EWALD ELECTROSTATICS */
910
911             /* Analytical PME correction */
912             zeta2            = _mm_mul_ps(beta2,rsq20);
913             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
914             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
915             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
916             felec            = _mm_mul_ps(qq20,felec);
917
918             fscal            = felec;
919
920              /* Update vectorial force */
921             fix2             = _mm_macc_ps(dx20,fscal,fix2);
922             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
923             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
924
925             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
926             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
927             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
928
929             /**************************
930              * CALCULATE INTERACTIONS *
931              **************************/
932
933             r30              = _mm_mul_ps(rsq30,rinv30);
934
935             /* Compute parameters for interactions between i and j atoms */
936             qq30             = _mm_mul_ps(iq3,jq0);
937
938             /* EWALD ELECTROSTATICS */
939
940             /* Analytical PME correction */
941             zeta2            = _mm_mul_ps(beta2,rsq30);
942             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
943             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
944             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
945             felec            = _mm_mul_ps(qq30,felec);
946
947             fscal            = felec;
948
949              /* Update vectorial force */
950             fix3             = _mm_macc_ps(dx30,fscal,fix3);
951             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
952             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
953
954             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
955             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
956             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
957
958             fjptrA             = f+j_coord_offsetA;
959             fjptrB             = f+j_coord_offsetB;
960             fjptrC             = f+j_coord_offsetC;
961             fjptrD             = f+j_coord_offsetD;
962
963             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
964
965             /* Inner loop uses 114 flops */
966         }
967
968         if(jidx<j_index_end)
969         {
970
971             /* Get j neighbor index, and coordinate index */
972             jnrlistA         = jjnr[jidx];
973             jnrlistB         = jjnr[jidx+1];
974             jnrlistC         = jjnr[jidx+2];
975             jnrlistD         = jjnr[jidx+3];
976             /* Sign of each element will be negative for non-real atoms.
977              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
978              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
979              */
980             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
981             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
982             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
983             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
984             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
985             j_coord_offsetA  = DIM*jnrA;
986             j_coord_offsetB  = DIM*jnrB;
987             j_coord_offsetC  = DIM*jnrC;
988             j_coord_offsetD  = DIM*jnrD;
989
990             /* load j atom coordinates */
991             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
992                                               x+j_coord_offsetC,x+j_coord_offsetD,
993                                               &jx0,&jy0,&jz0);
994
995             /* Calculate displacement vector */
996             dx00             = _mm_sub_ps(ix0,jx0);
997             dy00             = _mm_sub_ps(iy0,jy0);
998             dz00             = _mm_sub_ps(iz0,jz0);
999             dx10             = _mm_sub_ps(ix1,jx0);
1000             dy10             = _mm_sub_ps(iy1,jy0);
1001             dz10             = _mm_sub_ps(iz1,jz0);
1002             dx20             = _mm_sub_ps(ix2,jx0);
1003             dy20             = _mm_sub_ps(iy2,jy0);
1004             dz20             = _mm_sub_ps(iz2,jz0);
1005             dx30             = _mm_sub_ps(ix3,jx0);
1006             dy30             = _mm_sub_ps(iy3,jy0);
1007             dz30             = _mm_sub_ps(iz3,jz0);
1008
1009             /* Calculate squared distance and things based on it */
1010             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1011             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1012             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1013             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1014
1015             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1016             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1017             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1018
1019             rinvsq00         = gmx_mm_inv_ps(rsq00);
1020             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1021             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1022             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1023
1024             /* Load parameters for j particles */
1025             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1026                                                               charge+jnrC+0,charge+jnrD+0);
1027             vdwjidx0A        = 2*vdwtype[jnrA+0];
1028             vdwjidx0B        = 2*vdwtype[jnrB+0];
1029             vdwjidx0C        = 2*vdwtype[jnrC+0];
1030             vdwjidx0D        = 2*vdwtype[jnrD+0];
1031
1032             fjx0             = _mm_setzero_ps();
1033             fjy0             = _mm_setzero_ps();
1034             fjz0             = _mm_setzero_ps();
1035
1036             /**************************
1037              * CALCULATE INTERACTIONS *
1038              **************************/
1039
1040             /* Compute parameters for interactions between i and j atoms */
1041             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1042                                          vdwparam+vdwioffset0+vdwjidx0B,
1043                                          vdwparam+vdwioffset0+vdwjidx0C,
1044                                          vdwparam+vdwioffset0+vdwjidx0D,
1045                                          &c6_00,&c12_00);
1046
1047             /* LENNARD-JONES DISPERSION/REPULSION */
1048
1049             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1050             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1051
1052             fscal            = fvdw;
1053
1054             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1055
1056              /* Update vectorial force */
1057             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1058             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1059             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1060
1061             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1062             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1063             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             r10              = _mm_mul_ps(rsq10,rinv10);
1070             r10              = _mm_andnot_ps(dummy_mask,r10);
1071
1072             /* Compute parameters for interactions between i and j atoms */
1073             qq10             = _mm_mul_ps(iq1,jq0);
1074
1075             /* EWALD ELECTROSTATICS */
1076
1077             /* Analytical PME correction */
1078             zeta2            = _mm_mul_ps(beta2,rsq10);
1079             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1080             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1081             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1082             felec            = _mm_mul_ps(qq10,felec);
1083
1084             fscal            = felec;
1085
1086             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1087
1088              /* Update vectorial force */
1089             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1090             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1091             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1092
1093             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1094             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1095             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             r20              = _mm_mul_ps(rsq20,rinv20);
1102             r20              = _mm_andnot_ps(dummy_mask,r20);
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             qq20             = _mm_mul_ps(iq2,jq0);
1106
1107             /* EWALD ELECTROSTATICS */
1108
1109             /* Analytical PME correction */
1110             zeta2            = _mm_mul_ps(beta2,rsq20);
1111             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1112             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1113             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1114             felec            = _mm_mul_ps(qq20,felec);
1115
1116             fscal            = felec;
1117
1118             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1119
1120              /* Update vectorial force */
1121             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1122             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1123             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1124
1125             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1126             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1127             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1128
1129             /**************************
1130              * CALCULATE INTERACTIONS *
1131              **************************/
1132
1133             r30              = _mm_mul_ps(rsq30,rinv30);
1134             r30              = _mm_andnot_ps(dummy_mask,r30);
1135
1136             /* Compute parameters for interactions between i and j atoms */
1137             qq30             = _mm_mul_ps(iq3,jq0);
1138
1139             /* EWALD ELECTROSTATICS */
1140
1141             /* Analytical PME correction */
1142             zeta2            = _mm_mul_ps(beta2,rsq30);
1143             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1144             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1145             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1146             felec            = _mm_mul_ps(qq30,felec);
1147
1148             fscal            = felec;
1149
1150             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1151
1152              /* Update vectorial force */
1153             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1154             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1155             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1156
1157             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1158             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1159             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1160
1161             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1162             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1163             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1164             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1165
1166             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1167
1168             /* Inner loop uses 117 flops */
1169         }
1170
1171         /* End of innermost loop */
1172
1173         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1174                                               f+i_coord_offset,fshift+i_shift_offset);
1175
1176         /* Increment number of inner iterations */
1177         inneriter                  += j_index_end - j_index_start;
1178
1179         /* Outer loop uses 24 flops */
1180     }
1181
1182     /* Increment number of outer iterations */
1183     outeriter        += nri;
1184
1185     /* Update outer/inner flops */
1186
1187     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*117);
1188 }