Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128           c6grid_00;
106     __m128           c6grid_10;
107     __m128           c6grid_20;
108     __m128           c6grid_30;
109     real             *vdwgridparam;
110     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
111     __m128           one_half = _mm_set1_ps(0.5);
112     __m128           minus_one = _mm_set1_ps(-1.0);
113     __m128i          ewitab;
114     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
115     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
116     real             *ewtab;
117     __m128           dummy_mask,cutoff_mask;
118     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
119     __m128           one     = _mm_set1_ps(1.0);
120     __m128           two     = _mm_set1_ps(2.0);
121     x                = xx[0];
122     f                = ff[0];
123
124     nri              = nlist->nri;
125     iinr             = nlist->iinr;
126     jindex           = nlist->jindex;
127     jjnr             = nlist->jjnr;
128     shiftidx         = nlist->shift;
129     gid              = nlist->gid;
130     shiftvec         = fr->shift_vec[0];
131     fshift           = fr->fshift[0];
132     facel            = _mm_set1_ps(fr->epsfac);
133     charge           = mdatoms->chargeA;
134     nvdwtype         = fr->ntype;
135     vdwparam         = fr->nbfp;
136     vdwtype          = mdatoms->typeA;
137     vdwgridparam     = fr->ljpme_c6grid;
138     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
139     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
140     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
141
142     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
143     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
144     beta2            = _mm_mul_ps(beta,beta);
145     beta3            = _mm_mul_ps(beta,beta2);
146     ewtab            = fr->ic->tabq_coul_FDV0;
147     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
148     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
149
150     /* Setup water-specific parameters */
151     inr              = nlist->iinr[0];
152     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
153     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
154     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
155     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = jnrC = jnrD = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161     j_coord_offsetC = 0;
162     j_coord_offsetD = 0;
163
164     outeriter        = 0;
165     inneriter        = 0;
166
167     for(iidx=0;iidx<4*DIM;iidx++)
168     {
169         scratch[iidx] = 0.0;
170     }
171
172     /* Start outer loop over neighborlists */
173     for(iidx=0; iidx<nri; iidx++)
174     {
175         /* Load shift vector for this list */
176         i_shift_offset   = DIM*shiftidx[iidx];
177
178         /* Load limits for loop over neighbors */
179         j_index_start    = jindex[iidx];
180         j_index_end      = jindex[iidx+1];
181
182         /* Get outer coordinate index */
183         inr              = iinr[iidx];
184         i_coord_offset   = DIM*inr;
185
186         /* Load i particle coords and add shift vector */
187         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
188                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
189
190         fix0             = _mm_setzero_ps();
191         fiy0             = _mm_setzero_ps();
192         fiz0             = _mm_setzero_ps();
193         fix1             = _mm_setzero_ps();
194         fiy1             = _mm_setzero_ps();
195         fiz1             = _mm_setzero_ps();
196         fix2             = _mm_setzero_ps();
197         fiy2             = _mm_setzero_ps();
198         fiz2             = _mm_setzero_ps();
199         fix3             = _mm_setzero_ps();
200         fiy3             = _mm_setzero_ps();
201         fiz3             = _mm_setzero_ps();
202
203         /* Reset potential sums */
204         velecsum         = _mm_setzero_ps();
205         vvdwsum          = _mm_setzero_ps();
206
207         /* Start inner kernel loop */
208         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
209         {
210
211             /* Get j neighbor index, and coordinate index */
212             jnrA             = jjnr[jidx];
213             jnrB             = jjnr[jidx+1];
214             jnrC             = jjnr[jidx+2];
215             jnrD             = jjnr[jidx+3];
216             j_coord_offsetA  = DIM*jnrA;
217             j_coord_offsetB  = DIM*jnrB;
218             j_coord_offsetC  = DIM*jnrC;
219             j_coord_offsetD  = DIM*jnrD;
220
221             /* load j atom coordinates */
222             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
223                                               x+j_coord_offsetC,x+j_coord_offsetD,
224                                               &jx0,&jy0,&jz0);
225
226             /* Calculate displacement vector */
227             dx00             = _mm_sub_ps(ix0,jx0);
228             dy00             = _mm_sub_ps(iy0,jy0);
229             dz00             = _mm_sub_ps(iz0,jz0);
230             dx10             = _mm_sub_ps(ix1,jx0);
231             dy10             = _mm_sub_ps(iy1,jy0);
232             dz10             = _mm_sub_ps(iz1,jz0);
233             dx20             = _mm_sub_ps(ix2,jx0);
234             dy20             = _mm_sub_ps(iy2,jy0);
235             dz20             = _mm_sub_ps(iz2,jz0);
236             dx30             = _mm_sub_ps(ix3,jx0);
237             dy30             = _mm_sub_ps(iy3,jy0);
238             dz30             = _mm_sub_ps(iz3,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
242             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
243             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
244             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
245
246             rinv00           = gmx_mm_invsqrt_ps(rsq00);
247             rinv10           = gmx_mm_invsqrt_ps(rsq10);
248             rinv20           = gmx_mm_invsqrt_ps(rsq20);
249             rinv30           = gmx_mm_invsqrt_ps(rsq30);
250
251             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
252             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
253             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
254             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
255
256             /* Load parameters for j particles */
257             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
258                                                               charge+jnrC+0,charge+jnrD+0);
259             vdwjidx0A        = 2*vdwtype[jnrA+0];
260             vdwjidx0B        = 2*vdwtype[jnrB+0];
261             vdwjidx0C        = 2*vdwtype[jnrC+0];
262             vdwjidx0D        = 2*vdwtype[jnrD+0];
263
264             fjx0             = _mm_setzero_ps();
265             fjy0             = _mm_setzero_ps();
266             fjz0             = _mm_setzero_ps();
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             r00              = _mm_mul_ps(rsq00,rinv00);
273
274             /* Compute parameters for interactions between i and j atoms */
275             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
276                                          vdwparam+vdwioffset0+vdwjidx0B,
277                                          vdwparam+vdwioffset0+vdwjidx0C,
278                                          vdwparam+vdwioffset0+vdwjidx0D,
279                                          &c6_00,&c12_00);
280
281             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
282                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
283                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
284                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
285
286             /* Analytical LJ-PME */
287             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
288             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
289             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
290             exponent         = gmx_simd_exp_r(ewcljrsq);
291             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
292             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
293             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
294             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
295             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
296             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
297             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
298             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
302
303             fscal            = fvdw;
304
305              /* Update vectorial force */
306             fix0             = _mm_macc_ps(dx00,fscal,fix0);
307             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
308             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
309
310             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
311             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
312             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r10              = _mm_mul_ps(rsq10,rinv10);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm_mul_ps(iq1,jq0);
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Analytical PME correction */
326             zeta2            = _mm_mul_ps(beta2,rsq10);
327             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
328             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
329             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
330             felec            = _mm_mul_ps(qq10,felec);
331             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
332             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
333             velec            = _mm_mul_ps(qq10,velec);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velecsum         = _mm_add_ps(velecsum,velec);
337
338             fscal            = felec;
339
340              /* Update vectorial force */
341             fix1             = _mm_macc_ps(dx10,fscal,fix1);
342             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
343             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
344
345             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
346             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
347             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             r20              = _mm_mul_ps(rsq20,rinv20);
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq20             = _mm_mul_ps(iq2,jq0);
357
358             /* EWALD ELECTROSTATICS */
359
360             /* Analytical PME correction */
361             zeta2            = _mm_mul_ps(beta2,rsq20);
362             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
363             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
364             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
365             felec            = _mm_mul_ps(qq20,felec);
366             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
367             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
368             velec            = _mm_mul_ps(qq20,velec);
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velecsum         = _mm_add_ps(velecsum,velec);
372
373             fscal            = felec;
374
375              /* Update vectorial force */
376             fix2             = _mm_macc_ps(dx20,fscal,fix2);
377             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
378             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
379
380             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
381             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
382             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
383
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             r30              = _mm_mul_ps(rsq30,rinv30);
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq30             = _mm_mul_ps(iq3,jq0);
392
393             /* EWALD ELECTROSTATICS */
394
395             /* Analytical PME correction */
396             zeta2            = _mm_mul_ps(beta2,rsq30);
397             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
398             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
399             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
400             felec            = _mm_mul_ps(qq30,felec);
401             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
402             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
403             velec            = _mm_mul_ps(qq30,velec);
404
405             /* Update potential sum for this i atom from the interaction with this j atom. */
406             velecsum         = _mm_add_ps(velecsum,velec);
407
408             fscal            = felec;
409
410              /* Update vectorial force */
411             fix3             = _mm_macc_ps(dx30,fscal,fix3);
412             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
413             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
414
415             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
416             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
417             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
418
419             fjptrA             = f+j_coord_offsetA;
420             fjptrB             = f+j_coord_offsetB;
421             fjptrC             = f+j_coord_offsetC;
422             fjptrD             = f+j_coord_offsetD;
423
424             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
425
426             /* Inner loop uses 137 flops */
427         }
428
429         if(jidx<j_index_end)
430         {
431
432             /* Get j neighbor index, and coordinate index */
433             jnrlistA         = jjnr[jidx];
434             jnrlistB         = jjnr[jidx+1];
435             jnrlistC         = jjnr[jidx+2];
436             jnrlistD         = jjnr[jidx+3];
437             /* Sign of each element will be negative for non-real atoms.
438              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
439              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
440              */
441             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
442             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
443             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
444             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
445             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
446             j_coord_offsetA  = DIM*jnrA;
447             j_coord_offsetB  = DIM*jnrB;
448             j_coord_offsetC  = DIM*jnrC;
449             j_coord_offsetD  = DIM*jnrD;
450
451             /* load j atom coordinates */
452             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
453                                               x+j_coord_offsetC,x+j_coord_offsetD,
454                                               &jx0,&jy0,&jz0);
455
456             /* Calculate displacement vector */
457             dx00             = _mm_sub_ps(ix0,jx0);
458             dy00             = _mm_sub_ps(iy0,jy0);
459             dz00             = _mm_sub_ps(iz0,jz0);
460             dx10             = _mm_sub_ps(ix1,jx0);
461             dy10             = _mm_sub_ps(iy1,jy0);
462             dz10             = _mm_sub_ps(iz1,jz0);
463             dx20             = _mm_sub_ps(ix2,jx0);
464             dy20             = _mm_sub_ps(iy2,jy0);
465             dz20             = _mm_sub_ps(iz2,jz0);
466             dx30             = _mm_sub_ps(ix3,jx0);
467             dy30             = _mm_sub_ps(iy3,jy0);
468             dz30             = _mm_sub_ps(iz3,jz0);
469
470             /* Calculate squared distance and things based on it */
471             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
472             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
473             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
474             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
475
476             rinv00           = gmx_mm_invsqrt_ps(rsq00);
477             rinv10           = gmx_mm_invsqrt_ps(rsq10);
478             rinv20           = gmx_mm_invsqrt_ps(rsq20);
479             rinv30           = gmx_mm_invsqrt_ps(rsq30);
480
481             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
482             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
483             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
484             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
485
486             /* Load parameters for j particles */
487             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
488                                                               charge+jnrC+0,charge+jnrD+0);
489             vdwjidx0A        = 2*vdwtype[jnrA+0];
490             vdwjidx0B        = 2*vdwtype[jnrB+0];
491             vdwjidx0C        = 2*vdwtype[jnrC+0];
492             vdwjidx0D        = 2*vdwtype[jnrD+0];
493
494             fjx0             = _mm_setzero_ps();
495             fjy0             = _mm_setzero_ps();
496             fjz0             = _mm_setzero_ps();
497
498             /**************************
499              * CALCULATE INTERACTIONS *
500              **************************/
501
502             r00              = _mm_mul_ps(rsq00,rinv00);
503             r00              = _mm_andnot_ps(dummy_mask,r00);
504
505             /* Compute parameters for interactions between i and j atoms */
506             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
507                                          vdwparam+vdwioffset0+vdwjidx0B,
508                                          vdwparam+vdwioffset0+vdwjidx0C,
509                                          vdwparam+vdwioffset0+vdwjidx0D,
510                                          &c6_00,&c12_00);
511
512             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
513                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
514                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
515                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
516
517             /* Analytical LJ-PME */
518             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
519             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
520             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
521             exponent         = gmx_simd_exp_r(ewcljrsq);
522             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
523             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
524             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
525             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
526             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
527             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
528             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
529             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
530
531             /* Update potential sum for this i atom from the interaction with this j atom. */
532             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
533             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
534
535             fscal            = fvdw;
536
537             fscal            = _mm_andnot_ps(dummy_mask,fscal);
538
539              /* Update vectorial force */
540             fix0             = _mm_macc_ps(dx00,fscal,fix0);
541             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
542             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
543
544             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
545             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
546             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             r10              = _mm_mul_ps(rsq10,rinv10);
553             r10              = _mm_andnot_ps(dummy_mask,r10);
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq10             = _mm_mul_ps(iq1,jq0);
557
558             /* EWALD ELECTROSTATICS */
559
560             /* Analytical PME correction */
561             zeta2            = _mm_mul_ps(beta2,rsq10);
562             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
563             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
564             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
565             felec            = _mm_mul_ps(qq10,felec);
566             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
567             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
568             velec            = _mm_mul_ps(qq10,velec);
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             velec            = _mm_andnot_ps(dummy_mask,velec);
572             velecsum         = _mm_add_ps(velecsum,velec);
573
574             fscal            = felec;
575
576             fscal            = _mm_andnot_ps(dummy_mask,fscal);
577
578              /* Update vectorial force */
579             fix1             = _mm_macc_ps(dx10,fscal,fix1);
580             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
581             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
582
583             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
584             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
585             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
586
587             /**************************
588              * CALCULATE INTERACTIONS *
589              **************************/
590
591             r20              = _mm_mul_ps(rsq20,rinv20);
592             r20              = _mm_andnot_ps(dummy_mask,r20);
593
594             /* Compute parameters for interactions between i and j atoms */
595             qq20             = _mm_mul_ps(iq2,jq0);
596
597             /* EWALD ELECTROSTATICS */
598
599             /* Analytical PME correction */
600             zeta2            = _mm_mul_ps(beta2,rsq20);
601             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
602             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
603             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
604             felec            = _mm_mul_ps(qq20,felec);
605             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
606             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
607             velec            = _mm_mul_ps(qq20,velec);
608
609             /* Update potential sum for this i atom from the interaction with this j atom. */
610             velec            = _mm_andnot_ps(dummy_mask,velec);
611             velecsum         = _mm_add_ps(velecsum,velec);
612
613             fscal            = felec;
614
615             fscal            = _mm_andnot_ps(dummy_mask,fscal);
616
617              /* Update vectorial force */
618             fix2             = _mm_macc_ps(dx20,fscal,fix2);
619             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
620             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
621
622             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
623             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
624             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
625
626             /**************************
627              * CALCULATE INTERACTIONS *
628              **************************/
629
630             r30              = _mm_mul_ps(rsq30,rinv30);
631             r30              = _mm_andnot_ps(dummy_mask,r30);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq30             = _mm_mul_ps(iq3,jq0);
635
636             /* EWALD ELECTROSTATICS */
637
638             /* Analytical PME correction */
639             zeta2            = _mm_mul_ps(beta2,rsq30);
640             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
641             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
642             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
643             felec            = _mm_mul_ps(qq30,felec);
644             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
645             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
646             velec            = _mm_mul_ps(qq30,velec);
647
648             /* Update potential sum for this i atom from the interaction with this j atom. */
649             velec            = _mm_andnot_ps(dummy_mask,velec);
650             velecsum         = _mm_add_ps(velecsum,velec);
651
652             fscal            = felec;
653
654             fscal            = _mm_andnot_ps(dummy_mask,fscal);
655
656              /* Update vectorial force */
657             fix3             = _mm_macc_ps(dx30,fscal,fix3);
658             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
659             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
660
661             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
662             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
663             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
664
665             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
666             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
667             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
668             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
669
670             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
671
672             /* Inner loop uses 141 flops */
673         }
674
675         /* End of innermost loop */
676
677         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
678                                               f+i_coord_offset,fshift+i_shift_offset);
679
680         ggid                        = gid[iidx];
681         /* Update potential energies */
682         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
683         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
684
685         /* Increment number of inner iterations */
686         inneriter                  += j_index_end - j_index_start;
687
688         /* Outer loop uses 26 flops */
689     }
690
691     /* Increment number of outer iterations */
692     outeriter        += nri;
693
694     /* Update outer/inner flops */
695
696     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*141);
697 }
698 /*
699  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_128_fma_single
700  * Electrostatics interaction: Ewald
701  * VdW interaction:            LJEwald
702  * Geometry:                   Water4-Particle
703  * Calculate force/pot:        Force
704  */
705 void
706 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_128_fma_single
707                     (t_nblist                    * gmx_restrict       nlist,
708                      rvec                        * gmx_restrict          xx,
709                      rvec                        * gmx_restrict          ff,
710                      t_forcerec                  * gmx_restrict          fr,
711                      t_mdatoms                   * gmx_restrict     mdatoms,
712                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
713                      t_nrnb                      * gmx_restrict        nrnb)
714 {
715     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
716      * just 0 for non-waters.
717      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
718      * jnr indices corresponding to data put in the four positions in the SIMD register.
719      */
720     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
721     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
722     int              jnrA,jnrB,jnrC,jnrD;
723     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
724     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
725     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
726     real             rcutoff_scalar;
727     real             *shiftvec,*fshift,*x,*f;
728     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
729     real             scratch[4*DIM];
730     __m128           fscal,rcutoff,rcutoff2,jidxall;
731     int              vdwioffset0;
732     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
733     int              vdwioffset1;
734     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
735     int              vdwioffset2;
736     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
737     int              vdwioffset3;
738     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
739     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
740     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
741     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
742     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
743     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
744     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
745     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
746     real             *charge;
747     int              nvdwtype;
748     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
749     int              *vdwtype;
750     real             *vdwparam;
751     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
752     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
753     __m128           c6grid_00;
754     __m128           c6grid_10;
755     __m128           c6grid_20;
756     __m128           c6grid_30;
757     real             *vdwgridparam;
758     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
759     __m128           one_half = _mm_set1_ps(0.5);
760     __m128           minus_one = _mm_set1_ps(-1.0);
761     __m128i          ewitab;
762     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
763     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
764     real             *ewtab;
765     __m128           dummy_mask,cutoff_mask;
766     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
767     __m128           one     = _mm_set1_ps(1.0);
768     __m128           two     = _mm_set1_ps(2.0);
769     x                = xx[0];
770     f                = ff[0];
771
772     nri              = nlist->nri;
773     iinr             = nlist->iinr;
774     jindex           = nlist->jindex;
775     jjnr             = nlist->jjnr;
776     shiftidx         = nlist->shift;
777     gid              = nlist->gid;
778     shiftvec         = fr->shift_vec[0];
779     fshift           = fr->fshift[0];
780     facel            = _mm_set1_ps(fr->epsfac);
781     charge           = mdatoms->chargeA;
782     nvdwtype         = fr->ntype;
783     vdwparam         = fr->nbfp;
784     vdwtype          = mdatoms->typeA;
785     vdwgridparam     = fr->ljpme_c6grid;
786     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
787     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
788     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
789
790     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
791     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
792     beta2            = _mm_mul_ps(beta,beta);
793     beta3            = _mm_mul_ps(beta,beta2);
794     ewtab            = fr->ic->tabq_coul_F;
795     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
796     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
797
798     /* Setup water-specific parameters */
799     inr              = nlist->iinr[0];
800     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
801     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
802     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
803     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
804
805     /* Avoid stupid compiler warnings */
806     jnrA = jnrB = jnrC = jnrD = 0;
807     j_coord_offsetA = 0;
808     j_coord_offsetB = 0;
809     j_coord_offsetC = 0;
810     j_coord_offsetD = 0;
811
812     outeriter        = 0;
813     inneriter        = 0;
814
815     for(iidx=0;iidx<4*DIM;iidx++)
816     {
817         scratch[iidx] = 0.0;
818     }
819
820     /* Start outer loop over neighborlists */
821     for(iidx=0; iidx<nri; iidx++)
822     {
823         /* Load shift vector for this list */
824         i_shift_offset   = DIM*shiftidx[iidx];
825
826         /* Load limits for loop over neighbors */
827         j_index_start    = jindex[iidx];
828         j_index_end      = jindex[iidx+1];
829
830         /* Get outer coordinate index */
831         inr              = iinr[iidx];
832         i_coord_offset   = DIM*inr;
833
834         /* Load i particle coords and add shift vector */
835         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
836                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
837
838         fix0             = _mm_setzero_ps();
839         fiy0             = _mm_setzero_ps();
840         fiz0             = _mm_setzero_ps();
841         fix1             = _mm_setzero_ps();
842         fiy1             = _mm_setzero_ps();
843         fiz1             = _mm_setzero_ps();
844         fix2             = _mm_setzero_ps();
845         fiy2             = _mm_setzero_ps();
846         fiz2             = _mm_setzero_ps();
847         fix3             = _mm_setzero_ps();
848         fiy3             = _mm_setzero_ps();
849         fiz3             = _mm_setzero_ps();
850
851         /* Start inner kernel loop */
852         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
853         {
854
855             /* Get j neighbor index, and coordinate index */
856             jnrA             = jjnr[jidx];
857             jnrB             = jjnr[jidx+1];
858             jnrC             = jjnr[jidx+2];
859             jnrD             = jjnr[jidx+3];
860             j_coord_offsetA  = DIM*jnrA;
861             j_coord_offsetB  = DIM*jnrB;
862             j_coord_offsetC  = DIM*jnrC;
863             j_coord_offsetD  = DIM*jnrD;
864
865             /* load j atom coordinates */
866             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
867                                               x+j_coord_offsetC,x+j_coord_offsetD,
868                                               &jx0,&jy0,&jz0);
869
870             /* Calculate displacement vector */
871             dx00             = _mm_sub_ps(ix0,jx0);
872             dy00             = _mm_sub_ps(iy0,jy0);
873             dz00             = _mm_sub_ps(iz0,jz0);
874             dx10             = _mm_sub_ps(ix1,jx0);
875             dy10             = _mm_sub_ps(iy1,jy0);
876             dz10             = _mm_sub_ps(iz1,jz0);
877             dx20             = _mm_sub_ps(ix2,jx0);
878             dy20             = _mm_sub_ps(iy2,jy0);
879             dz20             = _mm_sub_ps(iz2,jz0);
880             dx30             = _mm_sub_ps(ix3,jx0);
881             dy30             = _mm_sub_ps(iy3,jy0);
882             dz30             = _mm_sub_ps(iz3,jz0);
883
884             /* Calculate squared distance and things based on it */
885             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
886             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
887             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
888             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
889
890             rinv00           = gmx_mm_invsqrt_ps(rsq00);
891             rinv10           = gmx_mm_invsqrt_ps(rsq10);
892             rinv20           = gmx_mm_invsqrt_ps(rsq20);
893             rinv30           = gmx_mm_invsqrt_ps(rsq30);
894
895             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
896             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
897             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
898             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
899
900             /* Load parameters for j particles */
901             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
902                                                               charge+jnrC+0,charge+jnrD+0);
903             vdwjidx0A        = 2*vdwtype[jnrA+0];
904             vdwjidx0B        = 2*vdwtype[jnrB+0];
905             vdwjidx0C        = 2*vdwtype[jnrC+0];
906             vdwjidx0D        = 2*vdwtype[jnrD+0];
907
908             fjx0             = _mm_setzero_ps();
909             fjy0             = _mm_setzero_ps();
910             fjz0             = _mm_setzero_ps();
911
912             /**************************
913              * CALCULATE INTERACTIONS *
914              **************************/
915
916             r00              = _mm_mul_ps(rsq00,rinv00);
917
918             /* Compute parameters for interactions between i and j atoms */
919             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
920                                          vdwparam+vdwioffset0+vdwjidx0B,
921                                          vdwparam+vdwioffset0+vdwjidx0C,
922                                          vdwparam+vdwioffset0+vdwjidx0D,
923                                          &c6_00,&c12_00);
924
925             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
926                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
927                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
928                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
929
930             /* Analytical LJ-PME */
931             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
932             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
933             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
934             exponent         = gmx_simd_exp_r(ewcljrsq);
935             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
936             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
937             /* f6A = 6 * C6grid * (1 - poly) */
938             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
939             /* f6B = C6grid * exponent * beta^6 */
940             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
941             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
942             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
943
944             fscal            = fvdw;
945
946              /* Update vectorial force */
947             fix0             = _mm_macc_ps(dx00,fscal,fix0);
948             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
949             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
950
951             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
952             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
953             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             r10              = _mm_mul_ps(rsq10,rinv10);
960
961             /* Compute parameters for interactions between i and j atoms */
962             qq10             = _mm_mul_ps(iq1,jq0);
963
964             /* EWALD ELECTROSTATICS */
965
966             /* Analytical PME correction */
967             zeta2            = _mm_mul_ps(beta2,rsq10);
968             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
969             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
970             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
971             felec            = _mm_mul_ps(qq10,felec);
972
973             fscal            = felec;
974
975              /* Update vectorial force */
976             fix1             = _mm_macc_ps(dx10,fscal,fix1);
977             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
978             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
979
980             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
981             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
982             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             r20              = _mm_mul_ps(rsq20,rinv20);
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq20             = _mm_mul_ps(iq2,jq0);
992
993             /* EWALD ELECTROSTATICS */
994
995             /* Analytical PME correction */
996             zeta2            = _mm_mul_ps(beta2,rsq20);
997             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
998             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
999             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1000             felec            = _mm_mul_ps(qq20,felec);
1001
1002             fscal            = felec;
1003
1004              /* Update vectorial force */
1005             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1006             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1007             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1008
1009             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1010             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1011             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             r30              = _mm_mul_ps(rsq30,rinv30);
1018
1019             /* Compute parameters for interactions between i and j atoms */
1020             qq30             = _mm_mul_ps(iq3,jq0);
1021
1022             /* EWALD ELECTROSTATICS */
1023
1024             /* Analytical PME correction */
1025             zeta2            = _mm_mul_ps(beta2,rsq30);
1026             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1027             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1028             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1029             felec            = _mm_mul_ps(qq30,felec);
1030
1031             fscal            = felec;
1032
1033              /* Update vectorial force */
1034             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1035             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1036             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1037
1038             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1039             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1040             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1041
1042             fjptrA             = f+j_coord_offsetA;
1043             fjptrB             = f+j_coord_offsetB;
1044             fjptrC             = f+j_coord_offsetC;
1045             fjptrD             = f+j_coord_offsetD;
1046
1047             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1048
1049             /* Inner loop uses 131 flops */
1050         }
1051
1052         if(jidx<j_index_end)
1053         {
1054
1055             /* Get j neighbor index, and coordinate index */
1056             jnrlistA         = jjnr[jidx];
1057             jnrlistB         = jjnr[jidx+1];
1058             jnrlistC         = jjnr[jidx+2];
1059             jnrlistD         = jjnr[jidx+3];
1060             /* Sign of each element will be negative for non-real atoms.
1061              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1062              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1063              */
1064             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1065             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1066             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1067             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1068             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1069             j_coord_offsetA  = DIM*jnrA;
1070             j_coord_offsetB  = DIM*jnrB;
1071             j_coord_offsetC  = DIM*jnrC;
1072             j_coord_offsetD  = DIM*jnrD;
1073
1074             /* load j atom coordinates */
1075             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1076                                               x+j_coord_offsetC,x+j_coord_offsetD,
1077                                               &jx0,&jy0,&jz0);
1078
1079             /* Calculate displacement vector */
1080             dx00             = _mm_sub_ps(ix0,jx0);
1081             dy00             = _mm_sub_ps(iy0,jy0);
1082             dz00             = _mm_sub_ps(iz0,jz0);
1083             dx10             = _mm_sub_ps(ix1,jx0);
1084             dy10             = _mm_sub_ps(iy1,jy0);
1085             dz10             = _mm_sub_ps(iz1,jz0);
1086             dx20             = _mm_sub_ps(ix2,jx0);
1087             dy20             = _mm_sub_ps(iy2,jy0);
1088             dz20             = _mm_sub_ps(iz2,jz0);
1089             dx30             = _mm_sub_ps(ix3,jx0);
1090             dy30             = _mm_sub_ps(iy3,jy0);
1091             dz30             = _mm_sub_ps(iz3,jz0);
1092
1093             /* Calculate squared distance and things based on it */
1094             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1095             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1096             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1097             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1098
1099             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1100             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1101             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1102             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1103
1104             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1105             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1106             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1107             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1108
1109             /* Load parameters for j particles */
1110             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1111                                                               charge+jnrC+0,charge+jnrD+0);
1112             vdwjidx0A        = 2*vdwtype[jnrA+0];
1113             vdwjidx0B        = 2*vdwtype[jnrB+0];
1114             vdwjidx0C        = 2*vdwtype[jnrC+0];
1115             vdwjidx0D        = 2*vdwtype[jnrD+0];
1116
1117             fjx0             = _mm_setzero_ps();
1118             fjy0             = _mm_setzero_ps();
1119             fjz0             = _mm_setzero_ps();
1120
1121             /**************************
1122              * CALCULATE INTERACTIONS *
1123              **************************/
1124
1125             r00              = _mm_mul_ps(rsq00,rinv00);
1126             r00              = _mm_andnot_ps(dummy_mask,r00);
1127
1128             /* Compute parameters for interactions between i and j atoms */
1129             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1130                                          vdwparam+vdwioffset0+vdwjidx0B,
1131                                          vdwparam+vdwioffset0+vdwjidx0C,
1132                                          vdwparam+vdwioffset0+vdwjidx0D,
1133                                          &c6_00,&c12_00);
1134
1135             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1136                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1137                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1138                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1139
1140             /* Analytical LJ-PME */
1141             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1142             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1143             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1144             exponent         = gmx_simd_exp_r(ewcljrsq);
1145             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1146             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
1147             /* f6A = 6 * C6grid * (1 - poly) */
1148             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1149             /* f6B = C6grid * exponent * beta^6 */
1150             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1151             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1152             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1153
1154             fscal            = fvdw;
1155
1156             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1157
1158              /* Update vectorial force */
1159             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1160             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1161             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1162
1163             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1164             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1165             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1166
1167             /**************************
1168              * CALCULATE INTERACTIONS *
1169              **************************/
1170
1171             r10              = _mm_mul_ps(rsq10,rinv10);
1172             r10              = _mm_andnot_ps(dummy_mask,r10);
1173
1174             /* Compute parameters for interactions between i and j atoms */
1175             qq10             = _mm_mul_ps(iq1,jq0);
1176
1177             /* EWALD ELECTROSTATICS */
1178
1179             /* Analytical PME correction */
1180             zeta2            = _mm_mul_ps(beta2,rsq10);
1181             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1182             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1183             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1184             felec            = _mm_mul_ps(qq10,felec);
1185
1186             fscal            = felec;
1187
1188             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1189
1190              /* Update vectorial force */
1191             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1192             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1193             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1194
1195             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1196             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1197             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1198
1199             /**************************
1200              * CALCULATE INTERACTIONS *
1201              **************************/
1202
1203             r20              = _mm_mul_ps(rsq20,rinv20);
1204             r20              = _mm_andnot_ps(dummy_mask,r20);
1205
1206             /* Compute parameters for interactions between i and j atoms */
1207             qq20             = _mm_mul_ps(iq2,jq0);
1208
1209             /* EWALD ELECTROSTATICS */
1210
1211             /* Analytical PME correction */
1212             zeta2            = _mm_mul_ps(beta2,rsq20);
1213             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1214             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1215             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1216             felec            = _mm_mul_ps(qq20,felec);
1217
1218             fscal            = felec;
1219
1220             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1221
1222              /* Update vectorial force */
1223             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1224             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1225             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1226
1227             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1228             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1229             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1230
1231             /**************************
1232              * CALCULATE INTERACTIONS *
1233              **************************/
1234
1235             r30              = _mm_mul_ps(rsq30,rinv30);
1236             r30              = _mm_andnot_ps(dummy_mask,r30);
1237
1238             /* Compute parameters for interactions between i and j atoms */
1239             qq30             = _mm_mul_ps(iq3,jq0);
1240
1241             /* EWALD ELECTROSTATICS */
1242
1243             /* Analytical PME correction */
1244             zeta2            = _mm_mul_ps(beta2,rsq30);
1245             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1246             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1247             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1248             felec            = _mm_mul_ps(qq30,felec);
1249
1250             fscal            = felec;
1251
1252             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1253
1254              /* Update vectorial force */
1255             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1256             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1257             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1258
1259             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1260             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1261             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1262
1263             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1264             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1265             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1266             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1267
1268             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1269
1270             /* Inner loop uses 135 flops */
1271         }
1272
1273         /* End of innermost loop */
1274
1275         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1276                                               f+i_coord_offset,fshift+i_shift_offset);
1277
1278         /* Increment number of inner iterations */
1279         inneriter                  += j_index_end - j_index_start;
1280
1281         /* Outer loop uses 24 flops */
1282     }
1283
1284     /* Increment number of outer iterations */
1285     outeriter        += nri;
1286
1287     /* Update outer/inner flops */
1288
1289     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*135);
1290 }