Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJ_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          ewitab;
105     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
107     real             *ewtab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
130     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
131     beta2            = _mm_mul_ps(beta,beta);
132     beta3            = _mm_mul_ps(beta,beta2);
133     ewtab            = fr->ic->tabq_coul_FDV0;
134     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
135     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
140     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
141     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
142     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
175                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
176
177         fix0             = _mm_setzero_ps();
178         fiy0             = _mm_setzero_ps();
179         fiz0             = _mm_setzero_ps();
180         fix1             = _mm_setzero_ps();
181         fiy1             = _mm_setzero_ps();
182         fiz1             = _mm_setzero_ps();
183         fix2             = _mm_setzero_ps();
184         fiy2             = _mm_setzero_ps();
185         fiz2             = _mm_setzero_ps();
186
187         /* Reset potential sums */
188         velecsum         = _mm_setzero_ps();
189         vvdwsum          = _mm_setzero_ps();
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
193         {
194
195             /* Get j neighbor index, and coordinate index */
196             jnrA             = jjnr[jidx];
197             jnrB             = jjnr[jidx+1];
198             jnrC             = jjnr[jidx+2];
199             jnrD             = jjnr[jidx+3];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202             j_coord_offsetC  = DIM*jnrC;
203             j_coord_offsetD  = DIM*jnrD;
204
205             /* load j atom coordinates */
206             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
207                                               x+j_coord_offsetC,x+j_coord_offsetD,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm_sub_ps(ix0,jx0);
212             dy00             = _mm_sub_ps(iy0,jy0);
213             dz00             = _mm_sub_ps(iz0,jz0);
214             dx10             = _mm_sub_ps(ix1,jx0);
215             dy10             = _mm_sub_ps(iy1,jy0);
216             dz10             = _mm_sub_ps(iz1,jz0);
217             dx20             = _mm_sub_ps(ix2,jx0);
218             dy20             = _mm_sub_ps(iy2,jy0);
219             dz20             = _mm_sub_ps(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
223             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
224             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
225
226             rinv00           = gmx_mm_invsqrt_ps(rsq00);
227             rinv10           = gmx_mm_invsqrt_ps(rsq10);
228             rinv20           = gmx_mm_invsqrt_ps(rsq20);
229
230             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
231             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
232             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
236                                                               charge+jnrC+0,charge+jnrD+0);
237             vdwjidx0A        = 2*vdwtype[jnrA+0];
238             vdwjidx0B        = 2*vdwtype[jnrB+0];
239             vdwjidx0C        = 2*vdwtype[jnrC+0];
240             vdwjidx0D        = 2*vdwtype[jnrD+0];
241
242             fjx0             = _mm_setzero_ps();
243             fjy0             = _mm_setzero_ps();
244             fjz0             = _mm_setzero_ps();
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _mm_mul_ps(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm_mul_ps(iq0,jq0);
254             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,
256                                          vdwparam+vdwioffset0+vdwjidx0C,
257                                          vdwparam+vdwioffset0+vdwjidx0D,
258                                          &c6_00,&c12_00);
259
260             /* EWALD ELECTROSTATICS */
261
262             /* Analytical PME correction */
263             zeta2            = _mm_mul_ps(beta2,rsq00);
264             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
265             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
266             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
267             felec            = _mm_mul_ps(qq00,felec);
268             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
269             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
270             velec            = _mm_mul_ps(qq00,velec);
271
272             /* LENNARD-JONES DISPERSION/REPULSION */
273
274             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
275             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
276             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
277             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
278             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm_add_ps(velecsum,velec);
282             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
283
284             fscal            = _mm_add_ps(felec,fvdw);
285
286              /* Update vectorial force */
287             fix0             = _mm_macc_ps(dx00,fscal,fix0);
288             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
289             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
290
291             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
292             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
293             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             r10              = _mm_mul_ps(rsq10,rinv10);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq10             = _mm_mul_ps(iq1,jq0);
303
304             /* EWALD ELECTROSTATICS */
305
306             /* Analytical PME correction */
307             zeta2            = _mm_mul_ps(beta2,rsq10);
308             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
309             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
310             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
311             felec            = _mm_mul_ps(qq10,felec);
312             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
313             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
314             velec            = _mm_mul_ps(qq10,velec);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velecsum         = _mm_add_ps(velecsum,velec);
318
319             fscal            = felec;
320
321              /* Update vectorial force */
322             fix1             = _mm_macc_ps(dx10,fscal,fix1);
323             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
324             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
325
326             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
327             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
328             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             r20              = _mm_mul_ps(rsq20,rinv20);
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq20             = _mm_mul_ps(iq2,jq0);
338
339             /* EWALD ELECTROSTATICS */
340
341             /* Analytical PME correction */
342             zeta2            = _mm_mul_ps(beta2,rsq20);
343             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
344             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
345             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
346             felec            = _mm_mul_ps(qq20,felec);
347             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
348             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
349             velec            = _mm_mul_ps(qq20,velec);
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velecsum         = _mm_add_ps(velecsum,velec);
353
354             fscal            = felec;
355
356              /* Update vectorial force */
357             fix2             = _mm_macc_ps(dx20,fscal,fix2);
358             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
359             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
360
361             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
362             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
363             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
364
365             fjptrA             = f+j_coord_offsetA;
366             fjptrB             = f+j_coord_offsetB;
367             fjptrC             = f+j_coord_offsetC;
368             fjptrD             = f+j_coord_offsetD;
369
370             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
371
372             /* Inner loop uses 99 flops */
373         }
374
375         if(jidx<j_index_end)
376         {
377
378             /* Get j neighbor index, and coordinate index */
379             jnrlistA         = jjnr[jidx];
380             jnrlistB         = jjnr[jidx+1];
381             jnrlistC         = jjnr[jidx+2];
382             jnrlistD         = jjnr[jidx+3];
383             /* Sign of each element will be negative for non-real atoms.
384              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
385              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
386              */
387             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
388             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
389             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
390             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
391             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
392             j_coord_offsetA  = DIM*jnrA;
393             j_coord_offsetB  = DIM*jnrB;
394             j_coord_offsetC  = DIM*jnrC;
395             j_coord_offsetD  = DIM*jnrD;
396
397             /* load j atom coordinates */
398             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
399                                               x+j_coord_offsetC,x+j_coord_offsetD,
400                                               &jx0,&jy0,&jz0);
401
402             /* Calculate displacement vector */
403             dx00             = _mm_sub_ps(ix0,jx0);
404             dy00             = _mm_sub_ps(iy0,jy0);
405             dz00             = _mm_sub_ps(iz0,jz0);
406             dx10             = _mm_sub_ps(ix1,jx0);
407             dy10             = _mm_sub_ps(iy1,jy0);
408             dz10             = _mm_sub_ps(iz1,jz0);
409             dx20             = _mm_sub_ps(ix2,jx0);
410             dy20             = _mm_sub_ps(iy2,jy0);
411             dz20             = _mm_sub_ps(iz2,jz0);
412
413             /* Calculate squared distance and things based on it */
414             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
415             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
416             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
417
418             rinv00           = gmx_mm_invsqrt_ps(rsq00);
419             rinv10           = gmx_mm_invsqrt_ps(rsq10);
420             rinv20           = gmx_mm_invsqrt_ps(rsq20);
421
422             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
423             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
424             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
425
426             /* Load parameters for j particles */
427             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
428                                                               charge+jnrC+0,charge+jnrD+0);
429             vdwjidx0A        = 2*vdwtype[jnrA+0];
430             vdwjidx0B        = 2*vdwtype[jnrB+0];
431             vdwjidx0C        = 2*vdwtype[jnrC+0];
432             vdwjidx0D        = 2*vdwtype[jnrD+0];
433
434             fjx0             = _mm_setzero_ps();
435             fjy0             = _mm_setzero_ps();
436             fjz0             = _mm_setzero_ps();
437
438             /**************************
439              * CALCULATE INTERACTIONS *
440              **************************/
441
442             r00              = _mm_mul_ps(rsq00,rinv00);
443             r00              = _mm_andnot_ps(dummy_mask,r00);
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq00             = _mm_mul_ps(iq0,jq0);
447             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
448                                          vdwparam+vdwioffset0+vdwjidx0B,
449                                          vdwparam+vdwioffset0+vdwjidx0C,
450                                          vdwparam+vdwioffset0+vdwjidx0D,
451                                          &c6_00,&c12_00);
452
453             /* EWALD ELECTROSTATICS */
454
455             /* Analytical PME correction */
456             zeta2            = _mm_mul_ps(beta2,rsq00);
457             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
458             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
459             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
460             felec            = _mm_mul_ps(qq00,felec);
461             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
462             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
463             velec            = _mm_mul_ps(qq00,velec);
464
465             /* LENNARD-JONES DISPERSION/REPULSION */
466
467             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
468             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
469             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
470             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
471             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
472
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             velec            = _mm_andnot_ps(dummy_mask,velec);
475             velecsum         = _mm_add_ps(velecsum,velec);
476             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
477             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
478
479             fscal            = _mm_add_ps(felec,fvdw);
480
481             fscal            = _mm_andnot_ps(dummy_mask,fscal);
482
483              /* Update vectorial force */
484             fix0             = _mm_macc_ps(dx00,fscal,fix0);
485             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
486             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
487
488             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
489             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
490             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             r10              = _mm_mul_ps(rsq10,rinv10);
497             r10              = _mm_andnot_ps(dummy_mask,r10);
498
499             /* Compute parameters for interactions between i and j atoms */
500             qq10             = _mm_mul_ps(iq1,jq0);
501
502             /* EWALD ELECTROSTATICS */
503
504             /* Analytical PME correction */
505             zeta2            = _mm_mul_ps(beta2,rsq10);
506             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
507             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
508             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
509             felec            = _mm_mul_ps(qq10,felec);
510             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
511             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
512             velec            = _mm_mul_ps(qq10,velec);
513
514             /* Update potential sum for this i atom from the interaction with this j atom. */
515             velec            = _mm_andnot_ps(dummy_mask,velec);
516             velecsum         = _mm_add_ps(velecsum,velec);
517
518             fscal            = felec;
519
520             fscal            = _mm_andnot_ps(dummy_mask,fscal);
521
522              /* Update vectorial force */
523             fix1             = _mm_macc_ps(dx10,fscal,fix1);
524             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
525             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
526
527             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
528             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
529             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             r20              = _mm_mul_ps(rsq20,rinv20);
536             r20              = _mm_andnot_ps(dummy_mask,r20);
537
538             /* Compute parameters for interactions between i and j atoms */
539             qq20             = _mm_mul_ps(iq2,jq0);
540
541             /* EWALD ELECTROSTATICS */
542
543             /* Analytical PME correction */
544             zeta2            = _mm_mul_ps(beta2,rsq20);
545             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
546             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
547             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
548             felec            = _mm_mul_ps(qq20,felec);
549             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
550             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
551             velec            = _mm_mul_ps(qq20,velec);
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velec            = _mm_andnot_ps(dummy_mask,velec);
555             velecsum         = _mm_add_ps(velecsum,velec);
556
557             fscal            = felec;
558
559             fscal            = _mm_andnot_ps(dummy_mask,fscal);
560
561              /* Update vectorial force */
562             fix2             = _mm_macc_ps(dx20,fscal,fix2);
563             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
564             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
565
566             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
567             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
568             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
569
570             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
571             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
572             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
573             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
574
575             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
576
577             /* Inner loop uses 102 flops */
578         }
579
580         /* End of innermost loop */
581
582         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
583                                               f+i_coord_offset,fshift+i_shift_offset);
584
585         ggid                        = gid[iidx];
586         /* Update potential energies */
587         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
588         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
589
590         /* Increment number of inner iterations */
591         inneriter                  += j_index_end - j_index_start;
592
593         /* Outer loop uses 20 flops */
594     }
595
596     /* Increment number of outer iterations */
597     outeriter        += nri;
598
599     /* Update outer/inner flops */
600
601     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*102);
602 }
603 /*
604  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_128_fma_single
605  * Electrostatics interaction: Ewald
606  * VdW interaction:            LennardJones
607  * Geometry:                   Water3-Particle
608  * Calculate force/pot:        Force
609  */
610 void
611 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_128_fma_single
612                     (t_nblist                    * gmx_restrict       nlist,
613                      rvec                        * gmx_restrict          xx,
614                      rvec                        * gmx_restrict          ff,
615                      t_forcerec                  * gmx_restrict          fr,
616                      t_mdatoms                   * gmx_restrict     mdatoms,
617                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
618                      t_nrnb                      * gmx_restrict        nrnb)
619 {
620     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
621      * just 0 for non-waters.
622      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
623      * jnr indices corresponding to data put in the four positions in the SIMD register.
624      */
625     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
626     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
627     int              jnrA,jnrB,jnrC,jnrD;
628     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
629     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
630     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
631     real             rcutoff_scalar;
632     real             *shiftvec,*fshift,*x,*f;
633     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
634     real             scratch[4*DIM];
635     __m128           fscal,rcutoff,rcutoff2,jidxall;
636     int              vdwioffset0;
637     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
638     int              vdwioffset1;
639     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
640     int              vdwioffset2;
641     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
642     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
643     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
644     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
645     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
646     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
647     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
648     real             *charge;
649     int              nvdwtype;
650     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
651     int              *vdwtype;
652     real             *vdwparam;
653     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
654     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
655     __m128i          ewitab;
656     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
657     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
658     real             *ewtab;
659     __m128           dummy_mask,cutoff_mask;
660     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
661     __m128           one     = _mm_set1_ps(1.0);
662     __m128           two     = _mm_set1_ps(2.0);
663     x                = xx[0];
664     f                = ff[0];
665
666     nri              = nlist->nri;
667     iinr             = nlist->iinr;
668     jindex           = nlist->jindex;
669     jjnr             = nlist->jjnr;
670     shiftidx         = nlist->shift;
671     gid              = nlist->gid;
672     shiftvec         = fr->shift_vec[0];
673     fshift           = fr->fshift[0];
674     facel            = _mm_set1_ps(fr->epsfac);
675     charge           = mdatoms->chargeA;
676     nvdwtype         = fr->ntype;
677     vdwparam         = fr->nbfp;
678     vdwtype          = mdatoms->typeA;
679
680     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
681     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
682     beta2            = _mm_mul_ps(beta,beta);
683     beta3            = _mm_mul_ps(beta,beta2);
684     ewtab            = fr->ic->tabq_coul_F;
685     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
686     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
687
688     /* Setup water-specific parameters */
689     inr              = nlist->iinr[0];
690     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
691     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
692     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
693     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
694
695     /* Avoid stupid compiler warnings */
696     jnrA = jnrB = jnrC = jnrD = 0;
697     j_coord_offsetA = 0;
698     j_coord_offsetB = 0;
699     j_coord_offsetC = 0;
700     j_coord_offsetD = 0;
701
702     outeriter        = 0;
703     inneriter        = 0;
704
705     for(iidx=0;iidx<4*DIM;iidx++)
706     {
707         scratch[iidx] = 0.0;
708     }
709
710     /* Start outer loop over neighborlists */
711     for(iidx=0; iidx<nri; iidx++)
712     {
713         /* Load shift vector for this list */
714         i_shift_offset   = DIM*shiftidx[iidx];
715
716         /* Load limits for loop over neighbors */
717         j_index_start    = jindex[iidx];
718         j_index_end      = jindex[iidx+1];
719
720         /* Get outer coordinate index */
721         inr              = iinr[iidx];
722         i_coord_offset   = DIM*inr;
723
724         /* Load i particle coords and add shift vector */
725         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
726                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
727
728         fix0             = _mm_setzero_ps();
729         fiy0             = _mm_setzero_ps();
730         fiz0             = _mm_setzero_ps();
731         fix1             = _mm_setzero_ps();
732         fiy1             = _mm_setzero_ps();
733         fiz1             = _mm_setzero_ps();
734         fix2             = _mm_setzero_ps();
735         fiy2             = _mm_setzero_ps();
736         fiz2             = _mm_setzero_ps();
737
738         /* Start inner kernel loop */
739         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
740         {
741
742             /* Get j neighbor index, and coordinate index */
743             jnrA             = jjnr[jidx];
744             jnrB             = jjnr[jidx+1];
745             jnrC             = jjnr[jidx+2];
746             jnrD             = jjnr[jidx+3];
747             j_coord_offsetA  = DIM*jnrA;
748             j_coord_offsetB  = DIM*jnrB;
749             j_coord_offsetC  = DIM*jnrC;
750             j_coord_offsetD  = DIM*jnrD;
751
752             /* load j atom coordinates */
753             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
754                                               x+j_coord_offsetC,x+j_coord_offsetD,
755                                               &jx0,&jy0,&jz0);
756
757             /* Calculate displacement vector */
758             dx00             = _mm_sub_ps(ix0,jx0);
759             dy00             = _mm_sub_ps(iy0,jy0);
760             dz00             = _mm_sub_ps(iz0,jz0);
761             dx10             = _mm_sub_ps(ix1,jx0);
762             dy10             = _mm_sub_ps(iy1,jy0);
763             dz10             = _mm_sub_ps(iz1,jz0);
764             dx20             = _mm_sub_ps(ix2,jx0);
765             dy20             = _mm_sub_ps(iy2,jy0);
766             dz20             = _mm_sub_ps(iz2,jz0);
767
768             /* Calculate squared distance and things based on it */
769             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
770             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
771             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
772
773             rinv00           = gmx_mm_invsqrt_ps(rsq00);
774             rinv10           = gmx_mm_invsqrt_ps(rsq10);
775             rinv20           = gmx_mm_invsqrt_ps(rsq20);
776
777             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
778             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
779             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
780
781             /* Load parameters for j particles */
782             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
783                                                               charge+jnrC+0,charge+jnrD+0);
784             vdwjidx0A        = 2*vdwtype[jnrA+0];
785             vdwjidx0B        = 2*vdwtype[jnrB+0];
786             vdwjidx0C        = 2*vdwtype[jnrC+0];
787             vdwjidx0D        = 2*vdwtype[jnrD+0];
788
789             fjx0             = _mm_setzero_ps();
790             fjy0             = _mm_setzero_ps();
791             fjz0             = _mm_setzero_ps();
792
793             /**************************
794              * CALCULATE INTERACTIONS *
795              **************************/
796
797             r00              = _mm_mul_ps(rsq00,rinv00);
798
799             /* Compute parameters for interactions between i and j atoms */
800             qq00             = _mm_mul_ps(iq0,jq0);
801             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
802                                          vdwparam+vdwioffset0+vdwjidx0B,
803                                          vdwparam+vdwioffset0+vdwjidx0C,
804                                          vdwparam+vdwioffset0+vdwjidx0D,
805                                          &c6_00,&c12_00);
806
807             /* EWALD ELECTROSTATICS */
808
809             /* Analytical PME correction */
810             zeta2            = _mm_mul_ps(beta2,rsq00);
811             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
812             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
813             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
814             felec            = _mm_mul_ps(qq00,felec);
815
816             /* LENNARD-JONES DISPERSION/REPULSION */
817
818             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
819             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
820
821             fscal            = _mm_add_ps(felec,fvdw);
822
823              /* Update vectorial force */
824             fix0             = _mm_macc_ps(dx00,fscal,fix0);
825             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
826             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
827
828             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
829             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
830             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
831
832             /**************************
833              * CALCULATE INTERACTIONS *
834              **************************/
835
836             r10              = _mm_mul_ps(rsq10,rinv10);
837
838             /* Compute parameters for interactions between i and j atoms */
839             qq10             = _mm_mul_ps(iq1,jq0);
840
841             /* EWALD ELECTROSTATICS */
842
843             /* Analytical PME correction */
844             zeta2            = _mm_mul_ps(beta2,rsq10);
845             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
846             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
847             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
848             felec            = _mm_mul_ps(qq10,felec);
849
850             fscal            = felec;
851
852              /* Update vectorial force */
853             fix1             = _mm_macc_ps(dx10,fscal,fix1);
854             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
855             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
856
857             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
858             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
859             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
860
861             /**************************
862              * CALCULATE INTERACTIONS *
863              **************************/
864
865             r20              = _mm_mul_ps(rsq20,rinv20);
866
867             /* Compute parameters for interactions between i and j atoms */
868             qq20             = _mm_mul_ps(iq2,jq0);
869
870             /* EWALD ELECTROSTATICS */
871
872             /* Analytical PME correction */
873             zeta2            = _mm_mul_ps(beta2,rsq20);
874             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
875             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
876             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
877             felec            = _mm_mul_ps(qq20,felec);
878
879             fscal            = felec;
880
881              /* Update vectorial force */
882             fix2             = _mm_macc_ps(dx20,fscal,fix2);
883             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
884             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
885
886             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
887             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
888             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
889
890             fjptrA             = f+j_coord_offsetA;
891             fjptrB             = f+j_coord_offsetB;
892             fjptrC             = f+j_coord_offsetC;
893             fjptrD             = f+j_coord_offsetD;
894
895             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
896
897             /* Inner loop uses 91 flops */
898         }
899
900         if(jidx<j_index_end)
901         {
902
903             /* Get j neighbor index, and coordinate index */
904             jnrlistA         = jjnr[jidx];
905             jnrlistB         = jjnr[jidx+1];
906             jnrlistC         = jjnr[jidx+2];
907             jnrlistD         = jjnr[jidx+3];
908             /* Sign of each element will be negative for non-real atoms.
909              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
910              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
911              */
912             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
913             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
914             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
915             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
916             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
917             j_coord_offsetA  = DIM*jnrA;
918             j_coord_offsetB  = DIM*jnrB;
919             j_coord_offsetC  = DIM*jnrC;
920             j_coord_offsetD  = DIM*jnrD;
921
922             /* load j atom coordinates */
923             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
924                                               x+j_coord_offsetC,x+j_coord_offsetD,
925                                               &jx0,&jy0,&jz0);
926
927             /* Calculate displacement vector */
928             dx00             = _mm_sub_ps(ix0,jx0);
929             dy00             = _mm_sub_ps(iy0,jy0);
930             dz00             = _mm_sub_ps(iz0,jz0);
931             dx10             = _mm_sub_ps(ix1,jx0);
932             dy10             = _mm_sub_ps(iy1,jy0);
933             dz10             = _mm_sub_ps(iz1,jz0);
934             dx20             = _mm_sub_ps(ix2,jx0);
935             dy20             = _mm_sub_ps(iy2,jy0);
936             dz20             = _mm_sub_ps(iz2,jz0);
937
938             /* Calculate squared distance and things based on it */
939             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
940             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
941             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
942
943             rinv00           = gmx_mm_invsqrt_ps(rsq00);
944             rinv10           = gmx_mm_invsqrt_ps(rsq10);
945             rinv20           = gmx_mm_invsqrt_ps(rsq20);
946
947             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
948             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
949             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
950
951             /* Load parameters for j particles */
952             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
953                                                               charge+jnrC+0,charge+jnrD+0);
954             vdwjidx0A        = 2*vdwtype[jnrA+0];
955             vdwjidx0B        = 2*vdwtype[jnrB+0];
956             vdwjidx0C        = 2*vdwtype[jnrC+0];
957             vdwjidx0D        = 2*vdwtype[jnrD+0];
958
959             fjx0             = _mm_setzero_ps();
960             fjy0             = _mm_setzero_ps();
961             fjz0             = _mm_setzero_ps();
962
963             /**************************
964              * CALCULATE INTERACTIONS *
965              **************************/
966
967             r00              = _mm_mul_ps(rsq00,rinv00);
968             r00              = _mm_andnot_ps(dummy_mask,r00);
969
970             /* Compute parameters for interactions between i and j atoms */
971             qq00             = _mm_mul_ps(iq0,jq0);
972             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
973                                          vdwparam+vdwioffset0+vdwjidx0B,
974                                          vdwparam+vdwioffset0+vdwjidx0C,
975                                          vdwparam+vdwioffset0+vdwjidx0D,
976                                          &c6_00,&c12_00);
977
978             /* EWALD ELECTROSTATICS */
979
980             /* Analytical PME correction */
981             zeta2            = _mm_mul_ps(beta2,rsq00);
982             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
983             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
984             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
985             felec            = _mm_mul_ps(qq00,felec);
986
987             /* LENNARD-JONES DISPERSION/REPULSION */
988
989             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
990             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
991
992             fscal            = _mm_add_ps(felec,fvdw);
993
994             fscal            = _mm_andnot_ps(dummy_mask,fscal);
995
996              /* Update vectorial force */
997             fix0             = _mm_macc_ps(dx00,fscal,fix0);
998             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
999             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1000
1001             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1002             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1003             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             r10              = _mm_mul_ps(rsq10,rinv10);
1010             r10              = _mm_andnot_ps(dummy_mask,r10);
1011
1012             /* Compute parameters for interactions between i and j atoms */
1013             qq10             = _mm_mul_ps(iq1,jq0);
1014
1015             /* EWALD ELECTROSTATICS */
1016
1017             /* Analytical PME correction */
1018             zeta2            = _mm_mul_ps(beta2,rsq10);
1019             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1020             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1021             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1022             felec            = _mm_mul_ps(qq10,felec);
1023
1024             fscal            = felec;
1025
1026             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1027
1028              /* Update vectorial force */
1029             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1030             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1031             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1032
1033             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1034             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1035             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             r20              = _mm_mul_ps(rsq20,rinv20);
1042             r20              = _mm_andnot_ps(dummy_mask,r20);
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             qq20             = _mm_mul_ps(iq2,jq0);
1046
1047             /* EWALD ELECTROSTATICS */
1048
1049             /* Analytical PME correction */
1050             zeta2            = _mm_mul_ps(beta2,rsq20);
1051             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1052             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1053             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1054             felec            = _mm_mul_ps(qq20,felec);
1055
1056             fscal            = felec;
1057
1058             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1059
1060              /* Update vectorial force */
1061             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1062             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1063             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1064
1065             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1066             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1067             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1068
1069             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1070             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1071             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1072             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1073
1074             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1075
1076             /* Inner loop uses 94 flops */
1077         }
1078
1079         /* End of innermost loop */
1080
1081         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1082                                               f+i_coord_offset,fshift+i_shift_offset);
1083
1084         /* Increment number of inner iterations */
1085         inneriter                  += j_index_end - j_index_start;
1086
1087         /* Outer loop uses 18 flops */
1088     }
1089
1090     /* Increment number of outer iterations */
1091     outeriter        += nri;
1092
1093     /* Update outer/inner flops */
1094
1095     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*94);
1096 }