Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128i          ewitab;
99     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
101     real             *ewtab;
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
124     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
125     beta2            = _mm_mul_ps(beta,beta);
126     beta3            = _mm_mul_ps(beta,beta2);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162
163         fix0             = _mm_setzero_ps();
164         fiy0             = _mm_setzero_ps();
165         fiz0             = _mm_setzero_ps();
166
167         /* Load parameters for i particles */
168         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
169         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_ps();
173         vvdwsum          = _mm_setzero_ps();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188
189             /* load j atom coordinates */
190             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
191                                               x+j_coord_offsetC,x+j_coord_offsetD,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_ps(ix0,jx0);
196             dy00             = _mm_sub_ps(iy0,jy0);
197             dz00             = _mm_sub_ps(iz0,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
201
202             rinv00           = gmx_mm_invsqrt_ps(rsq00);
203
204             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
208                                                               charge+jnrC+0,charge+jnrD+0);
209             vdwjidx0A        = 2*vdwtype[jnrA+0];
210             vdwjidx0B        = 2*vdwtype[jnrB+0];
211             vdwjidx0C        = 2*vdwtype[jnrC+0];
212             vdwjidx0D        = 2*vdwtype[jnrD+0];
213
214             /**************************
215              * CALCULATE INTERACTIONS *
216              **************************/
217
218             r00              = _mm_mul_ps(rsq00,rinv00);
219
220             /* Compute parameters for interactions between i and j atoms */
221             qq00             = _mm_mul_ps(iq0,jq0);
222             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
223                                          vdwparam+vdwioffset0+vdwjidx0B,
224                                          vdwparam+vdwioffset0+vdwjidx0C,
225                                          vdwparam+vdwioffset0+vdwjidx0D,
226                                          &c6_00,&c12_00);
227
228             /* EWALD ELECTROSTATICS */
229
230             /* Analytical PME correction */
231             zeta2            = _mm_mul_ps(beta2,rsq00);
232             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
233             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
234             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
235             felec            = _mm_mul_ps(qq00,felec);
236             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
237             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
238             velec            = _mm_mul_ps(qq00,velec);
239
240             /* LENNARD-JONES DISPERSION/REPULSION */
241
242             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
243             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
244             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
245             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
246             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             velecsum         = _mm_add_ps(velecsum,velec);
250             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
251
252             fscal            = _mm_add_ps(felec,fvdw);
253
254              /* Update vectorial force */
255             fix0             = _mm_macc_ps(dx00,fscal,fix0);
256             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
257             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
258
259             fjptrA             = f+j_coord_offsetA;
260             fjptrB             = f+j_coord_offsetB;
261             fjptrC             = f+j_coord_offsetC;
262             fjptrD             = f+j_coord_offsetD;
263             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
264                                                    _mm_mul_ps(dx00,fscal),
265                                                    _mm_mul_ps(dy00,fscal),
266                                                    _mm_mul_ps(dz00,fscal));
267
268             /* Inner loop uses 41 flops */
269         }
270
271         if(jidx<j_index_end)
272         {
273
274             /* Get j neighbor index, and coordinate index */
275             jnrlistA         = jjnr[jidx];
276             jnrlistB         = jjnr[jidx+1];
277             jnrlistC         = jjnr[jidx+2];
278             jnrlistD         = jjnr[jidx+3];
279             /* Sign of each element will be negative for non-real atoms.
280              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
281              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
282              */
283             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
284             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
285             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
286             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
287             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
288             j_coord_offsetA  = DIM*jnrA;
289             j_coord_offsetB  = DIM*jnrB;
290             j_coord_offsetC  = DIM*jnrC;
291             j_coord_offsetD  = DIM*jnrD;
292
293             /* load j atom coordinates */
294             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
295                                               x+j_coord_offsetC,x+j_coord_offsetD,
296                                               &jx0,&jy0,&jz0);
297
298             /* Calculate displacement vector */
299             dx00             = _mm_sub_ps(ix0,jx0);
300             dy00             = _mm_sub_ps(iy0,jy0);
301             dz00             = _mm_sub_ps(iz0,jz0);
302
303             /* Calculate squared distance and things based on it */
304             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
305
306             rinv00           = gmx_mm_invsqrt_ps(rsq00);
307
308             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
309
310             /* Load parameters for j particles */
311             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
312                                                               charge+jnrC+0,charge+jnrD+0);
313             vdwjidx0A        = 2*vdwtype[jnrA+0];
314             vdwjidx0B        = 2*vdwtype[jnrB+0];
315             vdwjidx0C        = 2*vdwtype[jnrC+0];
316             vdwjidx0D        = 2*vdwtype[jnrD+0];
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             r00              = _mm_mul_ps(rsq00,rinv00);
323             r00              = _mm_andnot_ps(dummy_mask,r00);
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq00             = _mm_mul_ps(iq0,jq0);
327             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
328                                          vdwparam+vdwioffset0+vdwjidx0B,
329                                          vdwparam+vdwioffset0+vdwjidx0C,
330                                          vdwparam+vdwioffset0+vdwjidx0D,
331                                          &c6_00,&c12_00);
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Analytical PME correction */
336             zeta2            = _mm_mul_ps(beta2,rsq00);
337             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
338             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
339             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
340             felec            = _mm_mul_ps(qq00,felec);
341             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
342             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
343             velec            = _mm_mul_ps(qq00,velec);
344
345             /* LENNARD-JONES DISPERSION/REPULSION */
346
347             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
348             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
349             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
350             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
351             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velec            = _mm_andnot_ps(dummy_mask,velec);
355             velecsum         = _mm_add_ps(velecsum,velec);
356             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
357             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
358
359             fscal            = _mm_add_ps(felec,fvdw);
360
361             fscal            = _mm_andnot_ps(dummy_mask,fscal);
362
363              /* Update vectorial force */
364             fix0             = _mm_macc_ps(dx00,fscal,fix0);
365             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
366             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
367
368             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
369             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
370             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
371             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
372             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
373                                                    _mm_mul_ps(dx00,fscal),
374                                                    _mm_mul_ps(dy00,fscal),
375                                                    _mm_mul_ps(dz00,fscal));
376
377             /* Inner loop uses 42 flops */
378         }
379
380         /* End of innermost loop */
381
382         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
383                                               f+i_coord_offset,fshift+i_shift_offset);
384
385         ggid                        = gid[iidx];
386         /* Update potential energies */
387         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
388         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
389
390         /* Increment number of inner iterations */
391         inneriter                  += j_index_end - j_index_start;
392
393         /* Outer loop uses 9 flops */
394     }
395
396     /* Increment number of outer iterations */
397     outeriter        += nri;
398
399     /* Update outer/inner flops */
400
401     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*42);
402 }
403 /*
404  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_single
405  * Electrostatics interaction: Ewald
406  * VdW interaction:            LennardJones
407  * Geometry:                   Particle-Particle
408  * Calculate force/pot:        Force
409  */
410 void
411 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_single
412                     (t_nblist                    * gmx_restrict       nlist,
413                      rvec                        * gmx_restrict          xx,
414                      rvec                        * gmx_restrict          ff,
415                      t_forcerec                  * gmx_restrict          fr,
416                      t_mdatoms                   * gmx_restrict     mdatoms,
417                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
418                      t_nrnb                      * gmx_restrict        nrnb)
419 {
420     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
421      * just 0 for non-waters.
422      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
423      * jnr indices corresponding to data put in the four positions in the SIMD register.
424      */
425     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
426     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
427     int              jnrA,jnrB,jnrC,jnrD;
428     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
429     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
430     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
431     real             rcutoff_scalar;
432     real             *shiftvec,*fshift,*x,*f;
433     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
434     real             scratch[4*DIM];
435     __m128           fscal,rcutoff,rcutoff2,jidxall;
436     int              vdwioffset0;
437     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
438     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
439     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
440     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
441     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
442     real             *charge;
443     int              nvdwtype;
444     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
445     int              *vdwtype;
446     real             *vdwparam;
447     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
448     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
449     __m128i          ewitab;
450     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
451     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
452     real             *ewtab;
453     __m128           dummy_mask,cutoff_mask;
454     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
455     __m128           one     = _mm_set1_ps(1.0);
456     __m128           two     = _mm_set1_ps(2.0);
457     x                = xx[0];
458     f                = ff[0];
459
460     nri              = nlist->nri;
461     iinr             = nlist->iinr;
462     jindex           = nlist->jindex;
463     jjnr             = nlist->jjnr;
464     shiftidx         = nlist->shift;
465     gid              = nlist->gid;
466     shiftvec         = fr->shift_vec[0];
467     fshift           = fr->fshift[0];
468     facel            = _mm_set1_ps(fr->epsfac);
469     charge           = mdatoms->chargeA;
470     nvdwtype         = fr->ntype;
471     vdwparam         = fr->nbfp;
472     vdwtype          = mdatoms->typeA;
473
474     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
475     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
476     beta2            = _mm_mul_ps(beta,beta);
477     beta3            = _mm_mul_ps(beta,beta2);
478     ewtab            = fr->ic->tabq_coul_F;
479     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
480     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
481
482     /* Avoid stupid compiler warnings */
483     jnrA = jnrB = jnrC = jnrD = 0;
484     j_coord_offsetA = 0;
485     j_coord_offsetB = 0;
486     j_coord_offsetC = 0;
487     j_coord_offsetD = 0;
488
489     outeriter        = 0;
490     inneriter        = 0;
491
492     for(iidx=0;iidx<4*DIM;iidx++)
493     {
494         scratch[iidx] = 0.0;
495     }
496
497     /* Start outer loop over neighborlists */
498     for(iidx=0; iidx<nri; iidx++)
499     {
500         /* Load shift vector for this list */
501         i_shift_offset   = DIM*shiftidx[iidx];
502
503         /* Load limits for loop over neighbors */
504         j_index_start    = jindex[iidx];
505         j_index_end      = jindex[iidx+1];
506
507         /* Get outer coordinate index */
508         inr              = iinr[iidx];
509         i_coord_offset   = DIM*inr;
510
511         /* Load i particle coords and add shift vector */
512         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
513
514         fix0             = _mm_setzero_ps();
515         fiy0             = _mm_setzero_ps();
516         fiz0             = _mm_setzero_ps();
517
518         /* Load parameters for i particles */
519         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
520         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
521
522         /* Start inner kernel loop */
523         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
524         {
525
526             /* Get j neighbor index, and coordinate index */
527             jnrA             = jjnr[jidx];
528             jnrB             = jjnr[jidx+1];
529             jnrC             = jjnr[jidx+2];
530             jnrD             = jjnr[jidx+3];
531             j_coord_offsetA  = DIM*jnrA;
532             j_coord_offsetB  = DIM*jnrB;
533             j_coord_offsetC  = DIM*jnrC;
534             j_coord_offsetD  = DIM*jnrD;
535
536             /* load j atom coordinates */
537             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
538                                               x+j_coord_offsetC,x+j_coord_offsetD,
539                                               &jx0,&jy0,&jz0);
540
541             /* Calculate displacement vector */
542             dx00             = _mm_sub_ps(ix0,jx0);
543             dy00             = _mm_sub_ps(iy0,jy0);
544             dz00             = _mm_sub_ps(iz0,jz0);
545
546             /* Calculate squared distance and things based on it */
547             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
548
549             rinv00           = gmx_mm_invsqrt_ps(rsq00);
550
551             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
552
553             /* Load parameters for j particles */
554             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
555                                                               charge+jnrC+0,charge+jnrD+0);
556             vdwjidx0A        = 2*vdwtype[jnrA+0];
557             vdwjidx0B        = 2*vdwtype[jnrB+0];
558             vdwjidx0C        = 2*vdwtype[jnrC+0];
559             vdwjidx0D        = 2*vdwtype[jnrD+0];
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             r00              = _mm_mul_ps(rsq00,rinv00);
566
567             /* Compute parameters for interactions between i and j atoms */
568             qq00             = _mm_mul_ps(iq0,jq0);
569             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
570                                          vdwparam+vdwioffset0+vdwjidx0B,
571                                          vdwparam+vdwioffset0+vdwjidx0C,
572                                          vdwparam+vdwioffset0+vdwjidx0D,
573                                          &c6_00,&c12_00);
574
575             /* EWALD ELECTROSTATICS */
576
577             /* Analytical PME correction */
578             zeta2            = _mm_mul_ps(beta2,rsq00);
579             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
580             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
581             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
582             felec            = _mm_mul_ps(qq00,felec);
583
584             /* LENNARD-JONES DISPERSION/REPULSION */
585
586             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
587             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
588
589             fscal            = _mm_add_ps(felec,fvdw);
590
591              /* Update vectorial force */
592             fix0             = _mm_macc_ps(dx00,fscal,fix0);
593             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
594             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
595
596             fjptrA             = f+j_coord_offsetA;
597             fjptrB             = f+j_coord_offsetB;
598             fjptrC             = f+j_coord_offsetC;
599             fjptrD             = f+j_coord_offsetD;
600             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
601                                                    _mm_mul_ps(dx00,fscal),
602                                                    _mm_mul_ps(dy00,fscal),
603                                                    _mm_mul_ps(dz00,fscal));
604
605             /* Inner loop uses 35 flops */
606         }
607
608         if(jidx<j_index_end)
609         {
610
611             /* Get j neighbor index, and coordinate index */
612             jnrlistA         = jjnr[jidx];
613             jnrlistB         = jjnr[jidx+1];
614             jnrlistC         = jjnr[jidx+2];
615             jnrlistD         = jjnr[jidx+3];
616             /* Sign of each element will be negative for non-real atoms.
617              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
618              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
619              */
620             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
621             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
622             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
623             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
624             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
625             j_coord_offsetA  = DIM*jnrA;
626             j_coord_offsetB  = DIM*jnrB;
627             j_coord_offsetC  = DIM*jnrC;
628             j_coord_offsetD  = DIM*jnrD;
629
630             /* load j atom coordinates */
631             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
632                                               x+j_coord_offsetC,x+j_coord_offsetD,
633                                               &jx0,&jy0,&jz0);
634
635             /* Calculate displacement vector */
636             dx00             = _mm_sub_ps(ix0,jx0);
637             dy00             = _mm_sub_ps(iy0,jy0);
638             dz00             = _mm_sub_ps(iz0,jz0);
639
640             /* Calculate squared distance and things based on it */
641             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
642
643             rinv00           = gmx_mm_invsqrt_ps(rsq00);
644
645             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
646
647             /* Load parameters for j particles */
648             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
649                                                               charge+jnrC+0,charge+jnrD+0);
650             vdwjidx0A        = 2*vdwtype[jnrA+0];
651             vdwjidx0B        = 2*vdwtype[jnrB+0];
652             vdwjidx0C        = 2*vdwtype[jnrC+0];
653             vdwjidx0D        = 2*vdwtype[jnrD+0];
654
655             /**************************
656              * CALCULATE INTERACTIONS *
657              **************************/
658
659             r00              = _mm_mul_ps(rsq00,rinv00);
660             r00              = _mm_andnot_ps(dummy_mask,r00);
661
662             /* Compute parameters for interactions between i and j atoms */
663             qq00             = _mm_mul_ps(iq0,jq0);
664             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
665                                          vdwparam+vdwioffset0+vdwjidx0B,
666                                          vdwparam+vdwioffset0+vdwjidx0C,
667                                          vdwparam+vdwioffset0+vdwjidx0D,
668                                          &c6_00,&c12_00);
669
670             /* EWALD ELECTROSTATICS */
671
672             /* Analytical PME correction */
673             zeta2            = _mm_mul_ps(beta2,rsq00);
674             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
675             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
676             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
677             felec            = _mm_mul_ps(qq00,felec);
678
679             /* LENNARD-JONES DISPERSION/REPULSION */
680
681             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
682             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
683
684             fscal            = _mm_add_ps(felec,fvdw);
685
686             fscal            = _mm_andnot_ps(dummy_mask,fscal);
687
688              /* Update vectorial force */
689             fix0             = _mm_macc_ps(dx00,fscal,fix0);
690             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
691             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
692
693             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
694             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
695             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
696             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
697             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
698                                                    _mm_mul_ps(dx00,fscal),
699                                                    _mm_mul_ps(dy00,fscal),
700                                                    _mm_mul_ps(dz00,fscal));
701
702             /* Inner loop uses 36 flops */
703         }
704
705         /* End of innermost loop */
706
707         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
708                                               f+i_coord_offset,fshift+i_shift_offset);
709
710         /* Increment number of inner iterations */
711         inneriter                  += j_index_end - j_index_start;
712
713         /* Outer loop uses 7 flops */
714     }
715
716     /* Increment number of outer iterations */
717     outeriter        += nri;
718
719     /* Update outer/inner flops */
720
721     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*36);
722 }