Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJ_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128i          ewitab;
108     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
109     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
110     real             *ewtab;
111     __m128           dummy_mask,cutoff_mask;
112     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113     __m128           one     = _mm_set1_ps(1.0);
114     __m128           two     = _mm_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_ps(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
133     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
134     beta2            = _mm_mul_ps(beta,beta);
135     beta3            = _mm_mul_ps(beta,beta2);
136     ewtab            = fr->ic->tabq_coul_FDV0;
137     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
138     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
139
140     /* Setup water-specific parameters */
141     inr              = nlist->iinr[0];
142     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
143     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
144     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
145     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
179
180         fix0             = _mm_setzero_ps();
181         fiy0             = _mm_setzero_ps();
182         fiz0             = _mm_setzero_ps();
183         fix1             = _mm_setzero_ps();
184         fiy1             = _mm_setzero_ps();
185         fiz1             = _mm_setzero_ps();
186         fix2             = _mm_setzero_ps();
187         fiy2             = _mm_setzero_ps();
188         fiz2             = _mm_setzero_ps();
189         fix3             = _mm_setzero_ps();
190         fiy3             = _mm_setzero_ps();
191         fiz3             = _mm_setzero_ps();
192
193         /* Reset potential sums */
194         velecsum         = _mm_setzero_ps();
195         vvdwsum          = _mm_setzero_ps();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             jnrC             = jjnr[jidx+2];
205             jnrD             = jjnr[jidx+3];
206             j_coord_offsetA  = DIM*jnrA;
207             j_coord_offsetB  = DIM*jnrB;
208             j_coord_offsetC  = DIM*jnrC;
209             j_coord_offsetD  = DIM*jnrD;
210
211             /* load j atom coordinates */
212             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
213                                               x+j_coord_offsetC,x+j_coord_offsetD,
214                                               &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm_sub_ps(ix0,jx0);
218             dy00             = _mm_sub_ps(iy0,jy0);
219             dz00             = _mm_sub_ps(iz0,jz0);
220             dx10             = _mm_sub_ps(ix1,jx0);
221             dy10             = _mm_sub_ps(iy1,jy0);
222             dz10             = _mm_sub_ps(iz1,jz0);
223             dx20             = _mm_sub_ps(ix2,jx0);
224             dy20             = _mm_sub_ps(iy2,jy0);
225             dz20             = _mm_sub_ps(iz2,jz0);
226             dx30             = _mm_sub_ps(ix3,jx0);
227             dy30             = _mm_sub_ps(iy3,jy0);
228             dz30             = _mm_sub_ps(iz3,jz0);
229
230             /* Calculate squared distance and things based on it */
231             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
232             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
233             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
234             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
235
236             rinv10           = gmx_mm_invsqrt_ps(rsq10);
237             rinv20           = gmx_mm_invsqrt_ps(rsq20);
238             rinv30           = gmx_mm_invsqrt_ps(rsq30);
239
240             rinvsq00         = gmx_mm_inv_ps(rsq00);
241             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
242             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
243             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
247                                                               charge+jnrC+0,charge+jnrD+0);
248             vdwjidx0A        = 2*vdwtype[jnrA+0];
249             vdwjidx0B        = 2*vdwtype[jnrB+0];
250             vdwjidx0C        = 2*vdwtype[jnrC+0];
251             vdwjidx0D        = 2*vdwtype[jnrD+0];
252
253             fjx0             = _mm_setzero_ps();
254             fjy0             = _mm_setzero_ps();
255             fjz0             = _mm_setzero_ps();
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             /* Compute parameters for interactions between i and j atoms */
262             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
263                                          vdwparam+vdwioffset0+vdwjidx0B,
264                                          vdwparam+vdwioffset0+vdwjidx0C,
265                                          vdwparam+vdwioffset0+vdwjidx0D,
266                                          &c6_00,&c12_00);
267
268             /* LENNARD-JONES DISPERSION/REPULSION */
269
270             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
271             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
272             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
273             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
274             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
278
279             fscal            = fvdw;
280
281              /* Update vectorial force */
282             fix0             = _mm_macc_ps(dx00,fscal,fix0);
283             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
284             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
285
286             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
287             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
288             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             r10              = _mm_mul_ps(rsq10,rinv10);
295
296             /* Compute parameters for interactions between i and j atoms */
297             qq10             = _mm_mul_ps(iq1,jq0);
298
299             /* EWALD ELECTROSTATICS */
300
301             /* Analytical PME correction */
302             zeta2            = _mm_mul_ps(beta2,rsq10);
303             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
304             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
305             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
306             felec            = _mm_mul_ps(qq10,felec);
307             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
308             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
309             velec            = _mm_mul_ps(qq10,velec);
310
311             /* Update potential sum for this i atom from the interaction with this j atom. */
312             velecsum         = _mm_add_ps(velecsum,velec);
313
314             fscal            = felec;
315
316              /* Update vectorial force */
317             fix1             = _mm_macc_ps(dx10,fscal,fix1);
318             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
319             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
320
321             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
322             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
323             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             r20              = _mm_mul_ps(rsq20,rinv20);
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq20             = _mm_mul_ps(iq2,jq0);
333
334             /* EWALD ELECTROSTATICS */
335
336             /* Analytical PME correction */
337             zeta2            = _mm_mul_ps(beta2,rsq20);
338             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
339             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
340             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
341             felec            = _mm_mul_ps(qq20,felec);
342             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
343             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
344             velec            = _mm_mul_ps(qq20,velec);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351              /* Update vectorial force */
352             fix2             = _mm_macc_ps(dx20,fscal,fix2);
353             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
354             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
355
356             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
357             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
358             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r30              = _mm_mul_ps(rsq30,rinv30);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq30             = _mm_mul_ps(iq3,jq0);
368
369             /* EWALD ELECTROSTATICS */
370
371             /* Analytical PME correction */
372             zeta2            = _mm_mul_ps(beta2,rsq30);
373             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
374             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
375             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
376             felec            = _mm_mul_ps(qq30,felec);
377             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
378             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
379             velec            = _mm_mul_ps(qq30,velec);
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velecsum         = _mm_add_ps(velecsum,velec);
383
384             fscal            = felec;
385
386              /* Update vectorial force */
387             fix3             = _mm_macc_ps(dx30,fscal,fix3);
388             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
389             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
390
391             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
392             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
393             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
394
395             fjptrA             = f+j_coord_offsetA;
396             fjptrB             = f+j_coord_offsetB;
397             fjptrC             = f+j_coord_offsetC;
398             fjptrD             = f+j_coord_offsetD;
399
400             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
401
402             /* Inner loop uses 122 flops */
403         }
404
405         if(jidx<j_index_end)
406         {
407
408             /* Get j neighbor index, and coordinate index */
409             jnrlistA         = jjnr[jidx];
410             jnrlistB         = jjnr[jidx+1];
411             jnrlistC         = jjnr[jidx+2];
412             jnrlistD         = jjnr[jidx+3];
413             /* Sign of each element will be negative for non-real atoms.
414              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
415              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
416              */
417             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
418             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
419             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
420             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
421             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
422             j_coord_offsetA  = DIM*jnrA;
423             j_coord_offsetB  = DIM*jnrB;
424             j_coord_offsetC  = DIM*jnrC;
425             j_coord_offsetD  = DIM*jnrD;
426
427             /* load j atom coordinates */
428             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
429                                               x+j_coord_offsetC,x+j_coord_offsetD,
430                                               &jx0,&jy0,&jz0);
431
432             /* Calculate displacement vector */
433             dx00             = _mm_sub_ps(ix0,jx0);
434             dy00             = _mm_sub_ps(iy0,jy0);
435             dz00             = _mm_sub_ps(iz0,jz0);
436             dx10             = _mm_sub_ps(ix1,jx0);
437             dy10             = _mm_sub_ps(iy1,jy0);
438             dz10             = _mm_sub_ps(iz1,jz0);
439             dx20             = _mm_sub_ps(ix2,jx0);
440             dy20             = _mm_sub_ps(iy2,jy0);
441             dz20             = _mm_sub_ps(iz2,jz0);
442             dx30             = _mm_sub_ps(ix3,jx0);
443             dy30             = _mm_sub_ps(iy3,jy0);
444             dz30             = _mm_sub_ps(iz3,jz0);
445
446             /* Calculate squared distance and things based on it */
447             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
448             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
449             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
450             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
451
452             rinv10           = gmx_mm_invsqrt_ps(rsq10);
453             rinv20           = gmx_mm_invsqrt_ps(rsq20);
454             rinv30           = gmx_mm_invsqrt_ps(rsq30);
455
456             rinvsq00         = gmx_mm_inv_ps(rsq00);
457             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
458             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
459             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
460
461             /* Load parameters for j particles */
462             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
463                                                               charge+jnrC+0,charge+jnrD+0);
464             vdwjidx0A        = 2*vdwtype[jnrA+0];
465             vdwjidx0B        = 2*vdwtype[jnrB+0];
466             vdwjidx0C        = 2*vdwtype[jnrC+0];
467             vdwjidx0D        = 2*vdwtype[jnrD+0];
468
469             fjx0             = _mm_setzero_ps();
470             fjy0             = _mm_setzero_ps();
471             fjz0             = _mm_setzero_ps();
472
473             /**************************
474              * CALCULATE INTERACTIONS *
475              **************************/
476
477             /* Compute parameters for interactions between i and j atoms */
478             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
479                                          vdwparam+vdwioffset0+vdwjidx0B,
480                                          vdwparam+vdwioffset0+vdwjidx0C,
481                                          vdwparam+vdwioffset0+vdwjidx0D,
482                                          &c6_00,&c12_00);
483
484             /* LENNARD-JONES DISPERSION/REPULSION */
485
486             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
487             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
488             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
489             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
490             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
491
492             /* Update potential sum for this i atom from the interaction with this j atom. */
493             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
494             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
495
496             fscal            = fvdw;
497
498             fscal            = _mm_andnot_ps(dummy_mask,fscal);
499
500              /* Update vectorial force */
501             fix0             = _mm_macc_ps(dx00,fscal,fix0);
502             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
503             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
504
505             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
506             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
507             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             r10              = _mm_mul_ps(rsq10,rinv10);
514             r10              = _mm_andnot_ps(dummy_mask,r10);
515
516             /* Compute parameters for interactions between i and j atoms */
517             qq10             = _mm_mul_ps(iq1,jq0);
518
519             /* EWALD ELECTROSTATICS */
520
521             /* Analytical PME correction */
522             zeta2            = _mm_mul_ps(beta2,rsq10);
523             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
524             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
525             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
526             felec            = _mm_mul_ps(qq10,felec);
527             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
528             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
529             velec            = _mm_mul_ps(qq10,velec);
530
531             /* Update potential sum for this i atom from the interaction with this j atom. */
532             velec            = _mm_andnot_ps(dummy_mask,velec);
533             velecsum         = _mm_add_ps(velecsum,velec);
534
535             fscal            = felec;
536
537             fscal            = _mm_andnot_ps(dummy_mask,fscal);
538
539              /* Update vectorial force */
540             fix1             = _mm_macc_ps(dx10,fscal,fix1);
541             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
542             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
543
544             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
545             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
546             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             r20              = _mm_mul_ps(rsq20,rinv20);
553             r20              = _mm_andnot_ps(dummy_mask,r20);
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq20             = _mm_mul_ps(iq2,jq0);
557
558             /* EWALD ELECTROSTATICS */
559
560             /* Analytical PME correction */
561             zeta2            = _mm_mul_ps(beta2,rsq20);
562             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
563             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
564             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
565             felec            = _mm_mul_ps(qq20,felec);
566             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
567             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
568             velec            = _mm_mul_ps(qq20,velec);
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             velec            = _mm_andnot_ps(dummy_mask,velec);
572             velecsum         = _mm_add_ps(velecsum,velec);
573
574             fscal            = felec;
575
576             fscal            = _mm_andnot_ps(dummy_mask,fscal);
577
578              /* Update vectorial force */
579             fix2             = _mm_macc_ps(dx20,fscal,fix2);
580             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
581             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
582
583             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
584             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
585             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
586
587             /**************************
588              * CALCULATE INTERACTIONS *
589              **************************/
590
591             r30              = _mm_mul_ps(rsq30,rinv30);
592             r30              = _mm_andnot_ps(dummy_mask,r30);
593
594             /* Compute parameters for interactions between i and j atoms */
595             qq30             = _mm_mul_ps(iq3,jq0);
596
597             /* EWALD ELECTROSTATICS */
598
599             /* Analytical PME correction */
600             zeta2            = _mm_mul_ps(beta2,rsq30);
601             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
602             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
603             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
604             felec            = _mm_mul_ps(qq30,felec);
605             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
606             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
607             velec            = _mm_mul_ps(qq30,velec);
608
609             /* Update potential sum for this i atom from the interaction with this j atom. */
610             velec            = _mm_andnot_ps(dummy_mask,velec);
611             velecsum         = _mm_add_ps(velecsum,velec);
612
613             fscal            = felec;
614
615             fscal            = _mm_andnot_ps(dummy_mask,fscal);
616
617              /* Update vectorial force */
618             fix3             = _mm_macc_ps(dx30,fscal,fix3);
619             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
620             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
621
622             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
623             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
624             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
625
626             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
627             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
628             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
629             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
630
631             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
632
633             /* Inner loop uses 125 flops */
634         }
635
636         /* End of innermost loop */
637
638         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
639                                               f+i_coord_offset,fshift+i_shift_offset);
640
641         ggid                        = gid[iidx];
642         /* Update potential energies */
643         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
644         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
645
646         /* Increment number of inner iterations */
647         inneriter                  += j_index_end - j_index_start;
648
649         /* Outer loop uses 26 flops */
650     }
651
652     /* Increment number of outer iterations */
653     outeriter        += nri;
654
655     /* Update outer/inner flops */
656
657     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*125);
658 }
659 /*
660  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_128_fma_single
661  * Electrostatics interaction: Ewald
662  * VdW interaction:            LennardJones
663  * Geometry:                   Water4-Particle
664  * Calculate force/pot:        Force
665  */
666 void
667 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_128_fma_single
668                     (t_nblist                    * gmx_restrict       nlist,
669                      rvec                        * gmx_restrict          xx,
670                      rvec                        * gmx_restrict          ff,
671                      t_forcerec                  * gmx_restrict          fr,
672                      t_mdatoms                   * gmx_restrict     mdatoms,
673                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
674                      t_nrnb                      * gmx_restrict        nrnb)
675 {
676     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
677      * just 0 for non-waters.
678      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
679      * jnr indices corresponding to data put in the four positions in the SIMD register.
680      */
681     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
682     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
683     int              jnrA,jnrB,jnrC,jnrD;
684     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
685     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
686     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
687     real             rcutoff_scalar;
688     real             *shiftvec,*fshift,*x,*f;
689     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
690     real             scratch[4*DIM];
691     __m128           fscal,rcutoff,rcutoff2,jidxall;
692     int              vdwioffset0;
693     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
694     int              vdwioffset1;
695     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
696     int              vdwioffset2;
697     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
698     int              vdwioffset3;
699     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
700     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
701     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
702     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
703     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
704     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
705     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
706     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
707     real             *charge;
708     int              nvdwtype;
709     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
710     int              *vdwtype;
711     real             *vdwparam;
712     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
713     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
714     __m128i          ewitab;
715     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
716     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
717     real             *ewtab;
718     __m128           dummy_mask,cutoff_mask;
719     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
720     __m128           one     = _mm_set1_ps(1.0);
721     __m128           two     = _mm_set1_ps(2.0);
722     x                = xx[0];
723     f                = ff[0];
724
725     nri              = nlist->nri;
726     iinr             = nlist->iinr;
727     jindex           = nlist->jindex;
728     jjnr             = nlist->jjnr;
729     shiftidx         = nlist->shift;
730     gid              = nlist->gid;
731     shiftvec         = fr->shift_vec[0];
732     fshift           = fr->fshift[0];
733     facel            = _mm_set1_ps(fr->epsfac);
734     charge           = mdatoms->chargeA;
735     nvdwtype         = fr->ntype;
736     vdwparam         = fr->nbfp;
737     vdwtype          = mdatoms->typeA;
738
739     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
740     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
741     beta2            = _mm_mul_ps(beta,beta);
742     beta3            = _mm_mul_ps(beta,beta2);
743     ewtab            = fr->ic->tabq_coul_F;
744     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
745     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
746
747     /* Setup water-specific parameters */
748     inr              = nlist->iinr[0];
749     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
750     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
751     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
752     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
753
754     /* Avoid stupid compiler warnings */
755     jnrA = jnrB = jnrC = jnrD = 0;
756     j_coord_offsetA = 0;
757     j_coord_offsetB = 0;
758     j_coord_offsetC = 0;
759     j_coord_offsetD = 0;
760
761     outeriter        = 0;
762     inneriter        = 0;
763
764     for(iidx=0;iidx<4*DIM;iidx++)
765     {
766         scratch[iidx] = 0.0;
767     }
768
769     /* Start outer loop over neighborlists */
770     for(iidx=0; iidx<nri; iidx++)
771     {
772         /* Load shift vector for this list */
773         i_shift_offset   = DIM*shiftidx[iidx];
774
775         /* Load limits for loop over neighbors */
776         j_index_start    = jindex[iidx];
777         j_index_end      = jindex[iidx+1];
778
779         /* Get outer coordinate index */
780         inr              = iinr[iidx];
781         i_coord_offset   = DIM*inr;
782
783         /* Load i particle coords and add shift vector */
784         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
785                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
786
787         fix0             = _mm_setzero_ps();
788         fiy0             = _mm_setzero_ps();
789         fiz0             = _mm_setzero_ps();
790         fix1             = _mm_setzero_ps();
791         fiy1             = _mm_setzero_ps();
792         fiz1             = _mm_setzero_ps();
793         fix2             = _mm_setzero_ps();
794         fiy2             = _mm_setzero_ps();
795         fiz2             = _mm_setzero_ps();
796         fix3             = _mm_setzero_ps();
797         fiy3             = _mm_setzero_ps();
798         fiz3             = _mm_setzero_ps();
799
800         /* Start inner kernel loop */
801         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
802         {
803
804             /* Get j neighbor index, and coordinate index */
805             jnrA             = jjnr[jidx];
806             jnrB             = jjnr[jidx+1];
807             jnrC             = jjnr[jidx+2];
808             jnrD             = jjnr[jidx+3];
809             j_coord_offsetA  = DIM*jnrA;
810             j_coord_offsetB  = DIM*jnrB;
811             j_coord_offsetC  = DIM*jnrC;
812             j_coord_offsetD  = DIM*jnrD;
813
814             /* load j atom coordinates */
815             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
816                                               x+j_coord_offsetC,x+j_coord_offsetD,
817                                               &jx0,&jy0,&jz0);
818
819             /* Calculate displacement vector */
820             dx00             = _mm_sub_ps(ix0,jx0);
821             dy00             = _mm_sub_ps(iy0,jy0);
822             dz00             = _mm_sub_ps(iz0,jz0);
823             dx10             = _mm_sub_ps(ix1,jx0);
824             dy10             = _mm_sub_ps(iy1,jy0);
825             dz10             = _mm_sub_ps(iz1,jz0);
826             dx20             = _mm_sub_ps(ix2,jx0);
827             dy20             = _mm_sub_ps(iy2,jy0);
828             dz20             = _mm_sub_ps(iz2,jz0);
829             dx30             = _mm_sub_ps(ix3,jx0);
830             dy30             = _mm_sub_ps(iy3,jy0);
831             dz30             = _mm_sub_ps(iz3,jz0);
832
833             /* Calculate squared distance and things based on it */
834             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
835             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
836             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
837             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
838
839             rinv10           = gmx_mm_invsqrt_ps(rsq10);
840             rinv20           = gmx_mm_invsqrt_ps(rsq20);
841             rinv30           = gmx_mm_invsqrt_ps(rsq30);
842
843             rinvsq00         = gmx_mm_inv_ps(rsq00);
844             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
845             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
846             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
847
848             /* Load parameters for j particles */
849             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
850                                                               charge+jnrC+0,charge+jnrD+0);
851             vdwjidx0A        = 2*vdwtype[jnrA+0];
852             vdwjidx0B        = 2*vdwtype[jnrB+0];
853             vdwjidx0C        = 2*vdwtype[jnrC+0];
854             vdwjidx0D        = 2*vdwtype[jnrD+0];
855
856             fjx0             = _mm_setzero_ps();
857             fjy0             = _mm_setzero_ps();
858             fjz0             = _mm_setzero_ps();
859
860             /**************************
861              * CALCULATE INTERACTIONS *
862              **************************/
863
864             /* Compute parameters for interactions between i and j atoms */
865             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
866                                          vdwparam+vdwioffset0+vdwjidx0B,
867                                          vdwparam+vdwioffset0+vdwjidx0C,
868                                          vdwparam+vdwioffset0+vdwjidx0D,
869                                          &c6_00,&c12_00);
870
871             /* LENNARD-JONES DISPERSION/REPULSION */
872
873             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
874             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
875
876             fscal            = fvdw;
877
878              /* Update vectorial force */
879             fix0             = _mm_macc_ps(dx00,fscal,fix0);
880             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
881             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
882
883             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
884             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
885             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             r10              = _mm_mul_ps(rsq10,rinv10);
892
893             /* Compute parameters for interactions between i and j atoms */
894             qq10             = _mm_mul_ps(iq1,jq0);
895
896             /* EWALD ELECTROSTATICS */
897
898             /* Analytical PME correction */
899             zeta2            = _mm_mul_ps(beta2,rsq10);
900             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
901             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
902             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
903             felec            = _mm_mul_ps(qq10,felec);
904
905             fscal            = felec;
906
907              /* Update vectorial force */
908             fix1             = _mm_macc_ps(dx10,fscal,fix1);
909             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
910             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
911
912             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
913             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
914             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
915
916             /**************************
917              * CALCULATE INTERACTIONS *
918              **************************/
919
920             r20              = _mm_mul_ps(rsq20,rinv20);
921
922             /* Compute parameters for interactions between i and j atoms */
923             qq20             = _mm_mul_ps(iq2,jq0);
924
925             /* EWALD ELECTROSTATICS */
926
927             /* Analytical PME correction */
928             zeta2            = _mm_mul_ps(beta2,rsq20);
929             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
930             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
931             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
932             felec            = _mm_mul_ps(qq20,felec);
933
934             fscal            = felec;
935
936              /* Update vectorial force */
937             fix2             = _mm_macc_ps(dx20,fscal,fix2);
938             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
939             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
940
941             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
942             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
943             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
944
945             /**************************
946              * CALCULATE INTERACTIONS *
947              **************************/
948
949             r30              = _mm_mul_ps(rsq30,rinv30);
950
951             /* Compute parameters for interactions between i and j atoms */
952             qq30             = _mm_mul_ps(iq3,jq0);
953
954             /* EWALD ELECTROSTATICS */
955
956             /* Analytical PME correction */
957             zeta2            = _mm_mul_ps(beta2,rsq30);
958             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
959             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
960             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
961             felec            = _mm_mul_ps(qq30,felec);
962
963             fscal            = felec;
964
965              /* Update vectorial force */
966             fix3             = _mm_macc_ps(dx30,fscal,fix3);
967             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
968             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
969
970             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
971             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
972             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
973
974             fjptrA             = f+j_coord_offsetA;
975             fjptrB             = f+j_coord_offsetB;
976             fjptrC             = f+j_coord_offsetC;
977             fjptrD             = f+j_coord_offsetD;
978
979             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
980
981             /* Inner loop uses 114 flops */
982         }
983
984         if(jidx<j_index_end)
985         {
986
987             /* Get j neighbor index, and coordinate index */
988             jnrlistA         = jjnr[jidx];
989             jnrlistB         = jjnr[jidx+1];
990             jnrlistC         = jjnr[jidx+2];
991             jnrlistD         = jjnr[jidx+3];
992             /* Sign of each element will be negative for non-real atoms.
993              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
994              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
995              */
996             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
997             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
998             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
999             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1000             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1001             j_coord_offsetA  = DIM*jnrA;
1002             j_coord_offsetB  = DIM*jnrB;
1003             j_coord_offsetC  = DIM*jnrC;
1004             j_coord_offsetD  = DIM*jnrD;
1005
1006             /* load j atom coordinates */
1007             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1008                                               x+j_coord_offsetC,x+j_coord_offsetD,
1009                                               &jx0,&jy0,&jz0);
1010
1011             /* Calculate displacement vector */
1012             dx00             = _mm_sub_ps(ix0,jx0);
1013             dy00             = _mm_sub_ps(iy0,jy0);
1014             dz00             = _mm_sub_ps(iz0,jz0);
1015             dx10             = _mm_sub_ps(ix1,jx0);
1016             dy10             = _mm_sub_ps(iy1,jy0);
1017             dz10             = _mm_sub_ps(iz1,jz0);
1018             dx20             = _mm_sub_ps(ix2,jx0);
1019             dy20             = _mm_sub_ps(iy2,jy0);
1020             dz20             = _mm_sub_ps(iz2,jz0);
1021             dx30             = _mm_sub_ps(ix3,jx0);
1022             dy30             = _mm_sub_ps(iy3,jy0);
1023             dz30             = _mm_sub_ps(iz3,jz0);
1024
1025             /* Calculate squared distance and things based on it */
1026             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1027             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1028             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1029             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1030
1031             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1032             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1033             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1034
1035             rinvsq00         = gmx_mm_inv_ps(rsq00);
1036             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1037             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1038             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1039
1040             /* Load parameters for j particles */
1041             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1042                                                               charge+jnrC+0,charge+jnrD+0);
1043             vdwjidx0A        = 2*vdwtype[jnrA+0];
1044             vdwjidx0B        = 2*vdwtype[jnrB+0];
1045             vdwjidx0C        = 2*vdwtype[jnrC+0];
1046             vdwjidx0D        = 2*vdwtype[jnrD+0];
1047
1048             fjx0             = _mm_setzero_ps();
1049             fjy0             = _mm_setzero_ps();
1050             fjz0             = _mm_setzero_ps();
1051
1052             /**************************
1053              * CALCULATE INTERACTIONS *
1054              **************************/
1055
1056             /* Compute parameters for interactions between i and j atoms */
1057             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1058                                          vdwparam+vdwioffset0+vdwjidx0B,
1059                                          vdwparam+vdwioffset0+vdwjidx0C,
1060                                          vdwparam+vdwioffset0+vdwjidx0D,
1061                                          &c6_00,&c12_00);
1062
1063             /* LENNARD-JONES DISPERSION/REPULSION */
1064
1065             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1066             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1067
1068             fscal            = fvdw;
1069
1070             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1071
1072              /* Update vectorial force */
1073             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1074             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1075             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1076
1077             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1078             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1079             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1080
1081             /**************************
1082              * CALCULATE INTERACTIONS *
1083              **************************/
1084
1085             r10              = _mm_mul_ps(rsq10,rinv10);
1086             r10              = _mm_andnot_ps(dummy_mask,r10);
1087
1088             /* Compute parameters for interactions between i and j atoms */
1089             qq10             = _mm_mul_ps(iq1,jq0);
1090
1091             /* EWALD ELECTROSTATICS */
1092
1093             /* Analytical PME correction */
1094             zeta2            = _mm_mul_ps(beta2,rsq10);
1095             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1096             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1097             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1098             felec            = _mm_mul_ps(qq10,felec);
1099
1100             fscal            = felec;
1101
1102             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1103
1104              /* Update vectorial force */
1105             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1106             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1107             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1108
1109             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1110             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1111             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1112
1113             /**************************
1114              * CALCULATE INTERACTIONS *
1115              **************************/
1116
1117             r20              = _mm_mul_ps(rsq20,rinv20);
1118             r20              = _mm_andnot_ps(dummy_mask,r20);
1119
1120             /* Compute parameters for interactions between i and j atoms */
1121             qq20             = _mm_mul_ps(iq2,jq0);
1122
1123             /* EWALD ELECTROSTATICS */
1124
1125             /* Analytical PME correction */
1126             zeta2            = _mm_mul_ps(beta2,rsq20);
1127             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1128             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1129             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1130             felec            = _mm_mul_ps(qq20,felec);
1131
1132             fscal            = felec;
1133
1134             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1135
1136              /* Update vectorial force */
1137             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1138             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1139             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1140
1141             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1142             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1143             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1144
1145             /**************************
1146              * CALCULATE INTERACTIONS *
1147              **************************/
1148
1149             r30              = _mm_mul_ps(rsq30,rinv30);
1150             r30              = _mm_andnot_ps(dummy_mask,r30);
1151
1152             /* Compute parameters for interactions between i and j atoms */
1153             qq30             = _mm_mul_ps(iq3,jq0);
1154
1155             /* EWALD ELECTROSTATICS */
1156
1157             /* Analytical PME correction */
1158             zeta2            = _mm_mul_ps(beta2,rsq30);
1159             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1160             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1161             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1162             felec            = _mm_mul_ps(qq30,felec);
1163
1164             fscal            = felec;
1165
1166             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1167
1168              /* Update vectorial force */
1169             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1170             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1171             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1172
1173             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1174             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1175             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1176
1177             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1178             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1179             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1180             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1181
1182             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1183
1184             /* Inner loop uses 117 flops */
1185         }
1186
1187         /* End of innermost loop */
1188
1189         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1190                                               f+i_coord_offset,fshift+i_shift_offset);
1191
1192         /* Increment number of inner iterations */
1193         inneriter                  += j_index_end - j_index_start;
1194
1195         /* Outer loop uses 24 flops */
1196     }
1197
1198     /* Increment number of outer iterations */
1199     outeriter        += nri;
1200
1201     /* Update outer/inner flops */
1202
1203     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*117);
1204 }