3eeec3ac5f8a3eb689d54d2f25ee51456b4231c9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128           c6grid_00;
108     __m128           c6grid_10;
109     __m128           c6grid_20;
110     __m128           c6grid_30;
111     real             *vdwgridparam;
112     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
113     __m128           one_half = _mm_set1_ps(0.5);
114     __m128           minus_one = _mm_set1_ps(-1.0);
115     __m128i          ewitab;
116     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
117     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
118     real             *ewtab;
119     __m128           dummy_mask,cutoff_mask;
120     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
121     __m128           one     = _mm_set1_ps(1.0);
122     __m128           two     = _mm_set1_ps(2.0);
123     x                = xx[0];
124     f                = ff[0];
125
126     nri              = nlist->nri;
127     iinr             = nlist->iinr;
128     jindex           = nlist->jindex;
129     jjnr             = nlist->jjnr;
130     shiftidx         = nlist->shift;
131     gid              = nlist->gid;
132     shiftvec         = fr->shift_vec[0];
133     fshift           = fr->fshift[0];
134     facel            = _mm_set1_ps(fr->epsfac);
135     charge           = mdatoms->chargeA;
136     nvdwtype         = fr->ntype;
137     vdwparam         = fr->nbfp;
138     vdwtype          = mdatoms->typeA;
139     vdwgridparam     = fr->ljpme_c6grid;
140     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
141     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
142     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
143
144     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
145     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
146     beta2            = _mm_mul_ps(beta,beta);
147     beta3            = _mm_mul_ps(beta,beta2);
148     ewtab            = fr->ic->tabq_coul_FDV0;
149     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
150     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
151
152     /* Setup water-specific parameters */
153     inr              = nlist->iinr[0];
154     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
155     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
156     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
157     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
158
159     /* Avoid stupid compiler warnings */
160     jnrA = jnrB = jnrC = jnrD = 0;
161     j_coord_offsetA = 0;
162     j_coord_offsetB = 0;
163     j_coord_offsetC = 0;
164     j_coord_offsetD = 0;
165
166     outeriter        = 0;
167     inneriter        = 0;
168
169     for(iidx=0;iidx<4*DIM;iidx++)
170     {
171         scratch[iidx] = 0.0;
172     }
173
174     /* Start outer loop over neighborlists */
175     for(iidx=0; iidx<nri; iidx++)
176     {
177         /* Load shift vector for this list */
178         i_shift_offset   = DIM*shiftidx[iidx];
179
180         /* Load limits for loop over neighbors */
181         j_index_start    = jindex[iidx];
182         j_index_end      = jindex[iidx+1];
183
184         /* Get outer coordinate index */
185         inr              = iinr[iidx];
186         i_coord_offset   = DIM*inr;
187
188         /* Load i particle coords and add shift vector */
189         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
190                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
191
192         fix0             = _mm_setzero_ps();
193         fiy0             = _mm_setzero_ps();
194         fiz0             = _mm_setzero_ps();
195         fix1             = _mm_setzero_ps();
196         fiy1             = _mm_setzero_ps();
197         fiz1             = _mm_setzero_ps();
198         fix2             = _mm_setzero_ps();
199         fiy2             = _mm_setzero_ps();
200         fiz2             = _mm_setzero_ps();
201         fix3             = _mm_setzero_ps();
202         fiy3             = _mm_setzero_ps();
203         fiz3             = _mm_setzero_ps();
204
205         /* Reset potential sums */
206         velecsum         = _mm_setzero_ps();
207         vvdwsum          = _mm_setzero_ps();
208
209         /* Start inner kernel loop */
210         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
211         {
212
213             /* Get j neighbor index, and coordinate index */
214             jnrA             = jjnr[jidx];
215             jnrB             = jjnr[jidx+1];
216             jnrC             = jjnr[jidx+2];
217             jnrD             = jjnr[jidx+3];
218             j_coord_offsetA  = DIM*jnrA;
219             j_coord_offsetB  = DIM*jnrB;
220             j_coord_offsetC  = DIM*jnrC;
221             j_coord_offsetD  = DIM*jnrD;
222
223             /* load j atom coordinates */
224             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
225                                               x+j_coord_offsetC,x+j_coord_offsetD,
226                                               &jx0,&jy0,&jz0);
227
228             /* Calculate displacement vector */
229             dx00             = _mm_sub_ps(ix0,jx0);
230             dy00             = _mm_sub_ps(iy0,jy0);
231             dz00             = _mm_sub_ps(iz0,jz0);
232             dx10             = _mm_sub_ps(ix1,jx0);
233             dy10             = _mm_sub_ps(iy1,jy0);
234             dz10             = _mm_sub_ps(iz1,jz0);
235             dx20             = _mm_sub_ps(ix2,jx0);
236             dy20             = _mm_sub_ps(iy2,jy0);
237             dz20             = _mm_sub_ps(iz2,jz0);
238             dx30             = _mm_sub_ps(ix3,jx0);
239             dy30             = _mm_sub_ps(iy3,jy0);
240             dz30             = _mm_sub_ps(iz3,jz0);
241
242             /* Calculate squared distance and things based on it */
243             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
244             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
245             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
246             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
247
248             rinv00           = gmx_mm_invsqrt_ps(rsq00);
249             rinv10           = gmx_mm_invsqrt_ps(rsq10);
250             rinv20           = gmx_mm_invsqrt_ps(rsq20);
251             rinv30           = gmx_mm_invsqrt_ps(rsq30);
252
253             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
254             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
255             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
256             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
257
258             /* Load parameters for j particles */
259             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
260                                                               charge+jnrC+0,charge+jnrD+0);
261             vdwjidx0A        = 2*vdwtype[jnrA+0];
262             vdwjidx0B        = 2*vdwtype[jnrB+0];
263             vdwjidx0C        = 2*vdwtype[jnrC+0];
264             vdwjidx0D        = 2*vdwtype[jnrD+0];
265
266             fjx0             = _mm_setzero_ps();
267             fjy0             = _mm_setzero_ps();
268             fjz0             = _mm_setzero_ps();
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             r00              = _mm_mul_ps(rsq00,rinv00);
275
276             /* Compute parameters for interactions between i and j atoms */
277             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
278                                          vdwparam+vdwioffset0+vdwjidx0B,
279                                          vdwparam+vdwioffset0+vdwjidx0C,
280                                          vdwparam+vdwioffset0+vdwjidx0D,
281                                          &c6_00,&c12_00);
282
283             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
284                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
285                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
286                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
287
288             /* Analytical LJ-PME */
289             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
290             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
291             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
292             exponent         = gmx_simd_exp_r(ewcljrsq);
293             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
294             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
295             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
296             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
297             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
298             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
299             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
300             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
304
305             fscal            = fvdw;
306
307              /* Update vectorial force */
308             fix0             = _mm_macc_ps(dx00,fscal,fix0);
309             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
310             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
311
312             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
313             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
314             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             r10              = _mm_mul_ps(rsq10,rinv10);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq10             = _mm_mul_ps(iq1,jq0);
324
325             /* EWALD ELECTROSTATICS */
326
327             /* Analytical PME correction */
328             zeta2            = _mm_mul_ps(beta2,rsq10);
329             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
330             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
331             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
332             felec            = _mm_mul_ps(qq10,felec);
333             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
334             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
335             velec            = _mm_mul_ps(qq10,velec);
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velecsum         = _mm_add_ps(velecsum,velec);
339
340             fscal            = felec;
341
342              /* Update vectorial force */
343             fix1             = _mm_macc_ps(dx10,fscal,fix1);
344             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
345             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
346
347             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
348             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
349             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             r20              = _mm_mul_ps(rsq20,rinv20);
356
357             /* Compute parameters for interactions between i and j atoms */
358             qq20             = _mm_mul_ps(iq2,jq0);
359
360             /* EWALD ELECTROSTATICS */
361
362             /* Analytical PME correction */
363             zeta2            = _mm_mul_ps(beta2,rsq20);
364             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
365             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
366             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
367             felec            = _mm_mul_ps(qq20,felec);
368             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
369             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
370             velec            = _mm_mul_ps(qq20,velec);
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _mm_add_ps(velecsum,velec);
374
375             fscal            = felec;
376
377              /* Update vectorial force */
378             fix2             = _mm_macc_ps(dx20,fscal,fix2);
379             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
380             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
381
382             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
383             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
384             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             r30              = _mm_mul_ps(rsq30,rinv30);
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq30             = _mm_mul_ps(iq3,jq0);
394
395             /* EWALD ELECTROSTATICS */
396
397             /* Analytical PME correction */
398             zeta2            = _mm_mul_ps(beta2,rsq30);
399             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
400             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
401             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
402             felec            = _mm_mul_ps(qq30,felec);
403             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
404             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
405             velec            = _mm_mul_ps(qq30,velec);
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velecsum         = _mm_add_ps(velecsum,velec);
409
410             fscal            = felec;
411
412              /* Update vectorial force */
413             fix3             = _mm_macc_ps(dx30,fscal,fix3);
414             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
415             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
416
417             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
418             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
419             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
420
421             fjptrA             = f+j_coord_offsetA;
422             fjptrB             = f+j_coord_offsetB;
423             fjptrC             = f+j_coord_offsetC;
424             fjptrD             = f+j_coord_offsetD;
425
426             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
427
428             /* Inner loop uses 137 flops */
429         }
430
431         if(jidx<j_index_end)
432         {
433
434             /* Get j neighbor index, and coordinate index */
435             jnrlistA         = jjnr[jidx];
436             jnrlistB         = jjnr[jidx+1];
437             jnrlistC         = jjnr[jidx+2];
438             jnrlistD         = jjnr[jidx+3];
439             /* Sign of each element will be negative for non-real atoms.
440              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
441              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
442              */
443             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
444             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
445             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
446             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
447             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
448             j_coord_offsetA  = DIM*jnrA;
449             j_coord_offsetB  = DIM*jnrB;
450             j_coord_offsetC  = DIM*jnrC;
451             j_coord_offsetD  = DIM*jnrD;
452
453             /* load j atom coordinates */
454             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
455                                               x+j_coord_offsetC,x+j_coord_offsetD,
456                                               &jx0,&jy0,&jz0);
457
458             /* Calculate displacement vector */
459             dx00             = _mm_sub_ps(ix0,jx0);
460             dy00             = _mm_sub_ps(iy0,jy0);
461             dz00             = _mm_sub_ps(iz0,jz0);
462             dx10             = _mm_sub_ps(ix1,jx0);
463             dy10             = _mm_sub_ps(iy1,jy0);
464             dz10             = _mm_sub_ps(iz1,jz0);
465             dx20             = _mm_sub_ps(ix2,jx0);
466             dy20             = _mm_sub_ps(iy2,jy0);
467             dz20             = _mm_sub_ps(iz2,jz0);
468             dx30             = _mm_sub_ps(ix3,jx0);
469             dy30             = _mm_sub_ps(iy3,jy0);
470             dz30             = _mm_sub_ps(iz3,jz0);
471
472             /* Calculate squared distance and things based on it */
473             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
474             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
475             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
476             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
477
478             rinv00           = gmx_mm_invsqrt_ps(rsq00);
479             rinv10           = gmx_mm_invsqrt_ps(rsq10);
480             rinv20           = gmx_mm_invsqrt_ps(rsq20);
481             rinv30           = gmx_mm_invsqrt_ps(rsq30);
482
483             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
484             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
485             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
486             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
487
488             /* Load parameters for j particles */
489             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
490                                                               charge+jnrC+0,charge+jnrD+0);
491             vdwjidx0A        = 2*vdwtype[jnrA+0];
492             vdwjidx0B        = 2*vdwtype[jnrB+0];
493             vdwjidx0C        = 2*vdwtype[jnrC+0];
494             vdwjidx0D        = 2*vdwtype[jnrD+0];
495
496             fjx0             = _mm_setzero_ps();
497             fjy0             = _mm_setzero_ps();
498             fjz0             = _mm_setzero_ps();
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             r00              = _mm_mul_ps(rsq00,rinv00);
505             r00              = _mm_andnot_ps(dummy_mask,r00);
506
507             /* Compute parameters for interactions between i and j atoms */
508             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
509                                          vdwparam+vdwioffset0+vdwjidx0B,
510                                          vdwparam+vdwioffset0+vdwjidx0C,
511                                          vdwparam+vdwioffset0+vdwjidx0D,
512                                          &c6_00,&c12_00);
513
514             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
515                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
516                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
517                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
518
519             /* Analytical LJ-PME */
520             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
521             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
522             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
523             exponent         = gmx_simd_exp_r(ewcljrsq);
524             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
525             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
526             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
527             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
528             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
529             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
530             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
531             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
532
533             /* Update potential sum for this i atom from the interaction with this j atom. */
534             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
535             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
536
537             fscal            = fvdw;
538
539             fscal            = _mm_andnot_ps(dummy_mask,fscal);
540
541              /* Update vectorial force */
542             fix0             = _mm_macc_ps(dx00,fscal,fix0);
543             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
544             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
545
546             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
547             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
548             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
549
550             /**************************
551              * CALCULATE INTERACTIONS *
552              **************************/
553
554             r10              = _mm_mul_ps(rsq10,rinv10);
555             r10              = _mm_andnot_ps(dummy_mask,r10);
556
557             /* Compute parameters for interactions between i and j atoms */
558             qq10             = _mm_mul_ps(iq1,jq0);
559
560             /* EWALD ELECTROSTATICS */
561
562             /* Analytical PME correction */
563             zeta2            = _mm_mul_ps(beta2,rsq10);
564             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
565             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
566             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
567             felec            = _mm_mul_ps(qq10,felec);
568             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
569             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
570             velec            = _mm_mul_ps(qq10,velec);
571
572             /* Update potential sum for this i atom from the interaction with this j atom. */
573             velec            = _mm_andnot_ps(dummy_mask,velec);
574             velecsum         = _mm_add_ps(velecsum,velec);
575
576             fscal            = felec;
577
578             fscal            = _mm_andnot_ps(dummy_mask,fscal);
579
580              /* Update vectorial force */
581             fix1             = _mm_macc_ps(dx10,fscal,fix1);
582             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
583             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
584
585             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
586             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
587             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
588
589             /**************************
590              * CALCULATE INTERACTIONS *
591              **************************/
592
593             r20              = _mm_mul_ps(rsq20,rinv20);
594             r20              = _mm_andnot_ps(dummy_mask,r20);
595
596             /* Compute parameters for interactions between i and j atoms */
597             qq20             = _mm_mul_ps(iq2,jq0);
598
599             /* EWALD ELECTROSTATICS */
600
601             /* Analytical PME correction */
602             zeta2            = _mm_mul_ps(beta2,rsq20);
603             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
604             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
605             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
606             felec            = _mm_mul_ps(qq20,felec);
607             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
608             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
609             velec            = _mm_mul_ps(qq20,velec);
610
611             /* Update potential sum for this i atom from the interaction with this j atom. */
612             velec            = _mm_andnot_ps(dummy_mask,velec);
613             velecsum         = _mm_add_ps(velecsum,velec);
614
615             fscal            = felec;
616
617             fscal            = _mm_andnot_ps(dummy_mask,fscal);
618
619              /* Update vectorial force */
620             fix2             = _mm_macc_ps(dx20,fscal,fix2);
621             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
622             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
623
624             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
625             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
626             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
627
628             /**************************
629              * CALCULATE INTERACTIONS *
630              **************************/
631
632             r30              = _mm_mul_ps(rsq30,rinv30);
633             r30              = _mm_andnot_ps(dummy_mask,r30);
634
635             /* Compute parameters for interactions between i and j atoms */
636             qq30             = _mm_mul_ps(iq3,jq0);
637
638             /* EWALD ELECTROSTATICS */
639
640             /* Analytical PME correction */
641             zeta2            = _mm_mul_ps(beta2,rsq30);
642             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
643             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
644             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
645             felec            = _mm_mul_ps(qq30,felec);
646             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
647             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
648             velec            = _mm_mul_ps(qq30,velec);
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velec            = _mm_andnot_ps(dummy_mask,velec);
652             velecsum         = _mm_add_ps(velecsum,velec);
653
654             fscal            = felec;
655
656             fscal            = _mm_andnot_ps(dummy_mask,fscal);
657
658              /* Update vectorial force */
659             fix3             = _mm_macc_ps(dx30,fscal,fix3);
660             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
661             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
662
663             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
664             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
665             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
666
667             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
668             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
669             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
670             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
671
672             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
673
674             /* Inner loop uses 141 flops */
675         }
676
677         /* End of innermost loop */
678
679         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
680                                               f+i_coord_offset,fshift+i_shift_offset);
681
682         ggid                        = gid[iidx];
683         /* Update potential energies */
684         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
685         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
686
687         /* Increment number of inner iterations */
688         inneriter                  += j_index_end - j_index_start;
689
690         /* Outer loop uses 26 flops */
691     }
692
693     /* Increment number of outer iterations */
694     outeriter        += nri;
695
696     /* Update outer/inner flops */
697
698     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*141);
699 }
700 /*
701  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_128_fma_single
702  * Electrostatics interaction: Ewald
703  * VdW interaction:            LJEwald
704  * Geometry:                   Water4-Particle
705  * Calculate force/pot:        Force
706  */
707 void
708 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_128_fma_single
709                     (t_nblist                    * gmx_restrict       nlist,
710                      rvec                        * gmx_restrict          xx,
711                      rvec                        * gmx_restrict          ff,
712                      t_forcerec                  * gmx_restrict          fr,
713                      t_mdatoms                   * gmx_restrict     mdatoms,
714                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
715                      t_nrnb                      * gmx_restrict        nrnb)
716 {
717     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
718      * just 0 for non-waters.
719      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
720      * jnr indices corresponding to data put in the four positions in the SIMD register.
721      */
722     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
723     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
724     int              jnrA,jnrB,jnrC,jnrD;
725     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
726     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
727     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
728     real             rcutoff_scalar;
729     real             *shiftvec,*fshift,*x,*f;
730     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
731     real             scratch[4*DIM];
732     __m128           fscal,rcutoff,rcutoff2,jidxall;
733     int              vdwioffset0;
734     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
735     int              vdwioffset1;
736     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
737     int              vdwioffset2;
738     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
739     int              vdwioffset3;
740     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
741     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
742     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
743     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
744     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
745     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
746     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
747     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
748     real             *charge;
749     int              nvdwtype;
750     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
751     int              *vdwtype;
752     real             *vdwparam;
753     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
754     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
755     __m128           c6grid_00;
756     __m128           c6grid_10;
757     __m128           c6grid_20;
758     __m128           c6grid_30;
759     real             *vdwgridparam;
760     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
761     __m128           one_half = _mm_set1_ps(0.5);
762     __m128           minus_one = _mm_set1_ps(-1.0);
763     __m128i          ewitab;
764     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
765     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
766     real             *ewtab;
767     __m128           dummy_mask,cutoff_mask;
768     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
769     __m128           one     = _mm_set1_ps(1.0);
770     __m128           two     = _mm_set1_ps(2.0);
771     x                = xx[0];
772     f                = ff[0];
773
774     nri              = nlist->nri;
775     iinr             = nlist->iinr;
776     jindex           = nlist->jindex;
777     jjnr             = nlist->jjnr;
778     shiftidx         = nlist->shift;
779     gid              = nlist->gid;
780     shiftvec         = fr->shift_vec[0];
781     fshift           = fr->fshift[0];
782     facel            = _mm_set1_ps(fr->epsfac);
783     charge           = mdatoms->chargeA;
784     nvdwtype         = fr->ntype;
785     vdwparam         = fr->nbfp;
786     vdwtype          = mdatoms->typeA;
787     vdwgridparam     = fr->ljpme_c6grid;
788     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
789     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
790     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
791
792     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
793     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
794     beta2            = _mm_mul_ps(beta,beta);
795     beta3            = _mm_mul_ps(beta,beta2);
796     ewtab            = fr->ic->tabq_coul_F;
797     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
798     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
799
800     /* Setup water-specific parameters */
801     inr              = nlist->iinr[0];
802     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
803     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
804     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
805     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
806
807     /* Avoid stupid compiler warnings */
808     jnrA = jnrB = jnrC = jnrD = 0;
809     j_coord_offsetA = 0;
810     j_coord_offsetB = 0;
811     j_coord_offsetC = 0;
812     j_coord_offsetD = 0;
813
814     outeriter        = 0;
815     inneriter        = 0;
816
817     for(iidx=0;iidx<4*DIM;iidx++)
818     {
819         scratch[iidx] = 0.0;
820     }
821
822     /* Start outer loop over neighborlists */
823     for(iidx=0; iidx<nri; iidx++)
824     {
825         /* Load shift vector for this list */
826         i_shift_offset   = DIM*shiftidx[iidx];
827
828         /* Load limits for loop over neighbors */
829         j_index_start    = jindex[iidx];
830         j_index_end      = jindex[iidx+1];
831
832         /* Get outer coordinate index */
833         inr              = iinr[iidx];
834         i_coord_offset   = DIM*inr;
835
836         /* Load i particle coords and add shift vector */
837         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
838                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
839
840         fix0             = _mm_setzero_ps();
841         fiy0             = _mm_setzero_ps();
842         fiz0             = _mm_setzero_ps();
843         fix1             = _mm_setzero_ps();
844         fiy1             = _mm_setzero_ps();
845         fiz1             = _mm_setzero_ps();
846         fix2             = _mm_setzero_ps();
847         fiy2             = _mm_setzero_ps();
848         fiz2             = _mm_setzero_ps();
849         fix3             = _mm_setzero_ps();
850         fiy3             = _mm_setzero_ps();
851         fiz3             = _mm_setzero_ps();
852
853         /* Start inner kernel loop */
854         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
855         {
856
857             /* Get j neighbor index, and coordinate index */
858             jnrA             = jjnr[jidx];
859             jnrB             = jjnr[jidx+1];
860             jnrC             = jjnr[jidx+2];
861             jnrD             = jjnr[jidx+3];
862             j_coord_offsetA  = DIM*jnrA;
863             j_coord_offsetB  = DIM*jnrB;
864             j_coord_offsetC  = DIM*jnrC;
865             j_coord_offsetD  = DIM*jnrD;
866
867             /* load j atom coordinates */
868             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
869                                               x+j_coord_offsetC,x+j_coord_offsetD,
870                                               &jx0,&jy0,&jz0);
871
872             /* Calculate displacement vector */
873             dx00             = _mm_sub_ps(ix0,jx0);
874             dy00             = _mm_sub_ps(iy0,jy0);
875             dz00             = _mm_sub_ps(iz0,jz0);
876             dx10             = _mm_sub_ps(ix1,jx0);
877             dy10             = _mm_sub_ps(iy1,jy0);
878             dz10             = _mm_sub_ps(iz1,jz0);
879             dx20             = _mm_sub_ps(ix2,jx0);
880             dy20             = _mm_sub_ps(iy2,jy0);
881             dz20             = _mm_sub_ps(iz2,jz0);
882             dx30             = _mm_sub_ps(ix3,jx0);
883             dy30             = _mm_sub_ps(iy3,jy0);
884             dz30             = _mm_sub_ps(iz3,jz0);
885
886             /* Calculate squared distance and things based on it */
887             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
888             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
889             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
890             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
891
892             rinv00           = gmx_mm_invsqrt_ps(rsq00);
893             rinv10           = gmx_mm_invsqrt_ps(rsq10);
894             rinv20           = gmx_mm_invsqrt_ps(rsq20);
895             rinv30           = gmx_mm_invsqrt_ps(rsq30);
896
897             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
898             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
899             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
900             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
901
902             /* Load parameters for j particles */
903             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
904                                                               charge+jnrC+0,charge+jnrD+0);
905             vdwjidx0A        = 2*vdwtype[jnrA+0];
906             vdwjidx0B        = 2*vdwtype[jnrB+0];
907             vdwjidx0C        = 2*vdwtype[jnrC+0];
908             vdwjidx0D        = 2*vdwtype[jnrD+0];
909
910             fjx0             = _mm_setzero_ps();
911             fjy0             = _mm_setzero_ps();
912             fjz0             = _mm_setzero_ps();
913
914             /**************************
915              * CALCULATE INTERACTIONS *
916              **************************/
917
918             r00              = _mm_mul_ps(rsq00,rinv00);
919
920             /* Compute parameters for interactions between i and j atoms */
921             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
922                                          vdwparam+vdwioffset0+vdwjidx0B,
923                                          vdwparam+vdwioffset0+vdwjidx0C,
924                                          vdwparam+vdwioffset0+vdwjidx0D,
925                                          &c6_00,&c12_00);
926
927             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
928                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
929                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
930                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
931
932             /* Analytical LJ-PME */
933             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
934             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
935             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
936             exponent         = gmx_simd_exp_r(ewcljrsq);
937             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
938             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
939             /* f6A = 6 * C6grid * (1 - poly) */
940             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
941             /* f6B = C6grid * exponent * beta^6 */
942             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
943             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
944             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
945
946             fscal            = fvdw;
947
948              /* Update vectorial force */
949             fix0             = _mm_macc_ps(dx00,fscal,fix0);
950             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
951             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
952
953             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
954             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
955             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             r10              = _mm_mul_ps(rsq10,rinv10);
962
963             /* Compute parameters for interactions between i and j atoms */
964             qq10             = _mm_mul_ps(iq1,jq0);
965
966             /* EWALD ELECTROSTATICS */
967
968             /* Analytical PME correction */
969             zeta2            = _mm_mul_ps(beta2,rsq10);
970             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
971             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
972             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
973             felec            = _mm_mul_ps(qq10,felec);
974
975             fscal            = felec;
976
977              /* Update vectorial force */
978             fix1             = _mm_macc_ps(dx10,fscal,fix1);
979             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
980             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
981
982             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
983             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
984             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
985
986             /**************************
987              * CALCULATE INTERACTIONS *
988              **************************/
989
990             r20              = _mm_mul_ps(rsq20,rinv20);
991
992             /* Compute parameters for interactions between i and j atoms */
993             qq20             = _mm_mul_ps(iq2,jq0);
994
995             /* EWALD ELECTROSTATICS */
996
997             /* Analytical PME correction */
998             zeta2            = _mm_mul_ps(beta2,rsq20);
999             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1000             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1001             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1002             felec            = _mm_mul_ps(qq20,felec);
1003
1004             fscal            = felec;
1005
1006              /* Update vectorial force */
1007             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1008             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1009             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1010
1011             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1012             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1013             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1014
1015             /**************************
1016              * CALCULATE INTERACTIONS *
1017              **************************/
1018
1019             r30              = _mm_mul_ps(rsq30,rinv30);
1020
1021             /* Compute parameters for interactions between i and j atoms */
1022             qq30             = _mm_mul_ps(iq3,jq0);
1023
1024             /* EWALD ELECTROSTATICS */
1025
1026             /* Analytical PME correction */
1027             zeta2            = _mm_mul_ps(beta2,rsq30);
1028             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1029             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1030             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1031             felec            = _mm_mul_ps(qq30,felec);
1032
1033             fscal            = felec;
1034
1035              /* Update vectorial force */
1036             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1037             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1038             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1039
1040             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1041             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1042             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1043
1044             fjptrA             = f+j_coord_offsetA;
1045             fjptrB             = f+j_coord_offsetB;
1046             fjptrC             = f+j_coord_offsetC;
1047             fjptrD             = f+j_coord_offsetD;
1048
1049             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1050
1051             /* Inner loop uses 131 flops */
1052         }
1053
1054         if(jidx<j_index_end)
1055         {
1056
1057             /* Get j neighbor index, and coordinate index */
1058             jnrlistA         = jjnr[jidx];
1059             jnrlistB         = jjnr[jidx+1];
1060             jnrlistC         = jjnr[jidx+2];
1061             jnrlistD         = jjnr[jidx+3];
1062             /* Sign of each element will be negative for non-real atoms.
1063              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1064              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1065              */
1066             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1067             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1068             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1069             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1070             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1071             j_coord_offsetA  = DIM*jnrA;
1072             j_coord_offsetB  = DIM*jnrB;
1073             j_coord_offsetC  = DIM*jnrC;
1074             j_coord_offsetD  = DIM*jnrD;
1075
1076             /* load j atom coordinates */
1077             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1078                                               x+j_coord_offsetC,x+j_coord_offsetD,
1079                                               &jx0,&jy0,&jz0);
1080
1081             /* Calculate displacement vector */
1082             dx00             = _mm_sub_ps(ix0,jx0);
1083             dy00             = _mm_sub_ps(iy0,jy0);
1084             dz00             = _mm_sub_ps(iz0,jz0);
1085             dx10             = _mm_sub_ps(ix1,jx0);
1086             dy10             = _mm_sub_ps(iy1,jy0);
1087             dz10             = _mm_sub_ps(iz1,jz0);
1088             dx20             = _mm_sub_ps(ix2,jx0);
1089             dy20             = _mm_sub_ps(iy2,jy0);
1090             dz20             = _mm_sub_ps(iz2,jz0);
1091             dx30             = _mm_sub_ps(ix3,jx0);
1092             dy30             = _mm_sub_ps(iy3,jy0);
1093             dz30             = _mm_sub_ps(iz3,jz0);
1094
1095             /* Calculate squared distance and things based on it */
1096             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1097             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1098             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1099             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1100
1101             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1102             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1103             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1104             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1105
1106             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1107             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1108             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1109             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1110
1111             /* Load parameters for j particles */
1112             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1113                                                               charge+jnrC+0,charge+jnrD+0);
1114             vdwjidx0A        = 2*vdwtype[jnrA+0];
1115             vdwjidx0B        = 2*vdwtype[jnrB+0];
1116             vdwjidx0C        = 2*vdwtype[jnrC+0];
1117             vdwjidx0D        = 2*vdwtype[jnrD+0];
1118
1119             fjx0             = _mm_setzero_ps();
1120             fjy0             = _mm_setzero_ps();
1121             fjz0             = _mm_setzero_ps();
1122
1123             /**************************
1124              * CALCULATE INTERACTIONS *
1125              **************************/
1126
1127             r00              = _mm_mul_ps(rsq00,rinv00);
1128             r00              = _mm_andnot_ps(dummy_mask,r00);
1129
1130             /* Compute parameters for interactions between i and j atoms */
1131             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1132                                          vdwparam+vdwioffset0+vdwjidx0B,
1133                                          vdwparam+vdwioffset0+vdwjidx0C,
1134                                          vdwparam+vdwioffset0+vdwjidx0D,
1135                                          &c6_00,&c12_00);
1136
1137             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1138                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1139                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1140                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1141
1142             /* Analytical LJ-PME */
1143             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1144             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1145             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1146             exponent         = gmx_simd_exp_r(ewcljrsq);
1147             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1148             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
1149             /* f6A = 6 * C6grid * (1 - poly) */
1150             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1151             /* f6B = C6grid * exponent * beta^6 */
1152             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1153             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1154             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1155
1156             fscal            = fvdw;
1157
1158             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1159
1160              /* Update vectorial force */
1161             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1162             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1163             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1164
1165             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1166             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1167             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1168
1169             /**************************
1170              * CALCULATE INTERACTIONS *
1171              **************************/
1172
1173             r10              = _mm_mul_ps(rsq10,rinv10);
1174             r10              = _mm_andnot_ps(dummy_mask,r10);
1175
1176             /* Compute parameters for interactions between i and j atoms */
1177             qq10             = _mm_mul_ps(iq1,jq0);
1178
1179             /* EWALD ELECTROSTATICS */
1180
1181             /* Analytical PME correction */
1182             zeta2            = _mm_mul_ps(beta2,rsq10);
1183             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1184             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1185             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1186             felec            = _mm_mul_ps(qq10,felec);
1187
1188             fscal            = felec;
1189
1190             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1191
1192              /* Update vectorial force */
1193             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1194             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1195             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1196
1197             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1198             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1199             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             r20              = _mm_mul_ps(rsq20,rinv20);
1206             r20              = _mm_andnot_ps(dummy_mask,r20);
1207
1208             /* Compute parameters for interactions between i and j atoms */
1209             qq20             = _mm_mul_ps(iq2,jq0);
1210
1211             /* EWALD ELECTROSTATICS */
1212
1213             /* Analytical PME correction */
1214             zeta2            = _mm_mul_ps(beta2,rsq20);
1215             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1216             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1217             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1218             felec            = _mm_mul_ps(qq20,felec);
1219
1220             fscal            = felec;
1221
1222             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1223
1224              /* Update vectorial force */
1225             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1226             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1227             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1228
1229             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1230             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1231             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1232
1233             /**************************
1234              * CALCULATE INTERACTIONS *
1235              **************************/
1236
1237             r30              = _mm_mul_ps(rsq30,rinv30);
1238             r30              = _mm_andnot_ps(dummy_mask,r30);
1239
1240             /* Compute parameters for interactions between i and j atoms */
1241             qq30             = _mm_mul_ps(iq3,jq0);
1242
1243             /* EWALD ELECTROSTATICS */
1244
1245             /* Analytical PME correction */
1246             zeta2            = _mm_mul_ps(beta2,rsq30);
1247             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1248             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1249             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1250             felec            = _mm_mul_ps(qq30,felec);
1251
1252             fscal            = felec;
1253
1254             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1255
1256              /* Update vectorial force */
1257             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1258             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1259             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1260
1261             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1262             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1263             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1264
1265             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1266             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1267             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1268             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1269
1270             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1271
1272             /* Inner loop uses 135 flops */
1273         }
1274
1275         /* End of innermost loop */
1276
1277         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1278                                               f+i_coord_offset,fshift+i_shift_offset);
1279
1280         /* Increment number of inner iterations */
1281         inneriter                  += j_index_end - j_index_start;
1282
1283         /* Outer loop uses 24 flops */
1284     }
1285
1286     /* Increment number of outer iterations */
1287     outeriter        += nri;
1288
1289     /* Update outer/inner flops */
1290
1291     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*135);
1292 }