Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          ewitab;
97     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
99     real             *ewtab;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
122     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
123     beta2            = _mm_mul_ps(beta,beta);
124     beta3            = _mm_mul_ps(beta,beta2);
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
127     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
160
161         fix0             = _mm_setzero_ps();
162         fiy0             = _mm_setzero_ps();
163         fiz0             = _mm_setzero_ps();
164
165         /* Load parameters for i particles */
166         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
167         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_ps();
171         vvdwsum          = _mm_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               x+j_coord_offsetC,x+j_coord_offsetD,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_ps(ix0,jx0);
194             dy00             = _mm_sub_ps(iy0,jy0);
195             dz00             = _mm_sub_ps(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
199
200             rinv00           = gmx_mm_invsqrt_ps(rsq00);
201
202             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
206                                                               charge+jnrC+0,charge+jnrD+0);
207             vdwjidx0A        = 2*vdwtype[jnrA+0];
208             vdwjidx0B        = 2*vdwtype[jnrB+0];
209             vdwjidx0C        = 2*vdwtype[jnrC+0];
210             vdwjidx0D        = 2*vdwtype[jnrD+0];
211
212             /**************************
213              * CALCULATE INTERACTIONS *
214              **************************/
215
216             r00              = _mm_mul_ps(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm_mul_ps(iq0,jq0);
220             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,
222                                          vdwparam+vdwioffset0+vdwjidx0C,
223                                          vdwparam+vdwioffset0+vdwjidx0D,
224                                          &c6_00,&c12_00);
225
226             /* EWALD ELECTROSTATICS */
227
228             /* Analytical PME correction */
229             zeta2            = _mm_mul_ps(beta2,rsq00);
230             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
231             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
232             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
233             felec            = _mm_mul_ps(qq00,felec);
234             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
235             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
236             velec            = _mm_mul_ps(qq00,velec);
237
238             /* LENNARD-JONES DISPERSION/REPULSION */
239
240             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
241             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
242             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
243             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
244             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             velecsum         = _mm_add_ps(velecsum,velec);
248             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
249
250             fscal            = _mm_add_ps(felec,fvdw);
251
252              /* Update vectorial force */
253             fix0             = _mm_macc_ps(dx00,fscal,fix0);
254             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
255             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
256
257             fjptrA             = f+j_coord_offsetA;
258             fjptrB             = f+j_coord_offsetB;
259             fjptrC             = f+j_coord_offsetC;
260             fjptrD             = f+j_coord_offsetD;
261             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
262                                                    _mm_mul_ps(dx00,fscal),
263                                                    _mm_mul_ps(dy00,fscal),
264                                                    _mm_mul_ps(dz00,fscal));
265
266             /* Inner loop uses 41 flops */
267         }
268
269         if(jidx<j_index_end)
270         {
271
272             /* Get j neighbor index, and coordinate index */
273             jnrlistA         = jjnr[jidx];
274             jnrlistB         = jjnr[jidx+1];
275             jnrlistC         = jjnr[jidx+2];
276             jnrlistD         = jjnr[jidx+3];
277             /* Sign of each element will be negative for non-real atoms.
278              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
279              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
280              */
281             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
282             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
283             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
284             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
285             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
286             j_coord_offsetA  = DIM*jnrA;
287             j_coord_offsetB  = DIM*jnrB;
288             j_coord_offsetC  = DIM*jnrC;
289             j_coord_offsetD  = DIM*jnrD;
290
291             /* load j atom coordinates */
292             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
293                                               x+j_coord_offsetC,x+j_coord_offsetD,
294                                               &jx0,&jy0,&jz0);
295
296             /* Calculate displacement vector */
297             dx00             = _mm_sub_ps(ix0,jx0);
298             dy00             = _mm_sub_ps(iy0,jy0);
299             dz00             = _mm_sub_ps(iz0,jz0);
300
301             /* Calculate squared distance and things based on it */
302             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
303
304             rinv00           = gmx_mm_invsqrt_ps(rsq00);
305
306             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
307
308             /* Load parameters for j particles */
309             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
310                                                               charge+jnrC+0,charge+jnrD+0);
311             vdwjidx0A        = 2*vdwtype[jnrA+0];
312             vdwjidx0B        = 2*vdwtype[jnrB+0];
313             vdwjidx0C        = 2*vdwtype[jnrC+0];
314             vdwjidx0D        = 2*vdwtype[jnrD+0];
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             r00              = _mm_mul_ps(rsq00,rinv00);
321             r00              = _mm_andnot_ps(dummy_mask,r00);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq00             = _mm_mul_ps(iq0,jq0);
325             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
326                                          vdwparam+vdwioffset0+vdwjidx0B,
327                                          vdwparam+vdwioffset0+vdwjidx0C,
328                                          vdwparam+vdwioffset0+vdwjidx0D,
329                                          &c6_00,&c12_00);
330
331             /* EWALD ELECTROSTATICS */
332
333             /* Analytical PME correction */
334             zeta2            = _mm_mul_ps(beta2,rsq00);
335             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
336             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
337             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
338             felec            = _mm_mul_ps(qq00,felec);
339             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
340             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
341             velec            = _mm_mul_ps(qq00,velec);
342
343             /* LENNARD-JONES DISPERSION/REPULSION */
344
345             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
346             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
347             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
348             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
349             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velec            = _mm_andnot_ps(dummy_mask,velec);
353             velecsum         = _mm_add_ps(velecsum,velec);
354             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
355             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
356
357             fscal            = _mm_add_ps(felec,fvdw);
358
359             fscal            = _mm_andnot_ps(dummy_mask,fscal);
360
361              /* Update vectorial force */
362             fix0             = _mm_macc_ps(dx00,fscal,fix0);
363             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
364             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
365
366             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
367             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
368             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
369             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
370             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
371                                                    _mm_mul_ps(dx00,fscal),
372                                                    _mm_mul_ps(dy00,fscal),
373                                                    _mm_mul_ps(dz00,fscal));
374
375             /* Inner loop uses 42 flops */
376         }
377
378         /* End of innermost loop */
379
380         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
381                                               f+i_coord_offset,fshift+i_shift_offset);
382
383         ggid                        = gid[iidx];
384         /* Update potential energies */
385         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
386         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
387
388         /* Increment number of inner iterations */
389         inneriter                  += j_index_end - j_index_start;
390
391         /* Outer loop uses 9 flops */
392     }
393
394     /* Increment number of outer iterations */
395     outeriter        += nri;
396
397     /* Update outer/inner flops */
398
399     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*42);
400 }
401 /*
402  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_single
403  * Electrostatics interaction: Ewald
404  * VdW interaction:            LennardJones
405  * Geometry:                   Particle-Particle
406  * Calculate force/pot:        Force
407  */
408 void
409 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_single
410                     (t_nblist                    * gmx_restrict       nlist,
411                      rvec                        * gmx_restrict          xx,
412                      rvec                        * gmx_restrict          ff,
413                      t_forcerec                  * gmx_restrict          fr,
414                      t_mdatoms                   * gmx_restrict     mdatoms,
415                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
416                      t_nrnb                      * gmx_restrict        nrnb)
417 {
418     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
419      * just 0 for non-waters.
420      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
421      * jnr indices corresponding to data put in the four positions in the SIMD register.
422      */
423     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
424     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
425     int              jnrA,jnrB,jnrC,jnrD;
426     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
427     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
428     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
429     real             rcutoff_scalar;
430     real             *shiftvec,*fshift,*x,*f;
431     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
432     real             scratch[4*DIM];
433     __m128           fscal,rcutoff,rcutoff2,jidxall;
434     int              vdwioffset0;
435     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
436     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
437     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
438     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
439     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
440     real             *charge;
441     int              nvdwtype;
442     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
443     int              *vdwtype;
444     real             *vdwparam;
445     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
446     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
447     __m128i          ewitab;
448     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
449     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
450     real             *ewtab;
451     __m128           dummy_mask,cutoff_mask;
452     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
453     __m128           one     = _mm_set1_ps(1.0);
454     __m128           two     = _mm_set1_ps(2.0);
455     x                = xx[0];
456     f                = ff[0];
457
458     nri              = nlist->nri;
459     iinr             = nlist->iinr;
460     jindex           = nlist->jindex;
461     jjnr             = nlist->jjnr;
462     shiftidx         = nlist->shift;
463     gid              = nlist->gid;
464     shiftvec         = fr->shift_vec[0];
465     fshift           = fr->fshift[0];
466     facel            = _mm_set1_ps(fr->epsfac);
467     charge           = mdatoms->chargeA;
468     nvdwtype         = fr->ntype;
469     vdwparam         = fr->nbfp;
470     vdwtype          = mdatoms->typeA;
471
472     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
473     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
474     beta2            = _mm_mul_ps(beta,beta);
475     beta3            = _mm_mul_ps(beta,beta2);
476     ewtab            = fr->ic->tabq_coul_F;
477     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
478     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
479
480     /* Avoid stupid compiler warnings */
481     jnrA = jnrB = jnrC = jnrD = 0;
482     j_coord_offsetA = 0;
483     j_coord_offsetB = 0;
484     j_coord_offsetC = 0;
485     j_coord_offsetD = 0;
486
487     outeriter        = 0;
488     inneriter        = 0;
489
490     for(iidx=0;iidx<4*DIM;iidx++)
491     {
492         scratch[iidx] = 0.0;
493     }
494
495     /* Start outer loop over neighborlists */
496     for(iidx=0; iidx<nri; iidx++)
497     {
498         /* Load shift vector for this list */
499         i_shift_offset   = DIM*shiftidx[iidx];
500
501         /* Load limits for loop over neighbors */
502         j_index_start    = jindex[iidx];
503         j_index_end      = jindex[iidx+1];
504
505         /* Get outer coordinate index */
506         inr              = iinr[iidx];
507         i_coord_offset   = DIM*inr;
508
509         /* Load i particle coords and add shift vector */
510         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
511
512         fix0             = _mm_setzero_ps();
513         fiy0             = _mm_setzero_ps();
514         fiz0             = _mm_setzero_ps();
515
516         /* Load parameters for i particles */
517         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
518         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
519
520         /* Start inner kernel loop */
521         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
522         {
523
524             /* Get j neighbor index, and coordinate index */
525             jnrA             = jjnr[jidx];
526             jnrB             = jjnr[jidx+1];
527             jnrC             = jjnr[jidx+2];
528             jnrD             = jjnr[jidx+3];
529             j_coord_offsetA  = DIM*jnrA;
530             j_coord_offsetB  = DIM*jnrB;
531             j_coord_offsetC  = DIM*jnrC;
532             j_coord_offsetD  = DIM*jnrD;
533
534             /* load j atom coordinates */
535             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
536                                               x+j_coord_offsetC,x+j_coord_offsetD,
537                                               &jx0,&jy0,&jz0);
538
539             /* Calculate displacement vector */
540             dx00             = _mm_sub_ps(ix0,jx0);
541             dy00             = _mm_sub_ps(iy0,jy0);
542             dz00             = _mm_sub_ps(iz0,jz0);
543
544             /* Calculate squared distance and things based on it */
545             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
546
547             rinv00           = gmx_mm_invsqrt_ps(rsq00);
548
549             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
550
551             /* Load parameters for j particles */
552             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
553                                                               charge+jnrC+0,charge+jnrD+0);
554             vdwjidx0A        = 2*vdwtype[jnrA+0];
555             vdwjidx0B        = 2*vdwtype[jnrB+0];
556             vdwjidx0C        = 2*vdwtype[jnrC+0];
557             vdwjidx0D        = 2*vdwtype[jnrD+0];
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             r00              = _mm_mul_ps(rsq00,rinv00);
564
565             /* Compute parameters for interactions between i and j atoms */
566             qq00             = _mm_mul_ps(iq0,jq0);
567             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
568                                          vdwparam+vdwioffset0+vdwjidx0B,
569                                          vdwparam+vdwioffset0+vdwjidx0C,
570                                          vdwparam+vdwioffset0+vdwjidx0D,
571                                          &c6_00,&c12_00);
572
573             /* EWALD ELECTROSTATICS */
574
575             /* Analytical PME correction */
576             zeta2            = _mm_mul_ps(beta2,rsq00);
577             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
578             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
579             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
580             felec            = _mm_mul_ps(qq00,felec);
581
582             /* LENNARD-JONES DISPERSION/REPULSION */
583
584             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
585             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
586
587             fscal            = _mm_add_ps(felec,fvdw);
588
589              /* Update vectorial force */
590             fix0             = _mm_macc_ps(dx00,fscal,fix0);
591             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
592             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
593
594             fjptrA             = f+j_coord_offsetA;
595             fjptrB             = f+j_coord_offsetB;
596             fjptrC             = f+j_coord_offsetC;
597             fjptrD             = f+j_coord_offsetD;
598             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
599                                                    _mm_mul_ps(dx00,fscal),
600                                                    _mm_mul_ps(dy00,fscal),
601                                                    _mm_mul_ps(dz00,fscal));
602
603             /* Inner loop uses 35 flops */
604         }
605
606         if(jidx<j_index_end)
607         {
608
609             /* Get j neighbor index, and coordinate index */
610             jnrlistA         = jjnr[jidx];
611             jnrlistB         = jjnr[jidx+1];
612             jnrlistC         = jjnr[jidx+2];
613             jnrlistD         = jjnr[jidx+3];
614             /* Sign of each element will be negative for non-real atoms.
615              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
616              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
617              */
618             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
619             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
620             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
621             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
622             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
623             j_coord_offsetA  = DIM*jnrA;
624             j_coord_offsetB  = DIM*jnrB;
625             j_coord_offsetC  = DIM*jnrC;
626             j_coord_offsetD  = DIM*jnrD;
627
628             /* load j atom coordinates */
629             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
630                                               x+j_coord_offsetC,x+j_coord_offsetD,
631                                               &jx0,&jy0,&jz0);
632
633             /* Calculate displacement vector */
634             dx00             = _mm_sub_ps(ix0,jx0);
635             dy00             = _mm_sub_ps(iy0,jy0);
636             dz00             = _mm_sub_ps(iz0,jz0);
637
638             /* Calculate squared distance and things based on it */
639             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
640
641             rinv00           = gmx_mm_invsqrt_ps(rsq00);
642
643             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
644
645             /* Load parameters for j particles */
646             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
647                                                               charge+jnrC+0,charge+jnrD+0);
648             vdwjidx0A        = 2*vdwtype[jnrA+0];
649             vdwjidx0B        = 2*vdwtype[jnrB+0];
650             vdwjidx0C        = 2*vdwtype[jnrC+0];
651             vdwjidx0D        = 2*vdwtype[jnrD+0];
652
653             /**************************
654              * CALCULATE INTERACTIONS *
655              **************************/
656
657             r00              = _mm_mul_ps(rsq00,rinv00);
658             r00              = _mm_andnot_ps(dummy_mask,r00);
659
660             /* Compute parameters for interactions between i and j atoms */
661             qq00             = _mm_mul_ps(iq0,jq0);
662             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
663                                          vdwparam+vdwioffset0+vdwjidx0B,
664                                          vdwparam+vdwioffset0+vdwjidx0C,
665                                          vdwparam+vdwioffset0+vdwjidx0D,
666                                          &c6_00,&c12_00);
667
668             /* EWALD ELECTROSTATICS */
669
670             /* Analytical PME correction */
671             zeta2            = _mm_mul_ps(beta2,rsq00);
672             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
673             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
674             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
675             felec            = _mm_mul_ps(qq00,felec);
676
677             /* LENNARD-JONES DISPERSION/REPULSION */
678
679             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
680             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
681
682             fscal            = _mm_add_ps(felec,fvdw);
683
684             fscal            = _mm_andnot_ps(dummy_mask,fscal);
685
686              /* Update vectorial force */
687             fix0             = _mm_macc_ps(dx00,fscal,fix0);
688             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
689             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
690
691             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
692             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
693             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
694             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
695             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
696                                                    _mm_mul_ps(dx00,fscal),
697                                                    _mm_mul_ps(dy00,fscal),
698                                                    _mm_mul_ps(dz00,fscal));
699
700             /* Inner loop uses 36 flops */
701         }
702
703         /* End of innermost loop */
704
705         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
706                                               f+i_coord_offset,fshift+i_shift_offset);
707
708         /* Increment number of inner iterations */
709         inneriter                  += j_index_end - j_index_start;
710
711         /* Outer loop uses 7 flops */
712     }
713
714     /* Increment number of outer iterations */
715     outeriter        += nri;
716
717     /* Update outer/inner flops */
718
719     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*36);
720 }