f218981f20ae68456100dd612b781414e0eba76f
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJ_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          ewitab;
103     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
105     real             *ewtab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
128     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
129     beta2            = _mm_mul_ps(beta,beta);
130     beta3            = _mm_mul_ps(beta,beta2);
131     ewtab            = fr->ic->tabq_coul_FDV0;
132     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
133     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
138     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
139     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
174
175         fix0             = _mm_setzero_ps();
176         fiy0             = _mm_setzero_ps();
177         fiz0             = _mm_setzero_ps();
178         fix1             = _mm_setzero_ps();
179         fiy1             = _mm_setzero_ps();
180         fiz1             = _mm_setzero_ps();
181         fix2             = _mm_setzero_ps();
182         fiy2             = _mm_setzero_ps();
183         fiz2             = _mm_setzero_ps();
184
185         /* Reset potential sums */
186         velecsum         = _mm_setzero_ps();
187         vvdwsum          = _mm_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             j_coord_offsetA  = DIM*jnrA;
199             j_coord_offsetB  = DIM*jnrB;
200             j_coord_offsetC  = DIM*jnrC;
201             j_coord_offsetD  = DIM*jnrD;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               x+j_coord_offsetC,x+j_coord_offsetD,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_ps(ix0,jx0);
210             dy00             = _mm_sub_ps(iy0,jy0);
211             dz00             = _mm_sub_ps(iz0,jz0);
212             dx10             = _mm_sub_ps(ix1,jx0);
213             dy10             = _mm_sub_ps(iy1,jy0);
214             dz10             = _mm_sub_ps(iz1,jz0);
215             dx20             = _mm_sub_ps(ix2,jx0);
216             dy20             = _mm_sub_ps(iy2,jy0);
217             dz20             = _mm_sub_ps(iz2,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
221             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
222             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
223
224             rinv00           = gmx_mm_invsqrt_ps(rsq00);
225             rinv10           = gmx_mm_invsqrt_ps(rsq10);
226             rinv20           = gmx_mm_invsqrt_ps(rsq20);
227
228             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
229             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
230             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
234                                                               charge+jnrC+0,charge+jnrD+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239
240             fjx0             = _mm_setzero_ps();
241             fjy0             = _mm_setzero_ps();
242             fjz0             = _mm_setzero_ps();
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             r00              = _mm_mul_ps(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm_mul_ps(iq0,jq0);
252             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,
254                                          vdwparam+vdwioffset0+vdwjidx0C,
255                                          vdwparam+vdwioffset0+vdwjidx0D,
256                                          &c6_00,&c12_00);
257
258             /* EWALD ELECTROSTATICS */
259
260             /* Analytical PME correction */
261             zeta2            = _mm_mul_ps(beta2,rsq00);
262             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
263             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
264             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
265             felec            = _mm_mul_ps(qq00,felec);
266             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
267             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
268             velec            = _mm_mul_ps(qq00,velec);
269
270             /* LENNARD-JONES DISPERSION/REPULSION */
271
272             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
273             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
274             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
275             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
276             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm_add_ps(velecsum,velec);
280             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
281
282             fscal            = _mm_add_ps(felec,fvdw);
283
284              /* Update vectorial force */
285             fix0             = _mm_macc_ps(dx00,fscal,fix0);
286             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
287             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
288
289             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
290             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
291             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             r10              = _mm_mul_ps(rsq10,rinv10);
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq10             = _mm_mul_ps(iq1,jq0);
301
302             /* EWALD ELECTROSTATICS */
303
304             /* Analytical PME correction */
305             zeta2            = _mm_mul_ps(beta2,rsq10);
306             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
307             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
308             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
309             felec            = _mm_mul_ps(qq10,felec);
310             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
311             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
312             velec            = _mm_mul_ps(qq10,velec);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velecsum         = _mm_add_ps(velecsum,velec);
316
317             fscal            = felec;
318
319              /* Update vectorial force */
320             fix1             = _mm_macc_ps(dx10,fscal,fix1);
321             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
322             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
323
324             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
325             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
326             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             r20              = _mm_mul_ps(rsq20,rinv20);
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq20             = _mm_mul_ps(iq2,jq0);
336
337             /* EWALD ELECTROSTATICS */
338
339             /* Analytical PME correction */
340             zeta2            = _mm_mul_ps(beta2,rsq20);
341             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
342             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
343             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
344             felec            = _mm_mul_ps(qq20,felec);
345             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
346             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
347             velec            = _mm_mul_ps(qq20,velec);
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velecsum         = _mm_add_ps(velecsum,velec);
351
352             fscal            = felec;
353
354              /* Update vectorial force */
355             fix2             = _mm_macc_ps(dx20,fscal,fix2);
356             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
357             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
358
359             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
360             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
361             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
362
363             fjptrA             = f+j_coord_offsetA;
364             fjptrB             = f+j_coord_offsetB;
365             fjptrC             = f+j_coord_offsetC;
366             fjptrD             = f+j_coord_offsetD;
367
368             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
369
370             /* Inner loop uses 99 flops */
371         }
372
373         if(jidx<j_index_end)
374         {
375
376             /* Get j neighbor index, and coordinate index */
377             jnrlistA         = jjnr[jidx];
378             jnrlistB         = jjnr[jidx+1];
379             jnrlistC         = jjnr[jidx+2];
380             jnrlistD         = jjnr[jidx+3];
381             /* Sign of each element will be negative for non-real atoms.
382              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
383              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
384              */
385             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
386             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
387             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
388             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
389             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
390             j_coord_offsetA  = DIM*jnrA;
391             j_coord_offsetB  = DIM*jnrB;
392             j_coord_offsetC  = DIM*jnrC;
393             j_coord_offsetD  = DIM*jnrD;
394
395             /* load j atom coordinates */
396             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
397                                               x+j_coord_offsetC,x+j_coord_offsetD,
398                                               &jx0,&jy0,&jz0);
399
400             /* Calculate displacement vector */
401             dx00             = _mm_sub_ps(ix0,jx0);
402             dy00             = _mm_sub_ps(iy0,jy0);
403             dz00             = _mm_sub_ps(iz0,jz0);
404             dx10             = _mm_sub_ps(ix1,jx0);
405             dy10             = _mm_sub_ps(iy1,jy0);
406             dz10             = _mm_sub_ps(iz1,jz0);
407             dx20             = _mm_sub_ps(ix2,jx0);
408             dy20             = _mm_sub_ps(iy2,jy0);
409             dz20             = _mm_sub_ps(iz2,jz0);
410
411             /* Calculate squared distance and things based on it */
412             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
413             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
414             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
415
416             rinv00           = gmx_mm_invsqrt_ps(rsq00);
417             rinv10           = gmx_mm_invsqrt_ps(rsq10);
418             rinv20           = gmx_mm_invsqrt_ps(rsq20);
419
420             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
421             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
422             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
423
424             /* Load parameters for j particles */
425             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
426                                                               charge+jnrC+0,charge+jnrD+0);
427             vdwjidx0A        = 2*vdwtype[jnrA+0];
428             vdwjidx0B        = 2*vdwtype[jnrB+0];
429             vdwjidx0C        = 2*vdwtype[jnrC+0];
430             vdwjidx0D        = 2*vdwtype[jnrD+0];
431
432             fjx0             = _mm_setzero_ps();
433             fjy0             = _mm_setzero_ps();
434             fjz0             = _mm_setzero_ps();
435
436             /**************************
437              * CALCULATE INTERACTIONS *
438              **************************/
439
440             r00              = _mm_mul_ps(rsq00,rinv00);
441             r00              = _mm_andnot_ps(dummy_mask,r00);
442
443             /* Compute parameters for interactions between i and j atoms */
444             qq00             = _mm_mul_ps(iq0,jq0);
445             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
446                                          vdwparam+vdwioffset0+vdwjidx0B,
447                                          vdwparam+vdwioffset0+vdwjidx0C,
448                                          vdwparam+vdwioffset0+vdwjidx0D,
449                                          &c6_00,&c12_00);
450
451             /* EWALD ELECTROSTATICS */
452
453             /* Analytical PME correction */
454             zeta2            = _mm_mul_ps(beta2,rsq00);
455             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
456             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
457             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
458             felec            = _mm_mul_ps(qq00,felec);
459             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
460             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
461             velec            = _mm_mul_ps(qq00,velec);
462
463             /* LENNARD-JONES DISPERSION/REPULSION */
464
465             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
466             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
467             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
468             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
469             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
470
471             /* Update potential sum for this i atom from the interaction with this j atom. */
472             velec            = _mm_andnot_ps(dummy_mask,velec);
473             velecsum         = _mm_add_ps(velecsum,velec);
474             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
475             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
476
477             fscal            = _mm_add_ps(felec,fvdw);
478
479             fscal            = _mm_andnot_ps(dummy_mask,fscal);
480
481              /* Update vectorial force */
482             fix0             = _mm_macc_ps(dx00,fscal,fix0);
483             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
484             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
485
486             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
487             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
488             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             r10              = _mm_mul_ps(rsq10,rinv10);
495             r10              = _mm_andnot_ps(dummy_mask,r10);
496
497             /* Compute parameters for interactions between i and j atoms */
498             qq10             = _mm_mul_ps(iq1,jq0);
499
500             /* EWALD ELECTROSTATICS */
501
502             /* Analytical PME correction */
503             zeta2            = _mm_mul_ps(beta2,rsq10);
504             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
505             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
506             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
507             felec            = _mm_mul_ps(qq10,felec);
508             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
509             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
510             velec            = _mm_mul_ps(qq10,velec);
511
512             /* Update potential sum for this i atom from the interaction with this j atom. */
513             velec            = _mm_andnot_ps(dummy_mask,velec);
514             velecsum         = _mm_add_ps(velecsum,velec);
515
516             fscal            = felec;
517
518             fscal            = _mm_andnot_ps(dummy_mask,fscal);
519
520              /* Update vectorial force */
521             fix1             = _mm_macc_ps(dx10,fscal,fix1);
522             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
523             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
524
525             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
526             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
527             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             r20              = _mm_mul_ps(rsq20,rinv20);
534             r20              = _mm_andnot_ps(dummy_mask,r20);
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq20             = _mm_mul_ps(iq2,jq0);
538
539             /* EWALD ELECTROSTATICS */
540
541             /* Analytical PME correction */
542             zeta2            = _mm_mul_ps(beta2,rsq20);
543             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
544             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
545             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
546             felec            = _mm_mul_ps(qq20,felec);
547             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
548             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
549             velec            = _mm_mul_ps(qq20,velec);
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             velec            = _mm_andnot_ps(dummy_mask,velec);
553             velecsum         = _mm_add_ps(velecsum,velec);
554
555             fscal            = felec;
556
557             fscal            = _mm_andnot_ps(dummy_mask,fscal);
558
559              /* Update vectorial force */
560             fix2             = _mm_macc_ps(dx20,fscal,fix2);
561             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
562             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
563
564             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
565             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
566             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
567
568             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
569             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
570             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
571             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
572
573             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
574
575             /* Inner loop uses 102 flops */
576         }
577
578         /* End of innermost loop */
579
580         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
581                                               f+i_coord_offset,fshift+i_shift_offset);
582
583         ggid                        = gid[iidx];
584         /* Update potential energies */
585         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
586         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
587
588         /* Increment number of inner iterations */
589         inneriter                  += j_index_end - j_index_start;
590
591         /* Outer loop uses 20 flops */
592     }
593
594     /* Increment number of outer iterations */
595     outeriter        += nri;
596
597     /* Update outer/inner flops */
598
599     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*102);
600 }
601 /*
602  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_128_fma_single
603  * Electrostatics interaction: Ewald
604  * VdW interaction:            LennardJones
605  * Geometry:                   Water3-Particle
606  * Calculate force/pot:        Force
607  */
608 void
609 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_128_fma_single
610                     (t_nblist                    * gmx_restrict       nlist,
611                      rvec                        * gmx_restrict          xx,
612                      rvec                        * gmx_restrict          ff,
613                      t_forcerec                  * gmx_restrict          fr,
614                      t_mdatoms                   * gmx_restrict     mdatoms,
615                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
616                      t_nrnb                      * gmx_restrict        nrnb)
617 {
618     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
619      * just 0 for non-waters.
620      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
621      * jnr indices corresponding to data put in the four positions in the SIMD register.
622      */
623     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
624     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
625     int              jnrA,jnrB,jnrC,jnrD;
626     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
627     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
628     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
629     real             rcutoff_scalar;
630     real             *shiftvec,*fshift,*x,*f;
631     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
632     real             scratch[4*DIM];
633     __m128           fscal,rcutoff,rcutoff2,jidxall;
634     int              vdwioffset0;
635     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
636     int              vdwioffset1;
637     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
638     int              vdwioffset2;
639     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
640     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
641     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
642     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
643     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
644     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
645     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
646     real             *charge;
647     int              nvdwtype;
648     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
649     int              *vdwtype;
650     real             *vdwparam;
651     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
652     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
653     __m128i          ewitab;
654     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
655     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
656     real             *ewtab;
657     __m128           dummy_mask,cutoff_mask;
658     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
659     __m128           one     = _mm_set1_ps(1.0);
660     __m128           two     = _mm_set1_ps(2.0);
661     x                = xx[0];
662     f                = ff[0];
663
664     nri              = nlist->nri;
665     iinr             = nlist->iinr;
666     jindex           = nlist->jindex;
667     jjnr             = nlist->jjnr;
668     shiftidx         = nlist->shift;
669     gid              = nlist->gid;
670     shiftvec         = fr->shift_vec[0];
671     fshift           = fr->fshift[0];
672     facel            = _mm_set1_ps(fr->epsfac);
673     charge           = mdatoms->chargeA;
674     nvdwtype         = fr->ntype;
675     vdwparam         = fr->nbfp;
676     vdwtype          = mdatoms->typeA;
677
678     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
679     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
680     beta2            = _mm_mul_ps(beta,beta);
681     beta3            = _mm_mul_ps(beta,beta2);
682     ewtab            = fr->ic->tabq_coul_F;
683     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
684     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
685
686     /* Setup water-specific parameters */
687     inr              = nlist->iinr[0];
688     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
689     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
690     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
691     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
692
693     /* Avoid stupid compiler warnings */
694     jnrA = jnrB = jnrC = jnrD = 0;
695     j_coord_offsetA = 0;
696     j_coord_offsetB = 0;
697     j_coord_offsetC = 0;
698     j_coord_offsetD = 0;
699
700     outeriter        = 0;
701     inneriter        = 0;
702
703     for(iidx=0;iidx<4*DIM;iidx++)
704     {
705         scratch[iidx] = 0.0;
706     }
707
708     /* Start outer loop over neighborlists */
709     for(iidx=0; iidx<nri; iidx++)
710     {
711         /* Load shift vector for this list */
712         i_shift_offset   = DIM*shiftidx[iidx];
713
714         /* Load limits for loop over neighbors */
715         j_index_start    = jindex[iidx];
716         j_index_end      = jindex[iidx+1];
717
718         /* Get outer coordinate index */
719         inr              = iinr[iidx];
720         i_coord_offset   = DIM*inr;
721
722         /* Load i particle coords and add shift vector */
723         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
724                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
725
726         fix0             = _mm_setzero_ps();
727         fiy0             = _mm_setzero_ps();
728         fiz0             = _mm_setzero_ps();
729         fix1             = _mm_setzero_ps();
730         fiy1             = _mm_setzero_ps();
731         fiz1             = _mm_setzero_ps();
732         fix2             = _mm_setzero_ps();
733         fiy2             = _mm_setzero_ps();
734         fiz2             = _mm_setzero_ps();
735
736         /* Start inner kernel loop */
737         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
738         {
739
740             /* Get j neighbor index, and coordinate index */
741             jnrA             = jjnr[jidx];
742             jnrB             = jjnr[jidx+1];
743             jnrC             = jjnr[jidx+2];
744             jnrD             = jjnr[jidx+3];
745             j_coord_offsetA  = DIM*jnrA;
746             j_coord_offsetB  = DIM*jnrB;
747             j_coord_offsetC  = DIM*jnrC;
748             j_coord_offsetD  = DIM*jnrD;
749
750             /* load j atom coordinates */
751             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
752                                               x+j_coord_offsetC,x+j_coord_offsetD,
753                                               &jx0,&jy0,&jz0);
754
755             /* Calculate displacement vector */
756             dx00             = _mm_sub_ps(ix0,jx0);
757             dy00             = _mm_sub_ps(iy0,jy0);
758             dz00             = _mm_sub_ps(iz0,jz0);
759             dx10             = _mm_sub_ps(ix1,jx0);
760             dy10             = _mm_sub_ps(iy1,jy0);
761             dz10             = _mm_sub_ps(iz1,jz0);
762             dx20             = _mm_sub_ps(ix2,jx0);
763             dy20             = _mm_sub_ps(iy2,jy0);
764             dz20             = _mm_sub_ps(iz2,jz0);
765
766             /* Calculate squared distance and things based on it */
767             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
768             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
769             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
770
771             rinv00           = gmx_mm_invsqrt_ps(rsq00);
772             rinv10           = gmx_mm_invsqrt_ps(rsq10);
773             rinv20           = gmx_mm_invsqrt_ps(rsq20);
774
775             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
776             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
777             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
778
779             /* Load parameters for j particles */
780             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
781                                                               charge+jnrC+0,charge+jnrD+0);
782             vdwjidx0A        = 2*vdwtype[jnrA+0];
783             vdwjidx0B        = 2*vdwtype[jnrB+0];
784             vdwjidx0C        = 2*vdwtype[jnrC+0];
785             vdwjidx0D        = 2*vdwtype[jnrD+0];
786
787             fjx0             = _mm_setzero_ps();
788             fjy0             = _mm_setzero_ps();
789             fjz0             = _mm_setzero_ps();
790
791             /**************************
792              * CALCULATE INTERACTIONS *
793              **************************/
794
795             r00              = _mm_mul_ps(rsq00,rinv00);
796
797             /* Compute parameters for interactions between i and j atoms */
798             qq00             = _mm_mul_ps(iq0,jq0);
799             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
800                                          vdwparam+vdwioffset0+vdwjidx0B,
801                                          vdwparam+vdwioffset0+vdwjidx0C,
802                                          vdwparam+vdwioffset0+vdwjidx0D,
803                                          &c6_00,&c12_00);
804
805             /* EWALD ELECTROSTATICS */
806
807             /* Analytical PME correction */
808             zeta2            = _mm_mul_ps(beta2,rsq00);
809             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
810             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
811             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
812             felec            = _mm_mul_ps(qq00,felec);
813
814             /* LENNARD-JONES DISPERSION/REPULSION */
815
816             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
817             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
818
819             fscal            = _mm_add_ps(felec,fvdw);
820
821              /* Update vectorial force */
822             fix0             = _mm_macc_ps(dx00,fscal,fix0);
823             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
824             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
825
826             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
827             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
828             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
829
830             /**************************
831              * CALCULATE INTERACTIONS *
832              **************************/
833
834             r10              = _mm_mul_ps(rsq10,rinv10);
835
836             /* Compute parameters for interactions between i and j atoms */
837             qq10             = _mm_mul_ps(iq1,jq0);
838
839             /* EWALD ELECTROSTATICS */
840
841             /* Analytical PME correction */
842             zeta2            = _mm_mul_ps(beta2,rsq10);
843             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
844             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
845             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
846             felec            = _mm_mul_ps(qq10,felec);
847
848             fscal            = felec;
849
850              /* Update vectorial force */
851             fix1             = _mm_macc_ps(dx10,fscal,fix1);
852             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
853             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
854
855             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
856             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
857             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
858
859             /**************************
860              * CALCULATE INTERACTIONS *
861              **************************/
862
863             r20              = _mm_mul_ps(rsq20,rinv20);
864
865             /* Compute parameters for interactions between i and j atoms */
866             qq20             = _mm_mul_ps(iq2,jq0);
867
868             /* EWALD ELECTROSTATICS */
869
870             /* Analytical PME correction */
871             zeta2            = _mm_mul_ps(beta2,rsq20);
872             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
873             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
874             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
875             felec            = _mm_mul_ps(qq20,felec);
876
877             fscal            = felec;
878
879              /* Update vectorial force */
880             fix2             = _mm_macc_ps(dx20,fscal,fix2);
881             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
882             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
883
884             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
885             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
886             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
887
888             fjptrA             = f+j_coord_offsetA;
889             fjptrB             = f+j_coord_offsetB;
890             fjptrC             = f+j_coord_offsetC;
891             fjptrD             = f+j_coord_offsetD;
892
893             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
894
895             /* Inner loop uses 91 flops */
896         }
897
898         if(jidx<j_index_end)
899         {
900
901             /* Get j neighbor index, and coordinate index */
902             jnrlistA         = jjnr[jidx];
903             jnrlistB         = jjnr[jidx+1];
904             jnrlistC         = jjnr[jidx+2];
905             jnrlistD         = jjnr[jidx+3];
906             /* Sign of each element will be negative for non-real atoms.
907              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
908              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
909              */
910             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
911             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
912             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
913             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
914             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
915             j_coord_offsetA  = DIM*jnrA;
916             j_coord_offsetB  = DIM*jnrB;
917             j_coord_offsetC  = DIM*jnrC;
918             j_coord_offsetD  = DIM*jnrD;
919
920             /* load j atom coordinates */
921             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
922                                               x+j_coord_offsetC,x+j_coord_offsetD,
923                                               &jx0,&jy0,&jz0);
924
925             /* Calculate displacement vector */
926             dx00             = _mm_sub_ps(ix0,jx0);
927             dy00             = _mm_sub_ps(iy0,jy0);
928             dz00             = _mm_sub_ps(iz0,jz0);
929             dx10             = _mm_sub_ps(ix1,jx0);
930             dy10             = _mm_sub_ps(iy1,jy0);
931             dz10             = _mm_sub_ps(iz1,jz0);
932             dx20             = _mm_sub_ps(ix2,jx0);
933             dy20             = _mm_sub_ps(iy2,jy0);
934             dz20             = _mm_sub_ps(iz2,jz0);
935
936             /* Calculate squared distance and things based on it */
937             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
938             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
939             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
940
941             rinv00           = gmx_mm_invsqrt_ps(rsq00);
942             rinv10           = gmx_mm_invsqrt_ps(rsq10);
943             rinv20           = gmx_mm_invsqrt_ps(rsq20);
944
945             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
946             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
947             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
948
949             /* Load parameters for j particles */
950             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
951                                                               charge+jnrC+0,charge+jnrD+0);
952             vdwjidx0A        = 2*vdwtype[jnrA+0];
953             vdwjidx0B        = 2*vdwtype[jnrB+0];
954             vdwjidx0C        = 2*vdwtype[jnrC+0];
955             vdwjidx0D        = 2*vdwtype[jnrD+0];
956
957             fjx0             = _mm_setzero_ps();
958             fjy0             = _mm_setzero_ps();
959             fjz0             = _mm_setzero_ps();
960
961             /**************************
962              * CALCULATE INTERACTIONS *
963              **************************/
964
965             r00              = _mm_mul_ps(rsq00,rinv00);
966             r00              = _mm_andnot_ps(dummy_mask,r00);
967
968             /* Compute parameters for interactions between i and j atoms */
969             qq00             = _mm_mul_ps(iq0,jq0);
970             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
971                                          vdwparam+vdwioffset0+vdwjidx0B,
972                                          vdwparam+vdwioffset0+vdwjidx0C,
973                                          vdwparam+vdwioffset0+vdwjidx0D,
974                                          &c6_00,&c12_00);
975
976             /* EWALD ELECTROSTATICS */
977
978             /* Analytical PME correction */
979             zeta2            = _mm_mul_ps(beta2,rsq00);
980             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
981             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
982             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
983             felec            = _mm_mul_ps(qq00,felec);
984
985             /* LENNARD-JONES DISPERSION/REPULSION */
986
987             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
988             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
989
990             fscal            = _mm_add_ps(felec,fvdw);
991
992             fscal            = _mm_andnot_ps(dummy_mask,fscal);
993
994              /* Update vectorial force */
995             fix0             = _mm_macc_ps(dx00,fscal,fix0);
996             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
997             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
998
999             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1000             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1001             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             r10              = _mm_mul_ps(rsq10,rinv10);
1008             r10              = _mm_andnot_ps(dummy_mask,r10);
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             qq10             = _mm_mul_ps(iq1,jq0);
1012
1013             /* EWALD ELECTROSTATICS */
1014
1015             /* Analytical PME correction */
1016             zeta2            = _mm_mul_ps(beta2,rsq10);
1017             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1018             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1019             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1020             felec            = _mm_mul_ps(qq10,felec);
1021
1022             fscal            = felec;
1023
1024             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1025
1026              /* Update vectorial force */
1027             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1028             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1029             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1030
1031             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1032             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1033             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1034
1035             /**************************
1036              * CALCULATE INTERACTIONS *
1037              **************************/
1038
1039             r20              = _mm_mul_ps(rsq20,rinv20);
1040             r20              = _mm_andnot_ps(dummy_mask,r20);
1041
1042             /* Compute parameters for interactions between i and j atoms */
1043             qq20             = _mm_mul_ps(iq2,jq0);
1044
1045             /* EWALD ELECTROSTATICS */
1046
1047             /* Analytical PME correction */
1048             zeta2            = _mm_mul_ps(beta2,rsq20);
1049             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1050             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1051             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1052             felec            = _mm_mul_ps(qq20,felec);
1053
1054             fscal            = felec;
1055
1056             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1057
1058              /* Update vectorial force */
1059             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1060             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1061             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1062
1063             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1064             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1065             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1066
1067             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1068             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1069             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1070             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1071
1072             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1073
1074             /* Inner loop uses 94 flops */
1075         }
1076
1077         /* End of innermost loop */
1078
1079         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1080                                               f+i_coord_offset,fshift+i_shift_offset);
1081
1082         /* Increment number of inner iterations */
1083         inneriter                  += j_index_end - j_index_start;
1084
1085         /* Outer loop uses 18 flops */
1086     }
1087
1088     /* Increment number of outer iterations */
1089     outeriter        += nri;
1090
1091     /* Update outer/inner flops */
1092
1093     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*94);
1094 }