Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJ_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128i          ewitab;
106     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
108     real             *ewtab;
109     __m128           dummy_mask,cutoff_mask;
110     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
111     __m128           one     = _mm_set1_ps(1.0);
112     __m128           two     = _mm_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
131     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
132     beta2            = _mm_mul_ps(beta,beta);
133     beta3            = _mm_mul_ps(beta,beta2);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
141     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
142     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = jnrC = jnrD = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149     j_coord_offsetC = 0;
150     j_coord_offsetD = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
177
178         fix0             = _mm_setzero_ps();
179         fiy0             = _mm_setzero_ps();
180         fiz0             = _mm_setzero_ps();
181         fix1             = _mm_setzero_ps();
182         fiy1             = _mm_setzero_ps();
183         fiz1             = _mm_setzero_ps();
184         fix2             = _mm_setzero_ps();
185         fiy2             = _mm_setzero_ps();
186         fiz2             = _mm_setzero_ps();
187         fix3             = _mm_setzero_ps();
188         fiy3             = _mm_setzero_ps();
189         fiz3             = _mm_setzero_ps();
190
191         /* Reset potential sums */
192         velecsum         = _mm_setzero_ps();
193         vvdwsum          = _mm_setzero_ps();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208
209             /* load j atom coordinates */
210             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211                                               x+j_coord_offsetC,x+j_coord_offsetD,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_ps(ix0,jx0);
216             dy00             = _mm_sub_ps(iy0,jy0);
217             dz00             = _mm_sub_ps(iz0,jz0);
218             dx10             = _mm_sub_ps(ix1,jx0);
219             dy10             = _mm_sub_ps(iy1,jy0);
220             dz10             = _mm_sub_ps(iz1,jz0);
221             dx20             = _mm_sub_ps(ix2,jx0);
222             dy20             = _mm_sub_ps(iy2,jy0);
223             dz20             = _mm_sub_ps(iz2,jz0);
224             dx30             = _mm_sub_ps(ix3,jx0);
225             dy30             = _mm_sub_ps(iy3,jy0);
226             dz30             = _mm_sub_ps(iz3,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
232             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
233
234             rinv10           = gmx_mm_invsqrt_ps(rsq10);
235             rinv20           = gmx_mm_invsqrt_ps(rsq20);
236             rinv30           = gmx_mm_invsqrt_ps(rsq30);
237
238             rinvsq00         = gmx_mm_inv_ps(rsq00);
239             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
240             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
241             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
242
243             /* Load parameters for j particles */
244             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
245                                                               charge+jnrC+0,charge+jnrD+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248             vdwjidx0C        = 2*vdwtype[jnrC+0];
249             vdwjidx0D        = 2*vdwtype[jnrD+0];
250
251             fjx0             = _mm_setzero_ps();
252             fjy0             = _mm_setzero_ps();
253             fjz0             = _mm_setzero_ps();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             /* Compute parameters for interactions between i and j atoms */
260             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
261                                          vdwparam+vdwioffset0+vdwjidx0B,
262                                          vdwparam+vdwioffset0+vdwjidx0C,
263                                          vdwparam+vdwioffset0+vdwjidx0D,
264                                          &c6_00,&c12_00);
265
266             /* LENNARD-JONES DISPERSION/REPULSION */
267
268             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
269             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
270             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
271             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
272             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
276
277             fscal            = fvdw;
278
279              /* Update vectorial force */
280             fix0             = _mm_macc_ps(dx00,fscal,fix0);
281             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
282             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
283
284             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
285             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
286             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
287
288             /**************************
289              * CALCULATE INTERACTIONS *
290              **************************/
291
292             r10              = _mm_mul_ps(rsq10,rinv10);
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq10             = _mm_mul_ps(iq1,jq0);
296
297             /* EWALD ELECTROSTATICS */
298
299             /* Analytical PME correction */
300             zeta2            = _mm_mul_ps(beta2,rsq10);
301             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
302             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
303             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
304             felec            = _mm_mul_ps(qq10,felec);
305             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
306             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
307             velec            = _mm_mul_ps(qq10,velec);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velecsum         = _mm_add_ps(velecsum,velec);
311
312             fscal            = felec;
313
314              /* Update vectorial force */
315             fix1             = _mm_macc_ps(dx10,fscal,fix1);
316             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
317             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
318
319             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
320             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
321             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
322
323             /**************************
324              * CALCULATE INTERACTIONS *
325              **************************/
326
327             r20              = _mm_mul_ps(rsq20,rinv20);
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq20             = _mm_mul_ps(iq2,jq0);
331
332             /* EWALD ELECTROSTATICS */
333
334             /* Analytical PME correction */
335             zeta2            = _mm_mul_ps(beta2,rsq20);
336             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
337             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
338             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
339             felec            = _mm_mul_ps(qq20,felec);
340             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
341             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
342             velec            = _mm_mul_ps(qq20,velec);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm_add_ps(velecsum,velec);
346
347             fscal            = felec;
348
349              /* Update vectorial force */
350             fix2             = _mm_macc_ps(dx20,fscal,fix2);
351             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
352             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
353
354             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
355             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
356             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             r30              = _mm_mul_ps(rsq30,rinv30);
363
364             /* Compute parameters for interactions between i and j atoms */
365             qq30             = _mm_mul_ps(iq3,jq0);
366
367             /* EWALD ELECTROSTATICS */
368
369             /* Analytical PME correction */
370             zeta2            = _mm_mul_ps(beta2,rsq30);
371             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
372             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
373             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
374             felec            = _mm_mul_ps(qq30,felec);
375             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
376             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
377             velec            = _mm_mul_ps(qq30,velec);
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velecsum         = _mm_add_ps(velecsum,velec);
381
382             fscal            = felec;
383
384              /* Update vectorial force */
385             fix3             = _mm_macc_ps(dx30,fscal,fix3);
386             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
387             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
388
389             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
390             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
391             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
392
393             fjptrA             = f+j_coord_offsetA;
394             fjptrB             = f+j_coord_offsetB;
395             fjptrC             = f+j_coord_offsetC;
396             fjptrD             = f+j_coord_offsetD;
397
398             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
399
400             /* Inner loop uses 122 flops */
401         }
402
403         if(jidx<j_index_end)
404         {
405
406             /* Get j neighbor index, and coordinate index */
407             jnrlistA         = jjnr[jidx];
408             jnrlistB         = jjnr[jidx+1];
409             jnrlistC         = jjnr[jidx+2];
410             jnrlistD         = jjnr[jidx+3];
411             /* Sign of each element will be negative for non-real atoms.
412              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
413              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
414              */
415             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
416             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
417             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
418             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
419             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
420             j_coord_offsetA  = DIM*jnrA;
421             j_coord_offsetB  = DIM*jnrB;
422             j_coord_offsetC  = DIM*jnrC;
423             j_coord_offsetD  = DIM*jnrD;
424
425             /* load j atom coordinates */
426             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
427                                               x+j_coord_offsetC,x+j_coord_offsetD,
428                                               &jx0,&jy0,&jz0);
429
430             /* Calculate displacement vector */
431             dx00             = _mm_sub_ps(ix0,jx0);
432             dy00             = _mm_sub_ps(iy0,jy0);
433             dz00             = _mm_sub_ps(iz0,jz0);
434             dx10             = _mm_sub_ps(ix1,jx0);
435             dy10             = _mm_sub_ps(iy1,jy0);
436             dz10             = _mm_sub_ps(iz1,jz0);
437             dx20             = _mm_sub_ps(ix2,jx0);
438             dy20             = _mm_sub_ps(iy2,jy0);
439             dz20             = _mm_sub_ps(iz2,jz0);
440             dx30             = _mm_sub_ps(ix3,jx0);
441             dy30             = _mm_sub_ps(iy3,jy0);
442             dz30             = _mm_sub_ps(iz3,jz0);
443
444             /* Calculate squared distance and things based on it */
445             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
446             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
447             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
448             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
449
450             rinv10           = gmx_mm_invsqrt_ps(rsq10);
451             rinv20           = gmx_mm_invsqrt_ps(rsq20);
452             rinv30           = gmx_mm_invsqrt_ps(rsq30);
453
454             rinvsq00         = gmx_mm_inv_ps(rsq00);
455             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
456             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
457             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
458
459             /* Load parameters for j particles */
460             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
461                                                               charge+jnrC+0,charge+jnrD+0);
462             vdwjidx0A        = 2*vdwtype[jnrA+0];
463             vdwjidx0B        = 2*vdwtype[jnrB+0];
464             vdwjidx0C        = 2*vdwtype[jnrC+0];
465             vdwjidx0D        = 2*vdwtype[jnrD+0];
466
467             fjx0             = _mm_setzero_ps();
468             fjy0             = _mm_setzero_ps();
469             fjz0             = _mm_setzero_ps();
470
471             /**************************
472              * CALCULATE INTERACTIONS *
473              **************************/
474
475             /* Compute parameters for interactions between i and j atoms */
476             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
477                                          vdwparam+vdwioffset0+vdwjidx0B,
478                                          vdwparam+vdwioffset0+vdwjidx0C,
479                                          vdwparam+vdwioffset0+vdwjidx0D,
480                                          &c6_00,&c12_00);
481
482             /* LENNARD-JONES DISPERSION/REPULSION */
483
484             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
485             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
486             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
487             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
488             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
489
490             /* Update potential sum for this i atom from the interaction with this j atom. */
491             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
492             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
493
494             fscal            = fvdw;
495
496             fscal            = _mm_andnot_ps(dummy_mask,fscal);
497
498              /* Update vectorial force */
499             fix0             = _mm_macc_ps(dx00,fscal,fix0);
500             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
501             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
502
503             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
504             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
505             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             r10              = _mm_mul_ps(rsq10,rinv10);
512             r10              = _mm_andnot_ps(dummy_mask,r10);
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq10             = _mm_mul_ps(iq1,jq0);
516
517             /* EWALD ELECTROSTATICS */
518
519             /* Analytical PME correction */
520             zeta2            = _mm_mul_ps(beta2,rsq10);
521             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
522             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
523             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
524             felec            = _mm_mul_ps(qq10,felec);
525             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
526             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
527             velec            = _mm_mul_ps(qq10,velec);
528
529             /* Update potential sum for this i atom from the interaction with this j atom. */
530             velec            = _mm_andnot_ps(dummy_mask,velec);
531             velecsum         = _mm_add_ps(velecsum,velec);
532
533             fscal            = felec;
534
535             fscal            = _mm_andnot_ps(dummy_mask,fscal);
536
537              /* Update vectorial force */
538             fix1             = _mm_macc_ps(dx10,fscal,fix1);
539             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
540             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
541
542             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
543             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
544             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             r20              = _mm_mul_ps(rsq20,rinv20);
551             r20              = _mm_andnot_ps(dummy_mask,r20);
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq20             = _mm_mul_ps(iq2,jq0);
555
556             /* EWALD ELECTROSTATICS */
557
558             /* Analytical PME correction */
559             zeta2            = _mm_mul_ps(beta2,rsq20);
560             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
561             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
562             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
563             felec            = _mm_mul_ps(qq20,felec);
564             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
565             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
566             velec            = _mm_mul_ps(qq20,velec);
567
568             /* Update potential sum for this i atom from the interaction with this j atom. */
569             velec            = _mm_andnot_ps(dummy_mask,velec);
570             velecsum         = _mm_add_ps(velecsum,velec);
571
572             fscal            = felec;
573
574             fscal            = _mm_andnot_ps(dummy_mask,fscal);
575
576              /* Update vectorial force */
577             fix2             = _mm_macc_ps(dx20,fscal,fix2);
578             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
579             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
580
581             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
582             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
583             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
584
585             /**************************
586              * CALCULATE INTERACTIONS *
587              **************************/
588
589             r30              = _mm_mul_ps(rsq30,rinv30);
590             r30              = _mm_andnot_ps(dummy_mask,r30);
591
592             /* Compute parameters for interactions between i and j atoms */
593             qq30             = _mm_mul_ps(iq3,jq0);
594
595             /* EWALD ELECTROSTATICS */
596
597             /* Analytical PME correction */
598             zeta2            = _mm_mul_ps(beta2,rsq30);
599             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
600             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
601             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
602             felec            = _mm_mul_ps(qq30,felec);
603             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
604             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
605             velec            = _mm_mul_ps(qq30,velec);
606
607             /* Update potential sum for this i atom from the interaction with this j atom. */
608             velec            = _mm_andnot_ps(dummy_mask,velec);
609             velecsum         = _mm_add_ps(velecsum,velec);
610
611             fscal            = felec;
612
613             fscal            = _mm_andnot_ps(dummy_mask,fscal);
614
615              /* Update vectorial force */
616             fix3             = _mm_macc_ps(dx30,fscal,fix3);
617             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
618             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
619
620             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
621             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
622             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
623
624             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
625             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
626             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
627             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
628
629             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
630
631             /* Inner loop uses 125 flops */
632         }
633
634         /* End of innermost loop */
635
636         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
637                                               f+i_coord_offset,fshift+i_shift_offset);
638
639         ggid                        = gid[iidx];
640         /* Update potential energies */
641         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
642         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
643
644         /* Increment number of inner iterations */
645         inneriter                  += j_index_end - j_index_start;
646
647         /* Outer loop uses 26 flops */
648     }
649
650     /* Increment number of outer iterations */
651     outeriter        += nri;
652
653     /* Update outer/inner flops */
654
655     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*125);
656 }
657 /*
658  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_128_fma_single
659  * Electrostatics interaction: Ewald
660  * VdW interaction:            LennardJones
661  * Geometry:                   Water4-Particle
662  * Calculate force/pot:        Force
663  */
664 void
665 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_128_fma_single
666                     (t_nblist                    * gmx_restrict       nlist,
667                      rvec                        * gmx_restrict          xx,
668                      rvec                        * gmx_restrict          ff,
669                      t_forcerec                  * gmx_restrict          fr,
670                      t_mdatoms                   * gmx_restrict     mdatoms,
671                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
672                      t_nrnb                      * gmx_restrict        nrnb)
673 {
674     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
675      * just 0 for non-waters.
676      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
677      * jnr indices corresponding to data put in the four positions in the SIMD register.
678      */
679     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
680     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
681     int              jnrA,jnrB,jnrC,jnrD;
682     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
683     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
684     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
685     real             rcutoff_scalar;
686     real             *shiftvec,*fshift,*x,*f;
687     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
688     real             scratch[4*DIM];
689     __m128           fscal,rcutoff,rcutoff2,jidxall;
690     int              vdwioffset0;
691     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
692     int              vdwioffset1;
693     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
694     int              vdwioffset2;
695     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
696     int              vdwioffset3;
697     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
698     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
699     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
700     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
701     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
702     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
703     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
704     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
705     real             *charge;
706     int              nvdwtype;
707     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
708     int              *vdwtype;
709     real             *vdwparam;
710     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
711     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
712     __m128i          ewitab;
713     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
714     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
715     real             *ewtab;
716     __m128           dummy_mask,cutoff_mask;
717     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
718     __m128           one     = _mm_set1_ps(1.0);
719     __m128           two     = _mm_set1_ps(2.0);
720     x                = xx[0];
721     f                = ff[0];
722
723     nri              = nlist->nri;
724     iinr             = nlist->iinr;
725     jindex           = nlist->jindex;
726     jjnr             = nlist->jjnr;
727     shiftidx         = nlist->shift;
728     gid              = nlist->gid;
729     shiftvec         = fr->shift_vec[0];
730     fshift           = fr->fshift[0];
731     facel            = _mm_set1_ps(fr->epsfac);
732     charge           = mdatoms->chargeA;
733     nvdwtype         = fr->ntype;
734     vdwparam         = fr->nbfp;
735     vdwtype          = mdatoms->typeA;
736
737     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
738     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
739     beta2            = _mm_mul_ps(beta,beta);
740     beta3            = _mm_mul_ps(beta,beta2);
741     ewtab            = fr->ic->tabq_coul_F;
742     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
743     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
744
745     /* Setup water-specific parameters */
746     inr              = nlist->iinr[0];
747     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
748     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
749     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
750     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
751
752     /* Avoid stupid compiler warnings */
753     jnrA = jnrB = jnrC = jnrD = 0;
754     j_coord_offsetA = 0;
755     j_coord_offsetB = 0;
756     j_coord_offsetC = 0;
757     j_coord_offsetD = 0;
758
759     outeriter        = 0;
760     inneriter        = 0;
761
762     for(iidx=0;iidx<4*DIM;iidx++)
763     {
764         scratch[iidx] = 0.0;
765     }
766
767     /* Start outer loop over neighborlists */
768     for(iidx=0; iidx<nri; iidx++)
769     {
770         /* Load shift vector for this list */
771         i_shift_offset   = DIM*shiftidx[iidx];
772
773         /* Load limits for loop over neighbors */
774         j_index_start    = jindex[iidx];
775         j_index_end      = jindex[iidx+1];
776
777         /* Get outer coordinate index */
778         inr              = iinr[iidx];
779         i_coord_offset   = DIM*inr;
780
781         /* Load i particle coords and add shift vector */
782         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
783                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
784
785         fix0             = _mm_setzero_ps();
786         fiy0             = _mm_setzero_ps();
787         fiz0             = _mm_setzero_ps();
788         fix1             = _mm_setzero_ps();
789         fiy1             = _mm_setzero_ps();
790         fiz1             = _mm_setzero_ps();
791         fix2             = _mm_setzero_ps();
792         fiy2             = _mm_setzero_ps();
793         fiz2             = _mm_setzero_ps();
794         fix3             = _mm_setzero_ps();
795         fiy3             = _mm_setzero_ps();
796         fiz3             = _mm_setzero_ps();
797
798         /* Start inner kernel loop */
799         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
800         {
801
802             /* Get j neighbor index, and coordinate index */
803             jnrA             = jjnr[jidx];
804             jnrB             = jjnr[jidx+1];
805             jnrC             = jjnr[jidx+2];
806             jnrD             = jjnr[jidx+3];
807             j_coord_offsetA  = DIM*jnrA;
808             j_coord_offsetB  = DIM*jnrB;
809             j_coord_offsetC  = DIM*jnrC;
810             j_coord_offsetD  = DIM*jnrD;
811
812             /* load j atom coordinates */
813             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
814                                               x+j_coord_offsetC,x+j_coord_offsetD,
815                                               &jx0,&jy0,&jz0);
816
817             /* Calculate displacement vector */
818             dx00             = _mm_sub_ps(ix0,jx0);
819             dy00             = _mm_sub_ps(iy0,jy0);
820             dz00             = _mm_sub_ps(iz0,jz0);
821             dx10             = _mm_sub_ps(ix1,jx0);
822             dy10             = _mm_sub_ps(iy1,jy0);
823             dz10             = _mm_sub_ps(iz1,jz0);
824             dx20             = _mm_sub_ps(ix2,jx0);
825             dy20             = _mm_sub_ps(iy2,jy0);
826             dz20             = _mm_sub_ps(iz2,jz0);
827             dx30             = _mm_sub_ps(ix3,jx0);
828             dy30             = _mm_sub_ps(iy3,jy0);
829             dz30             = _mm_sub_ps(iz3,jz0);
830
831             /* Calculate squared distance and things based on it */
832             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
833             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
834             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
835             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
836
837             rinv10           = gmx_mm_invsqrt_ps(rsq10);
838             rinv20           = gmx_mm_invsqrt_ps(rsq20);
839             rinv30           = gmx_mm_invsqrt_ps(rsq30);
840
841             rinvsq00         = gmx_mm_inv_ps(rsq00);
842             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
843             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
844             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
845
846             /* Load parameters for j particles */
847             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
848                                                               charge+jnrC+0,charge+jnrD+0);
849             vdwjidx0A        = 2*vdwtype[jnrA+0];
850             vdwjidx0B        = 2*vdwtype[jnrB+0];
851             vdwjidx0C        = 2*vdwtype[jnrC+0];
852             vdwjidx0D        = 2*vdwtype[jnrD+0];
853
854             fjx0             = _mm_setzero_ps();
855             fjy0             = _mm_setzero_ps();
856             fjz0             = _mm_setzero_ps();
857
858             /**************************
859              * CALCULATE INTERACTIONS *
860              **************************/
861
862             /* Compute parameters for interactions between i and j atoms */
863             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
864                                          vdwparam+vdwioffset0+vdwjidx0B,
865                                          vdwparam+vdwioffset0+vdwjidx0C,
866                                          vdwparam+vdwioffset0+vdwjidx0D,
867                                          &c6_00,&c12_00);
868
869             /* LENNARD-JONES DISPERSION/REPULSION */
870
871             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
872             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
873
874             fscal            = fvdw;
875
876              /* Update vectorial force */
877             fix0             = _mm_macc_ps(dx00,fscal,fix0);
878             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
879             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
880
881             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
882             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
883             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
884
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             r10              = _mm_mul_ps(rsq10,rinv10);
890
891             /* Compute parameters for interactions between i and j atoms */
892             qq10             = _mm_mul_ps(iq1,jq0);
893
894             /* EWALD ELECTROSTATICS */
895
896             /* Analytical PME correction */
897             zeta2            = _mm_mul_ps(beta2,rsq10);
898             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
899             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
900             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
901             felec            = _mm_mul_ps(qq10,felec);
902
903             fscal            = felec;
904
905              /* Update vectorial force */
906             fix1             = _mm_macc_ps(dx10,fscal,fix1);
907             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
908             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
909
910             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
911             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
912             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
913
914             /**************************
915              * CALCULATE INTERACTIONS *
916              **************************/
917
918             r20              = _mm_mul_ps(rsq20,rinv20);
919
920             /* Compute parameters for interactions between i and j atoms */
921             qq20             = _mm_mul_ps(iq2,jq0);
922
923             /* EWALD ELECTROSTATICS */
924
925             /* Analytical PME correction */
926             zeta2            = _mm_mul_ps(beta2,rsq20);
927             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
928             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
929             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
930             felec            = _mm_mul_ps(qq20,felec);
931
932             fscal            = felec;
933
934              /* Update vectorial force */
935             fix2             = _mm_macc_ps(dx20,fscal,fix2);
936             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
937             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
938
939             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
940             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
941             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
942
943             /**************************
944              * CALCULATE INTERACTIONS *
945              **************************/
946
947             r30              = _mm_mul_ps(rsq30,rinv30);
948
949             /* Compute parameters for interactions between i and j atoms */
950             qq30             = _mm_mul_ps(iq3,jq0);
951
952             /* EWALD ELECTROSTATICS */
953
954             /* Analytical PME correction */
955             zeta2            = _mm_mul_ps(beta2,rsq30);
956             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
957             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
958             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
959             felec            = _mm_mul_ps(qq30,felec);
960
961             fscal            = felec;
962
963              /* Update vectorial force */
964             fix3             = _mm_macc_ps(dx30,fscal,fix3);
965             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
966             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
967
968             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
969             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
970             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
971
972             fjptrA             = f+j_coord_offsetA;
973             fjptrB             = f+j_coord_offsetB;
974             fjptrC             = f+j_coord_offsetC;
975             fjptrD             = f+j_coord_offsetD;
976
977             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
978
979             /* Inner loop uses 114 flops */
980         }
981
982         if(jidx<j_index_end)
983         {
984
985             /* Get j neighbor index, and coordinate index */
986             jnrlistA         = jjnr[jidx];
987             jnrlistB         = jjnr[jidx+1];
988             jnrlistC         = jjnr[jidx+2];
989             jnrlistD         = jjnr[jidx+3];
990             /* Sign of each element will be negative for non-real atoms.
991              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
992              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
993              */
994             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
995             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
996             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
997             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
998             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
999             j_coord_offsetA  = DIM*jnrA;
1000             j_coord_offsetB  = DIM*jnrB;
1001             j_coord_offsetC  = DIM*jnrC;
1002             j_coord_offsetD  = DIM*jnrD;
1003
1004             /* load j atom coordinates */
1005             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1006                                               x+j_coord_offsetC,x+j_coord_offsetD,
1007                                               &jx0,&jy0,&jz0);
1008
1009             /* Calculate displacement vector */
1010             dx00             = _mm_sub_ps(ix0,jx0);
1011             dy00             = _mm_sub_ps(iy0,jy0);
1012             dz00             = _mm_sub_ps(iz0,jz0);
1013             dx10             = _mm_sub_ps(ix1,jx0);
1014             dy10             = _mm_sub_ps(iy1,jy0);
1015             dz10             = _mm_sub_ps(iz1,jz0);
1016             dx20             = _mm_sub_ps(ix2,jx0);
1017             dy20             = _mm_sub_ps(iy2,jy0);
1018             dz20             = _mm_sub_ps(iz2,jz0);
1019             dx30             = _mm_sub_ps(ix3,jx0);
1020             dy30             = _mm_sub_ps(iy3,jy0);
1021             dz30             = _mm_sub_ps(iz3,jz0);
1022
1023             /* Calculate squared distance and things based on it */
1024             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1025             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1026             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1027             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1028
1029             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1030             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1031             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1032
1033             rinvsq00         = gmx_mm_inv_ps(rsq00);
1034             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1035             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1036             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1037
1038             /* Load parameters for j particles */
1039             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1040                                                               charge+jnrC+0,charge+jnrD+0);
1041             vdwjidx0A        = 2*vdwtype[jnrA+0];
1042             vdwjidx0B        = 2*vdwtype[jnrB+0];
1043             vdwjidx0C        = 2*vdwtype[jnrC+0];
1044             vdwjidx0D        = 2*vdwtype[jnrD+0];
1045
1046             fjx0             = _mm_setzero_ps();
1047             fjy0             = _mm_setzero_ps();
1048             fjz0             = _mm_setzero_ps();
1049
1050             /**************************
1051              * CALCULATE INTERACTIONS *
1052              **************************/
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1056                                          vdwparam+vdwioffset0+vdwjidx0B,
1057                                          vdwparam+vdwioffset0+vdwjidx0C,
1058                                          vdwparam+vdwioffset0+vdwjidx0D,
1059                                          &c6_00,&c12_00);
1060
1061             /* LENNARD-JONES DISPERSION/REPULSION */
1062
1063             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1064             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1065
1066             fscal            = fvdw;
1067
1068             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1069
1070              /* Update vectorial force */
1071             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1072             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1073             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1074
1075             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1076             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1077             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1078
1079             /**************************
1080              * CALCULATE INTERACTIONS *
1081              **************************/
1082
1083             r10              = _mm_mul_ps(rsq10,rinv10);
1084             r10              = _mm_andnot_ps(dummy_mask,r10);
1085
1086             /* Compute parameters for interactions between i and j atoms */
1087             qq10             = _mm_mul_ps(iq1,jq0);
1088
1089             /* EWALD ELECTROSTATICS */
1090
1091             /* Analytical PME correction */
1092             zeta2            = _mm_mul_ps(beta2,rsq10);
1093             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1094             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1095             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1096             felec            = _mm_mul_ps(qq10,felec);
1097
1098             fscal            = felec;
1099
1100             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1101
1102              /* Update vectorial force */
1103             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1104             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1105             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1106
1107             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1108             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1109             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             r20              = _mm_mul_ps(rsq20,rinv20);
1116             r20              = _mm_andnot_ps(dummy_mask,r20);
1117
1118             /* Compute parameters for interactions between i and j atoms */
1119             qq20             = _mm_mul_ps(iq2,jq0);
1120
1121             /* EWALD ELECTROSTATICS */
1122
1123             /* Analytical PME correction */
1124             zeta2            = _mm_mul_ps(beta2,rsq20);
1125             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1126             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1127             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1128             felec            = _mm_mul_ps(qq20,felec);
1129
1130             fscal            = felec;
1131
1132             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1133
1134              /* Update vectorial force */
1135             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1136             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1137             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1138
1139             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1140             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1141             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1142
1143             /**************************
1144              * CALCULATE INTERACTIONS *
1145              **************************/
1146
1147             r30              = _mm_mul_ps(rsq30,rinv30);
1148             r30              = _mm_andnot_ps(dummy_mask,r30);
1149
1150             /* Compute parameters for interactions between i and j atoms */
1151             qq30             = _mm_mul_ps(iq3,jq0);
1152
1153             /* EWALD ELECTROSTATICS */
1154
1155             /* Analytical PME correction */
1156             zeta2            = _mm_mul_ps(beta2,rsq30);
1157             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1158             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1159             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1160             felec            = _mm_mul_ps(qq30,felec);
1161
1162             fscal            = felec;
1163
1164             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1165
1166              /* Update vectorial force */
1167             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1168             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1169             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1170
1171             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1172             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1173             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1174
1175             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1176             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1177             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1178             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1179
1180             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1181
1182             /* Inner loop uses 117 flops */
1183         }
1184
1185         /* End of innermost loop */
1186
1187         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1188                                               f+i_coord_offset,fshift+i_shift_offset);
1189
1190         /* Increment number of inner iterations */
1191         inneriter                  += j_index_end - j_index_start;
1192
1193         /* Outer loop uses 24 flops */
1194     }
1195
1196     /* Increment number of outer iterations */
1197     outeriter        += nri;
1198
1199     /* Update outer/inner flops */
1200
1201     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*117);
1202 }