Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_avx_128_fma_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_128_fma_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           c6grid_00;
105     __m128           c6grid_10;
106     __m128           c6grid_20;
107     __m128           c6grid_30;
108     real             *vdwgridparam;
109     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
110     __m128           one_half = _mm_set1_ps(0.5);
111     __m128           minus_one = _mm_set1_ps(-1.0);
112     __m128i          ewitab;
113     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
114     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
115     real             *ewtab;
116     __m128           dummy_mask,cutoff_mask;
117     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
118     __m128           one     = _mm_set1_ps(1.0);
119     __m128           two     = _mm_set1_ps(2.0);
120     x                = xx[0];
121     f                = ff[0];
122
123     nri              = nlist->nri;
124     iinr             = nlist->iinr;
125     jindex           = nlist->jindex;
126     jjnr             = nlist->jjnr;
127     shiftidx         = nlist->shift;
128     gid              = nlist->gid;
129     shiftvec         = fr->shift_vec[0];
130     fshift           = fr->fshift[0];
131     facel            = _mm_set1_ps(fr->ic->epsfac);
132     charge           = mdatoms->chargeA;
133     nvdwtype         = fr->ntype;
134     vdwparam         = fr->nbfp;
135     vdwtype          = mdatoms->typeA;
136     vdwgridparam     = fr->ljpme_c6grid;
137     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
138     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
139     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
140
141     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
142     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
143     beta2            = _mm_mul_ps(beta,beta);
144     beta3            = _mm_mul_ps(beta,beta2);
145     ewtab            = fr->ic->tabq_coul_FDV0;
146     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
147     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
148
149     /* Setup water-specific parameters */
150     inr              = nlist->iinr[0];
151     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
152     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
153     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
154     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = jnrC = jnrD = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160     j_coord_offsetC = 0;
161     j_coord_offsetD = 0;
162
163     outeriter        = 0;
164     inneriter        = 0;
165
166     for(iidx=0;iidx<4*DIM;iidx++)
167     {
168         scratch[iidx] = 0.0;
169     }
170
171     /* Start outer loop over neighborlists */
172     for(iidx=0; iidx<nri; iidx++)
173     {
174         /* Load shift vector for this list */
175         i_shift_offset   = DIM*shiftidx[iidx];
176
177         /* Load limits for loop over neighbors */
178         j_index_start    = jindex[iidx];
179         j_index_end      = jindex[iidx+1];
180
181         /* Get outer coordinate index */
182         inr              = iinr[iidx];
183         i_coord_offset   = DIM*inr;
184
185         /* Load i particle coords and add shift vector */
186         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
187                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
188
189         fix0             = _mm_setzero_ps();
190         fiy0             = _mm_setzero_ps();
191         fiz0             = _mm_setzero_ps();
192         fix1             = _mm_setzero_ps();
193         fiy1             = _mm_setzero_ps();
194         fiz1             = _mm_setzero_ps();
195         fix2             = _mm_setzero_ps();
196         fiy2             = _mm_setzero_ps();
197         fiz2             = _mm_setzero_ps();
198         fix3             = _mm_setzero_ps();
199         fiy3             = _mm_setzero_ps();
200         fiz3             = _mm_setzero_ps();
201
202         /* Reset potential sums */
203         velecsum         = _mm_setzero_ps();
204         vvdwsum          = _mm_setzero_ps();
205
206         /* Start inner kernel loop */
207         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
208         {
209
210             /* Get j neighbor index, and coordinate index */
211             jnrA             = jjnr[jidx];
212             jnrB             = jjnr[jidx+1];
213             jnrC             = jjnr[jidx+2];
214             jnrD             = jjnr[jidx+3];
215             j_coord_offsetA  = DIM*jnrA;
216             j_coord_offsetB  = DIM*jnrB;
217             j_coord_offsetC  = DIM*jnrC;
218             j_coord_offsetD  = DIM*jnrD;
219
220             /* load j atom coordinates */
221             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
222                                               x+j_coord_offsetC,x+j_coord_offsetD,
223                                               &jx0,&jy0,&jz0);
224
225             /* Calculate displacement vector */
226             dx00             = _mm_sub_ps(ix0,jx0);
227             dy00             = _mm_sub_ps(iy0,jy0);
228             dz00             = _mm_sub_ps(iz0,jz0);
229             dx10             = _mm_sub_ps(ix1,jx0);
230             dy10             = _mm_sub_ps(iy1,jy0);
231             dz10             = _mm_sub_ps(iz1,jz0);
232             dx20             = _mm_sub_ps(ix2,jx0);
233             dy20             = _mm_sub_ps(iy2,jy0);
234             dz20             = _mm_sub_ps(iz2,jz0);
235             dx30             = _mm_sub_ps(ix3,jx0);
236             dy30             = _mm_sub_ps(iy3,jy0);
237             dz30             = _mm_sub_ps(iz3,jz0);
238
239             /* Calculate squared distance and things based on it */
240             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
241             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
242             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
243             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
244
245             rinv00           = avx128fma_invsqrt_f(rsq00);
246             rinv10           = avx128fma_invsqrt_f(rsq10);
247             rinv20           = avx128fma_invsqrt_f(rsq20);
248             rinv30           = avx128fma_invsqrt_f(rsq30);
249
250             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
251             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
252             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
253             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
254
255             /* Load parameters for j particles */
256             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
257                                                               charge+jnrC+0,charge+jnrD+0);
258             vdwjidx0A        = 2*vdwtype[jnrA+0];
259             vdwjidx0B        = 2*vdwtype[jnrB+0];
260             vdwjidx0C        = 2*vdwtype[jnrC+0];
261             vdwjidx0D        = 2*vdwtype[jnrD+0];
262
263             fjx0             = _mm_setzero_ps();
264             fjy0             = _mm_setzero_ps();
265             fjz0             = _mm_setzero_ps();
266
267             /**************************
268              * CALCULATE INTERACTIONS *
269              **************************/
270
271             r00              = _mm_mul_ps(rsq00,rinv00);
272
273             /* Compute parameters for interactions between i and j atoms */
274             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
275                                          vdwparam+vdwioffset0+vdwjidx0B,
276                                          vdwparam+vdwioffset0+vdwjidx0C,
277                                          vdwparam+vdwioffset0+vdwjidx0D,
278                                          &c6_00,&c12_00);
279
280             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
281                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
282                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
283                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
284
285             /* Analytical LJ-PME */
286             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
287             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
288             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
289             exponent         = avx128fma_exp_f(ewcljrsq);
290             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
291             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
292             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
293             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
294             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
295             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
296             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
297             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
301
302             fscal            = fvdw;
303
304              /* Update vectorial force */
305             fix0             = _mm_macc_ps(dx00,fscal,fix0);
306             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
307             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
308
309             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
310             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
311             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             r10              = _mm_mul_ps(rsq10,rinv10);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm_mul_ps(iq1,jq0);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Analytical PME correction */
325             zeta2            = _mm_mul_ps(beta2,rsq10);
326             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
327             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
328             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
329             felec            = _mm_mul_ps(qq10,felec);
330             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
331             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
332             velec            = _mm_mul_ps(qq10,velec);
333
334             /* Update potential sum for this i atom from the interaction with this j atom. */
335             velecsum         = _mm_add_ps(velecsum,velec);
336
337             fscal            = felec;
338
339              /* Update vectorial force */
340             fix1             = _mm_macc_ps(dx10,fscal,fix1);
341             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
342             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
343
344             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
345             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
346             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             r20              = _mm_mul_ps(rsq20,rinv20);
353
354             /* Compute parameters for interactions between i and j atoms */
355             qq20             = _mm_mul_ps(iq2,jq0);
356
357             /* EWALD ELECTROSTATICS */
358
359             /* Analytical PME correction */
360             zeta2            = _mm_mul_ps(beta2,rsq20);
361             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
362             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
363             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
364             felec            = _mm_mul_ps(qq20,felec);
365             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
366             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
367             velec            = _mm_mul_ps(qq20,velec);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velecsum         = _mm_add_ps(velecsum,velec);
371
372             fscal            = felec;
373
374              /* Update vectorial force */
375             fix2             = _mm_macc_ps(dx20,fscal,fix2);
376             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
377             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
378
379             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
380             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
381             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
382
383             /**************************
384              * CALCULATE INTERACTIONS *
385              **************************/
386
387             r30              = _mm_mul_ps(rsq30,rinv30);
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq30             = _mm_mul_ps(iq3,jq0);
391
392             /* EWALD ELECTROSTATICS */
393
394             /* Analytical PME correction */
395             zeta2            = _mm_mul_ps(beta2,rsq30);
396             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
397             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
398             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
399             felec            = _mm_mul_ps(qq30,felec);
400             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
401             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
402             velec            = _mm_mul_ps(qq30,velec);
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velecsum         = _mm_add_ps(velecsum,velec);
406
407             fscal            = felec;
408
409              /* Update vectorial force */
410             fix3             = _mm_macc_ps(dx30,fscal,fix3);
411             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
412             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
413
414             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
415             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
416             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
417
418             fjptrA             = f+j_coord_offsetA;
419             fjptrB             = f+j_coord_offsetB;
420             fjptrC             = f+j_coord_offsetC;
421             fjptrD             = f+j_coord_offsetD;
422
423             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
424
425             /* Inner loop uses 137 flops */
426         }
427
428         if(jidx<j_index_end)
429         {
430
431             /* Get j neighbor index, and coordinate index */
432             jnrlistA         = jjnr[jidx];
433             jnrlistB         = jjnr[jidx+1];
434             jnrlistC         = jjnr[jidx+2];
435             jnrlistD         = jjnr[jidx+3];
436             /* Sign of each element will be negative for non-real atoms.
437              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
438              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
439              */
440             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
441             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
442             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
443             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
444             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
445             j_coord_offsetA  = DIM*jnrA;
446             j_coord_offsetB  = DIM*jnrB;
447             j_coord_offsetC  = DIM*jnrC;
448             j_coord_offsetD  = DIM*jnrD;
449
450             /* load j atom coordinates */
451             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
452                                               x+j_coord_offsetC,x+j_coord_offsetD,
453                                               &jx0,&jy0,&jz0);
454
455             /* Calculate displacement vector */
456             dx00             = _mm_sub_ps(ix0,jx0);
457             dy00             = _mm_sub_ps(iy0,jy0);
458             dz00             = _mm_sub_ps(iz0,jz0);
459             dx10             = _mm_sub_ps(ix1,jx0);
460             dy10             = _mm_sub_ps(iy1,jy0);
461             dz10             = _mm_sub_ps(iz1,jz0);
462             dx20             = _mm_sub_ps(ix2,jx0);
463             dy20             = _mm_sub_ps(iy2,jy0);
464             dz20             = _mm_sub_ps(iz2,jz0);
465             dx30             = _mm_sub_ps(ix3,jx0);
466             dy30             = _mm_sub_ps(iy3,jy0);
467             dz30             = _mm_sub_ps(iz3,jz0);
468
469             /* Calculate squared distance and things based on it */
470             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
471             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
472             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
473             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
474
475             rinv00           = avx128fma_invsqrt_f(rsq00);
476             rinv10           = avx128fma_invsqrt_f(rsq10);
477             rinv20           = avx128fma_invsqrt_f(rsq20);
478             rinv30           = avx128fma_invsqrt_f(rsq30);
479
480             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
481             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
482             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
483             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
484
485             /* Load parameters for j particles */
486             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
487                                                               charge+jnrC+0,charge+jnrD+0);
488             vdwjidx0A        = 2*vdwtype[jnrA+0];
489             vdwjidx0B        = 2*vdwtype[jnrB+0];
490             vdwjidx0C        = 2*vdwtype[jnrC+0];
491             vdwjidx0D        = 2*vdwtype[jnrD+0];
492
493             fjx0             = _mm_setzero_ps();
494             fjy0             = _mm_setzero_ps();
495             fjz0             = _mm_setzero_ps();
496
497             /**************************
498              * CALCULATE INTERACTIONS *
499              **************************/
500
501             r00              = _mm_mul_ps(rsq00,rinv00);
502             r00              = _mm_andnot_ps(dummy_mask,r00);
503
504             /* Compute parameters for interactions between i and j atoms */
505             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
506                                          vdwparam+vdwioffset0+vdwjidx0B,
507                                          vdwparam+vdwioffset0+vdwjidx0C,
508                                          vdwparam+vdwioffset0+vdwjidx0D,
509                                          &c6_00,&c12_00);
510
511             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
512                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
513                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
514                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
515
516             /* Analytical LJ-PME */
517             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
518             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
519             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
520             exponent         = avx128fma_exp_f(ewcljrsq);
521             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
522             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
523             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
524             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
525             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
526             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
527             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
528             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
529
530             /* Update potential sum for this i atom from the interaction with this j atom. */
531             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
532             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
533
534             fscal            = fvdw;
535
536             fscal            = _mm_andnot_ps(dummy_mask,fscal);
537
538              /* Update vectorial force */
539             fix0             = _mm_macc_ps(dx00,fscal,fix0);
540             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
541             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
542
543             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
544             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
545             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             r10              = _mm_mul_ps(rsq10,rinv10);
552             r10              = _mm_andnot_ps(dummy_mask,r10);
553
554             /* Compute parameters for interactions between i and j atoms */
555             qq10             = _mm_mul_ps(iq1,jq0);
556
557             /* EWALD ELECTROSTATICS */
558
559             /* Analytical PME correction */
560             zeta2            = _mm_mul_ps(beta2,rsq10);
561             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
562             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
563             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
564             felec            = _mm_mul_ps(qq10,felec);
565             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
566             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
567             velec            = _mm_mul_ps(qq10,velec);
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             velec            = _mm_andnot_ps(dummy_mask,velec);
571             velecsum         = _mm_add_ps(velecsum,velec);
572
573             fscal            = felec;
574
575             fscal            = _mm_andnot_ps(dummy_mask,fscal);
576
577              /* Update vectorial force */
578             fix1             = _mm_macc_ps(dx10,fscal,fix1);
579             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
580             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
581
582             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
583             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
584             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             r20              = _mm_mul_ps(rsq20,rinv20);
591             r20              = _mm_andnot_ps(dummy_mask,r20);
592
593             /* Compute parameters for interactions between i and j atoms */
594             qq20             = _mm_mul_ps(iq2,jq0);
595
596             /* EWALD ELECTROSTATICS */
597
598             /* Analytical PME correction */
599             zeta2            = _mm_mul_ps(beta2,rsq20);
600             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
601             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
602             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
603             felec            = _mm_mul_ps(qq20,felec);
604             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
605             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
606             velec            = _mm_mul_ps(qq20,velec);
607
608             /* Update potential sum for this i atom from the interaction with this j atom. */
609             velec            = _mm_andnot_ps(dummy_mask,velec);
610             velecsum         = _mm_add_ps(velecsum,velec);
611
612             fscal            = felec;
613
614             fscal            = _mm_andnot_ps(dummy_mask,fscal);
615
616              /* Update vectorial force */
617             fix2             = _mm_macc_ps(dx20,fscal,fix2);
618             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
619             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
620
621             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
622             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
623             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
624
625             /**************************
626              * CALCULATE INTERACTIONS *
627              **************************/
628
629             r30              = _mm_mul_ps(rsq30,rinv30);
630             r30              = _mm_andnot_ps(dummy_mask,r30);
631
632             /* Compute parameters for interactions between i and j atoms */
633             qq30             = _mm_mul_ps(iq3,jq0);
634
635             /* EWALD ELECTROSTATICS */
636
637             /* Analytical PME correction */
638             zeta2            = _mm_mul_ps(beta2,rsq30);
639             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
640             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
641             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
642             felec            = _mm_mul_ps(qq30,felec);
643             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
644             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
645             velec            = _mm_mul_ps(qq30,velec);
646
647             /* Update potential sum for this i atom from the interaction with this j atom. */
648             velec            = _mm_andnot_ps(dummy_mask,velec);
649             velecsum         = _mm_add_ps(velecsum,velec);
650
651             fscal            = felec;
652
653             fscal            = _mm_andnot_ps(dummy_mask,fscal);
654
655              /* Update vectorial force */
656             fix3             = _mm_macc_ps(dx30,fscal,fix3);
657             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
658             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
659
660             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
661             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
662             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
663
664             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
665             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
666             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
667             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
668
669             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
670
671             /* Inner loop uses 141 flops */
672         }
673
674         /* End of innermost loop */
675
676         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
677                                               f+i_coord_offset,fshift+i_shift_offset);
678
679         ggid                        = gid[iidx];
680         /* Update potential energies */
681         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
682         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
683
684         /* Increment number of inner iterations */
685         inneriter                  += j_index_end - j_index_start;
686
687         /* Outer loop uses 26 flops */
688     }
689
690     /* Increment number of outer iterations */
691     outeriter        += nri;
692
693     /* Update outer/inner flops */
694
695     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*141);
696 }
697 /*
698  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_128_fma_single
699  * Electrostatics interaction: Ewald
700  * VdW interaction:            LJEwald
701  * Geometry:                   Water4-Particle
702  * Calculate force/pot:        Force
703  */
704 void
705 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_128_fma_single
706                     (t_nblist                    * gmx_restrict       nlist,
707                      rvec                        * gmx_restrict          xx,
708                      rvec                        * gmx_restrict          ff,
709                      struct t_forcerec           * gmx_restrict          fr,
710                      t_mdatoms                   * gmx_restrict     mdatoms,
711                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
712                      t_nrnb                      * gmx_restrict        nrnb)
713 {
714     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
715      * just 0 for non-waters.
716      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
717      * jnr indices corresponding to data put in the four positions in the SIMD register.
718      */
719     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
720     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
721     int              jnrA,jnrB,jnrC,jnrD;
722     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
723     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
724     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
725     real             rcutoff_scalar;
726     real             *shiftvec,*fshift,*x,*f;
727     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
728     real             scratch[4*DIM];
729     __m128           fscal,rcutoff,rcutoff2,jidxall;
730     int              vdwioffset0;
731     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
732     int              vdwioffset1;
733     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
734     int              vdwioffset2;
735     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
736     int              vdwioffset3;
737     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
738     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
739     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
740     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
741     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
742     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
743     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
744     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
745     real             *charge;
746     int              nvdwtype;
747     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
748     int              *vdwtype;
749     real             *vdwparam;
750     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
751     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
752     __m128           c6grid_00;
753     __m128           c6grid_10;
754     __m128           c6grid_20;
755     __m128           c6grid_30;
756     real             *vdwgridparam;
757     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
758     __m128           one_half = _mm_set1_ps(0.5);
759     __m128           minus_one = _mm_set1_ps(-1.0);
760     __m128i          ewitab;
761     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
762     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
763     real             *ewtab;
764     __m128           dummy_mask,cutoff_mask;
765     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
766     __m128           one     = _mm_set1_ps(1.0);
767     __m128           two     = _mm_set1_ps(2.0);
768     x                = xx[0];
769     f                = ff[0];
770
771     nri              = nlist->nri;
772     iinr             = nlist->iinr;
773     jindex           = nlist->jindex;
774     jjnr             = nlist->jjnr;
775     shiftidx         = nlist->shift;
776     gid              = nlist->gid;
777     shiftvec         = fr->shift_vec[0];
778     fshift           = fr->fshift[0];
779     facel            = _mm_set1_ps(fr->ic->epsfac);
780     charge           = mdatoms->chargeA;
781     nvdwtype         = fr->ntype;
782     vdwparam         = fr->nbfp;
783     vdwtype          = mdatoms->typeA;
784     vdwgridparam     = fr->ljpme_c6grid;
785     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
786     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
787     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
788
789     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
790     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
791     beta2            = _mm_mul_ps(beta,beta);
792     beta3            = _mm_mul_ps(beta,beta2);
793     ewtab            = fr->ic->tabq_coul_F;
794     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
795     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
796
797     /* Setup water-specific parameters */
798     inr              = nlist->iinr[0];
799     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
800     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
801     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
802     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
803
804     /* Avoid stupid compiler warnings */
805     jnrA = jnrB = jnrC = jnrD = 0;
806     j_coord_offsetA = 0;
807     j_coord_offsetB = 0;
808     j_coord_offsetC = 0;
809     j_coord_offsetD = 0;
810
811     outeriter        = 0;
812     inneriter        = 0;
813
814     for(iidx=0;iidx<4*DIM;iidx++)
815     {
816         scratch[iidx] = 0.0;
817     }
818
819     /* Start outer loop over neighborlists */
820     for(iidx=0; iidx<nri; iidx++)
821     {
822         /* Load shift vector for this list */
823         i_shift_offset   = DIM*shiftidx[iidx];
824
825         /* Load limits for loop over neighbors */
826         j_index_start    = jindex[iidx];
827         j_index_end      = jindex[iidx+1];
828
829         /* Get outer coordinate index */
830         inr              = iinr[iidx];
831         i_coord_offset   = DIM*inr;
832
833         /* Load i particle coords and add shift vector */
834         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
835                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
836
837         fix0             = _mm_setzero_ps();
838         fiy0             = _mm_setzero_ps();
839         fiz0             = _mm_setzero_ps();
840         fix1             = _mm_setzero_ps();
841         fiy1             = _mm_setzero_ps();
842         fiz1             = _mm_setzero_ps();
843         fix2             = _mm_setzero_ps();
844         fiy2             = _mm_setzero_ps();
845         fiz2             = _mm_setzero_ps();
846         fix3             = _mm_setzero_ps();
847         fiy3             = _mm_setzero_ps();
848         fiz3             = _mm_setzero_ps();
849
850         /* Start inner kernel loop */
851         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
852         {
853
854             /* Get j neighbor index, and coordinate index */
855             jnrA             = jjnr[jidx];
856             jnrB             = jjnr[jidx+1];
857             jnrC             = jjnr[jidx+2];
858             jnrD             = jjnr[jidx+3];
859             j_coord_offsetA  = DIM*jnrA;
860             j_coord_offsetB  = DIM*jnrB;
861             j_coord_offsetC  = DIM*jnrC;
862             j_coord_offsetD  = DIM*jnrD;
863
864             /* load j atom coordinates */
865             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
866                                               x+j_coord_offsetC,x+j_coord_offsetD,
867                                               &jx0,&jy0,&jz0);
868
869             /* Calculate displacement vector */
870             dx00             = _mm_sub_ps(ix0,jx0);
871             dy00             = _mm_sub_ps(iy0,jy0);
872             dz00             = _mm_sub_ps(iz0,jz0);
873             dx10             = _mm_sub_ps(ix1,jx0);
874             dy10             = _mm_sub_ps(iy1,jy0);
875             dz10             = _mm_sub_ps(iz1,jz0);
876             dx20             = _mm_sub_ps(ix2,jx0);
877             dy20             = _mm_sub_ps(iy2,jy0);
878             dz20             = _mm_sub_ps(iz2,jz0);
879             dx30             = _mm_sub_ps(ix3,jx0);
880             dy30             = _mm_sub_ps(iy3,jy0);
881             dz30             = _mm_sub_ps(iz3,jz0);
882
883             /* Calculate squared distance and things based on it */
884             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
885             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
886             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
887             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
888
889             rinv00           = avx128fma_invsqrt_f(rsq00);
890             rinv10           = avx128fma_invsqrt_f(rsq10);
891             rinv20           = avx128fma_invsqrt_f(rsq20);
892             rinv30           = avx128fma_invsqrt_f(rsq30);
893
894             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
895             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
896             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
897             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
898
899             /* Load parameters for j particles */
900             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
901                                                               charge+jnrC+0,charge+jnrD+0);
902             vdwjidx0A        = 2*vdwtype[jnrA+0];
903             vdwjidx0B        = 2*vdwtype[jnrB+0];
904             vdwjidx0C        = 2*vdwtype[jnrC+0];
905             vdwjidx0D        = 2*vdwtype[jnrD+0];
906
907             fjx0             = _mm_setzero_ps();
908             fjy0             = _mm_setzero_ps();
909             fjz0             = _mm_setzero_ps();
910
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             r00              = _mm_mul_ps(rsq00,rinv00);
916
917             /* Compute parameters for interactions between i and j atoms */
918             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
919                                          vdwparam+vdwioffset0+vdwjidx0B,
920                                          vdwparam+vdwioffset0+vdwjidx0C,
921                                          vdwparam+vdwioffset0+vdwjidx0D,
922                                          &c6_00,&c12_00);
923
924             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
925                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
926                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
927                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
928
929             /* Analytical LJ-PME */
930             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
931             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
932             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
933             exponent         = avx128fma_exp_f(ewcljrsq);
934             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
935             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
936             /* f6A = 6 * C6grid * (1 - poly) */
937             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
938             /* f6B = C6grid * exponent * beta^6 */
939             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
940             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
941             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
942
943             fscal            = fvdw;
944
945              /* Update vectorial force */
946             fix0             = _mm_macc_ps(dx00,fscal,fix0);
947             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
948             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
949
950             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
951             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
952             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
953
954             /**************************
955              * CALCULATE INTERACTIONS *
956              **************************/
957
958             r10              = _mm_mul_ps(rsq10,rinv10);
959
960             /* Compute parameters for interactions between i and j atoms */
961             qq10             = _mm_mul_ps(iq1,jq0);
962
963             /* EWALD ELECTROSTATICS */
964
965             /* Analytical PME correction */
966             zeta2            = _mm_mul_ps(beta2,rsq10);
967             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
968             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
969             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
970             felec            = _mm_mul_ps(qq10,felec);
971
972             fscal            = felec;
973
974              /* Update vectorial force */
975             fix1             = _mm_macc_ps(dx10,fscal,fix1);
976             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
977             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
978
979             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
980             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
981             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
982
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             r20              = _mm_mul_ps(rsq20,rinv20);
988
989             /* Compute parameters for interactions between i and j atoms */
990             qq20             = _mm_mul_ps(iq2,jq0);
991
992             /* EWALD ELECTROSTATICS */
993
994             /* Analytical PME correction */
995             zeta2            = _mm_mul_ps(beta2,rsq20);
996             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
997             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
998             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
999             felec            = _mm_mul_ps(qq20,felec);
1000
1001             fscal            = felec;
1002
1003              /* Update vectorial force */
1004             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1005             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1006             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1007
1008             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1009             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1010             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             r30              = _mm_mul_ps(rsq30,rinv30);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq30             = _mm_mul_ps(iq3,jq0);
1020
1021             /* EWALD ELECTROSTATICS */
1022
1023             /* Analytical PME correction */
1024             zeta2            = _mm_mul_ps(beta2,rsq30);
1025             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1026             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1027             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1028             felec            = _mm_mul_ps(qq30,felec);
1029
1030             fscal            = felec;
1031
1032              /* Update vectorial force */
1033             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1034             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1035             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1036
1037             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1038             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1039             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1040
1041             fjptrA             = f+j_coord_offsetA;
1042             fjptrB             = f+j_coord_offsetB;
1043             fjptrC             = f+j_coord_offsetC;
1044             fjptrD             = f+j_coord_offsetD;
1045
1046             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1047
1048             /* Inner loop uses 131 flops */
1049         }
1050
1051         if(jidx<j_index_end)
1052         {
1053
1054             /* Get j neighbor index, and coordinate index */
1055             jnrlistA         = jjnr[jidx];
1056             jnrlistB         = jjnr[jidx+1];
1057             jnrlistC         = jjnr[jidx+2];
1058             jnrlistD         = jjnr[jidx+3];
1059             /* Sign of each element will be negative for non-real atoms.
1060              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1061              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1062              */
1063             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1064             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1065             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1066             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1067             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1068             j_coord_offsetA  = DIM*jnrA;
1069             j_coord_offsetB  = DIM*jnrB;
1070             j_coord_offsetC  = DIM*jnrC;
1071             j_coord_offsetD  = DIM*jnrD;
1072
1073             /* load j atom coordinates */
1074             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1075                                               x+j_coord_offsetC,x+j_coord_offsetD,
1076                                               &jx0,&jy0,&jz0);
1077
1078             /* Calculate displacement vector */
1079             dx00             = _mm_sub_ps(ix0,jx0);
1080             dy00             = _mm_sub_ps(iy0,jy0);
1081             dz00             = _mm_sub_ps(iz0,jz0);
1082             dx10             = _mm_sub_ps(ix1,jx0);
1083             dy10             = _mm_sub_ps(iy1,jy0);
1084             dz10             = _mm_sub_ps(iz1,jz0);
1085             dx20             = _mm_sub_ps(ix2,jx0);
1086             dy20             = _mm_sub_ps(iy2,jy0);
1087             dz20             = _mm_sub_ps(iz2,jz0);
1088             dx30             = _mm_sub_ps(ix3,jx0);
1089             dy30             = _mm_sub_ps(iy3,jy0);
1090             dz30             = _mm_sub_ps(iz3,jz0);
1091
1092             /* Calculate squared distance and things based on it */
1093             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1094             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1095             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1096             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1097
1098             rinv00           = avx128fma_invsqrt_f(rsq00);
1099             rinv10           = avx128fma_invsqrt_f(rsq10);
1100             rinv20           = avx128fma_invsqrt_f(rsq20);
1101             rinv30           = avx128fma_invsqrt_f(rsq30);
1102
1103             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1104             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1105             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1106             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1107
1108             /* Load parameters for j particles */
1109             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1110                                                               charge+jnrC+0,charge+jnrD+0);
1111             vdwjidx0A        = 2*vdwtype[jnrA+0];
1112             vdwjidx0B        = 2*vdwtype[jnrB+0];
1113             vdwjidx0C        = 2*vdwtype[jnrC+0];
1114             vdwjidx0D        = 2*vdwtype[jnrD+0];
1115
1116             fjx0             = _mm_setzero_ps();
1117             fjy0             = _mm_setzero_ps();
1118             fjz0             = _mm_setzero_ps();
1119
1120             /**************************
1121              * CALCULATE INTERACTIONS *
1122              **************************/
1123
1124             r00              = _mm_mul_ps(rsq00,rinv00);
1125             r00              = _mm_andnot_ps(dummy_mask,r00);
1126
1127             /* Compute parameters for interactions between i and j atoms */
1128             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1129                                          vdwparam+vdwioffset0+vdwjidx0B,
1130                                          vdwparam+vdwioffset0+vdwjidx0C,
1131                                          vdwparam+vdwioffset0+vdwjidx0D,
1132                                          &c6_00,&c12_00);
1133
1134             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1135                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1136                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1137                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1138
1139             /* Analytical LJ-PME */
1140             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1141             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1142             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1143             exponent         = avx128fma_exp_f(ewcljrsq);
1144             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1145             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
1146             /* f6A = 6 * C6grid * (1 - poly) */
1147             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1148             /* f6B = C6grid * exponent * beta^6 */
1149             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1150             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1151             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1152
1153             fscal            = fvdw;
1154
1155             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1156
1157              /* Update vectorial force */
1158             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1159             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1160             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1161
1162             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1163             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1164             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1165
1166             /**************************
1167              * CALCULATE INTERACTIONS *
1168              **************************/
1169
1170             r10              = _mm_mul_ps(rsq10,rinv10);
1171             r10              = _mm_andnot_ps(dummy_mask,r10);
1172
1173             /* Compute parameters for interactions between i and j atoms */
1174             qq10             = _mm_mul_ps(iq1,jq0);
1175
1176             /* EWALD ELECTROSTATICS */
1177
1178             /* Analytical PME correction */
1179             zeta2            = _mm_mul_ps(beta2,rsq10);
1180             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1181             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1182             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1183             felec            = _mm_mul_ps(qq10,felec);
1184
1185             fscal            = felec;
1186
1187             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1188
1189              /* Update vectorial force */
1190             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1191             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1192             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1193
1194             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1195             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1196             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1197
1198             /**************************
1199              * CALCULATE INTERACTIONS *
1200              **************************/
1201
1202             r20              = _mm_mul_ps(rsq20,rinv20);
1203             r20              = _mm_andnot_ps(dummy_mask,r20);
1204
1205             /* Compute parameters for interactions between i and j atoms */
1206             qq20             = _mm_mul_ps(iq2,jq0);
1207
1208             /* EWALD ELECTROSTATICS */
1209
1210             /* Analytical PME correction */
1211             zeta2            = _mm_mul_ps(beta2,rsq20);
1212             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1213             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1214             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1215             felec            = _mm_mul_ps(qq20,felec);
1216
1217             fscal            = felec;
1218
1219             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1220
1221              /* Update vectorial force */
1222             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1223             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1224             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1225
1226             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1227             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1228             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1229
1230             /**************************
1231              * CALCULATE INTERACTIONS *
1232              **************************/
1233
1234             r30              = _mm_mul_ps(rsq30,rinv30);
1235             r30              = _mm_andnot_ps(dummy_mask,r30);
1236
1237             /* Compute parameters for interactions between i and j atoms */
1238             qq30             = _mm_mul_ps(iq3,jq0);
1239
1240             /* EWALD ELECTROSTATICS */
1241
1242             /* Analytical PME correction */
1243             zeta2            = _mm_mul_ps(beta2,rsq30);
1244             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1245             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1246             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1247             felec            = _mm_mul_ps(qq30,felec);
1248
1249             fscal            = felec;
1250
1251             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1252
1253              /* Update vectorial force */
1254             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1255             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1256             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1257
1258             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1259             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1260             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1261
1262             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1263             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1264             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1265             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1266
1267             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1268
1269             /* Inner loop uses 135 flops */
1270         }
1271
1272         /* End of innermost loop */
1273
1274         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1275                                               f+i_coord_offset,fshift+i_shift_offset);
1276
1277         /* Increment number of inner iterations */
1278         inneriter                  += j_index_end - j_index_start;
1279
1280         /* Outer loop uses 24 flops */
1281     }
1282
1283     /* Increment number of outer iterations */
1284     outeriter        += nri;
1285
1286     /* Update outer/inner flops */
1287
1288     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*135);
1289 }