Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_avx_128_fma_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_128_fma_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128           c6grid_00;
102     __m128           c6grid_10;
103     __m128           c6grid_20;
104     real             *vdwgridparam;
105     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
106     __m128           one_half = _mm_set1_ps(0.5);
107     __m128           minus_one = _mm_set1_ps(-1.0);
108     __m128i          ewitab;
109     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
111     real             *ewtab;
112     __m128           dummy_mask,cutoff_mask;
113     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
114     __m128           one     = _mm_set1_ps(1.0);
115     __m128           two     = _mm_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_ps(fr->ic->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132     vdwgridparam     = fr->ljpme_c6grid;
133     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
134     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
135     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
136
137     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
138     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
139     beta2            = _mm_mul_ps(beta,beta);
140     beta3            = _mm_mul_ps(beta,beta2);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
148     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
149     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = jnrC = jnrD = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156     j_coord_offsetC = 0;
157     j_coord_offsetD = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     for(iidx=0;iidx<4*DIM;iidx++)
163     {
164         scratch[iidx] = 0.0;
165     }
166
167     /* Start outer loop over neighborlists */
168     for(iidx=0; iidx<nri; iidx++)
169     {
170         /* Load shift vector for this list */
171         i_shift_offset   = DIM*shiftidx[iidx];
172
173         /* Load limits for loop over neighbors */
174         j_index_start    = jindex[iidx];
175         j_index_end      = jindex[iidx+1];
176
177         /* Get outer coordinate index */
178         inr              = iinr[iidx];
179         i_coord_offset   = DIM*inr;
180
181         /* Load i particle coords and add shift vector */
182         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
183                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
184
185         fix0             = _mm_setzero_ps();
186         fiy0             = _mm_setzero_ps();
187         fiz0             = _mm_setzero_ps();
188         fix1             = _mm_setzero_ps();
189         fiy1             = _mm_setzero_ps();
190         fiz1             = _mm_setzero_ps();
191         fix2             = _mm_setzero_ps();
192         fiy2             = _mm_setzero_ps();
193         fiz2             = _mm_setzero_ps();
194
195         /* Reset potential sums */
196         velecsum         = _mm_setzero_ps();
197         vvdwsum          = _mm_setzero_ps();
198
199         /* Start inner kernel loop */
200         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
201         {
202
203             /* Get j neighbor index, and coordinate index */
204             jnrA             = jjnr[jidx];
205             jnrB             = jjnr[jidx+1];
206             jnrC             = jjnr[jidx+2];
207             jnrD             = jjnr[jidx+3];
208             j_coord_offsetA  = DIM*jnrA;
209             j_coord_offsetB  = DIM*jnrB;
210             j_coord_offsetC  = DIM*jnrC;
211             j_coord_offsetD  = DIM*jnrD;
212
213             /* load j atom coordinates */
214             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
215                                               x+j_coord_offsetC,x+j_coord_offsetD,
216                                               &jx0,&jy0,&jz0);
217
218             /* Calculate displacement vector */
219             dx00             = _mm_sub_ps(ix0,jx0);
220             dy00             = _mm_sub_ps(iy0,jy0);
221             dz00             = _mm_sub_ps(iz0,jz0);
222             dx10             = _mm_sub_ps(ix1,jx0);
223             dy10             = _mm_sub_ps(iy1,jy0);
224             dz10             = _mm_sub_ps(iz1,jz0);
225             dx20             = _mm_sub_ps(ix2,jx0);
226             dy20             = _mm_sub_ps(iy2,jy0);
227             dz20             = _mm_sub_ps(iz2,jz0);
228
229             /* Calculate squared distance and things based on it */
230             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
231             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
232             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
233
234             rinv00           = avx128fma_invsqrt_f(rsq00);
235             rinv10           = avx128fma_invsqrt_f(rsq10);
236             rinv20           = avx128fma_invsqrt_f(rsq20);
237
238             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
239             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
240             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
241
242             /* Load parameters for j particles */
243             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
244                                                               charge+jnrC+0,charge+jnrD+0);
245             vdwjidx0A        = 2*vdwtype[jnrA+0];
246             vdwjidx0B        = 2*vdwtype[jnrB+0];
247             vdwjidx0C        = 2*vdwtype[jnrC+0];
248             vdwjidx0D        = 2*vdwtype[jnrD+0];
249
250             fjx0             = _mm_setzero_ps();
251             fjy0             = _mm_setzero_ps();
252             fjz0             = _mm_setzero_ps();
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             r00              = _mm_mul_ps(rsq00,rinv00);
259
260             /* Compute parameters for interactions between i and j atoms */
261             qq00             = _mm_mul_ps(iq0,jq0);
262             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
263                                          vdwparam+vdwioffset0+vdwjidx0B,
264                                          vdwparam+vdwioffset0+vdwjidx0C,
265                                          vdwparam+vdwioffset0+vdwjidx0D,
266                                          &c6_00,&c12_00);
267
268             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
269                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
270                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
271                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
272
273             /* EWALD ELECTROSTATICS */
274
275             /* Analytical PME correction */
276             zeta2            = _mm_mul_ps(beta2,rsq00);
277             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
278             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
279             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
280             felec            = _mm_mul_ps(qq00,felec);
281             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
282             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
283             velec            = _mm_mul_ps(qq00,velec);
284
285             /* Analytical LJ-PME */
286             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
287             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
288             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
289             exponent         = avx128fma_exp_f(ewcljrsq);
290             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
291             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
292             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
293             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
294             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
295             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
296             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
297             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velecsum         = _mm_add_ps(velecsum,velec);
301             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
302
303             fscal            = _mm_add_ps(felec,fvdw);
304
305              /* Update vectorial force */
306             fix0             = _mm_macc_ps(dx00,fscal,fix0);
307             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
308             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
309
310             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
311             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
312             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r10              = _mm_mul_ps(rsq10,rinv10);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm_mul_ps(iq1,jq0);
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Analytical PME correction */
326             zeta2            = _mm_mul_ps(beta2,rsq10);
327             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
328             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
329             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
330             felec            = _mm_mul_ps(qq10,felec);
331             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
332             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
333             velec            = _mm_mul_ps(qq10,velec);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velecsum         = _mm_add_ps(velecsum,velec);
337
338             fscal            = felec;
339
340              /* Update vectorial force */
341             fix1             = _mm_macc_ps(dx10,fscal,fix1);
342             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
343             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
344
345             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
346             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
347             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             r20              = _mm_mul_ps(rsq20,rinv20);
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq20             = _mm_mul_ps(iq2,jq0);
357
358             /* EWALD ELECTROSTATICS */
359
360             /* Analytical PME correction */
361             zeta2            = _mm_mul_ps(beta2,rsq20);
362             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
363             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
364             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
365             felec            = _mm_mul_ps(qq20,felec);
366             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
367             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
368             velec            = _mm_mul_ps(qq20,velec);
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velecsum         = _mm_add_ps(velecsum,velec);
372
373             fscal            = felec;
374
375              /* Update vectorial force */
376             fix2             = _mm_macc_ps(dx20,fscal,fix2);
377             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
378             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
379
380             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
381             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
382             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
383
384             fjptrA             = f+j_coord_offsetA;
385             fjptrB             = f+j_coord_offsetB;
386             fjptrC             = f+j_coord_offsetC;
387             fjptrD             = f+j_coord_offsetD;
388
389             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
390
391             /* Inner loop uses 111 flops */
392         }
393
394         if(jidx<j_index_end)
395         {
396
397             /* Get j neighbor index, and coordinate index */
398             jnrlistA         = jjnr[jidx];
399             jnrlistB         = jjnr[jidx+1];
400             jnrlistC         = jjnr[jidx+2];
401             jnrlistD         = jjnr[jidx+3];
402             /* Sign of each element will be negative for non-real atoms.
403              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
404              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
405              */
406             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
407             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
408             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
409             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
410             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
411             j_coord_offsetA  = DIM*jnrA;
412             j_coord_offsetB  = DIM*jnrB;
413             j_coord_offsetC  = DIM*jnrC;
414             j_coord_offsetD  = DIM*jnrD;
415
416             /* load j atom coordinates */
417             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
418                                               x+j_coord_offsetC,x+j_coord_offsetD,
419                                               &jx0,&jy0,&jz0);
420
421             /* Calculate displacement vector */
422             dx00             = _mm_sub_ps(ix0,jx0);
423             dy00             = _mm_sub_ps(iy0,jy0);
424             dz00             = _mm_sub_ps(iz0,jz0);
425             dx10             = _mm_sub_ps(ix1,jx0);
426             dy10             = _mm_sub_ps(iy1,jy0);
427             dz10             = _mm_sub_ps(iz1,jz0);
428             dx20             = _mm_sub_ps(ix2,jx0);
429             dy20             = _mm_sub_ps(iy2,jy0);
430             dz20             = _mm_sub_ps(iz2,jz0);
431
432             /* Calculate squared distance and things based on it */
433             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
434             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
435             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
436
437             rinv00           = avx128fma_invsqrt_f(rsq00);
438             rinv10           = avx128fma_invsqrt_f(rsq10);
439             rinv20           = avx128fma_invsqrt_f(rsq20);
440
441             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
442             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
443             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
444
445             /* Load parameters for j particles */
446             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
447                                                               charge+jnrC+0,charge+jnrD+0);
448             vdwjidx0A        = 2*vdwtype[jnrA+0];
449             vdwjidx0B        = 2*vdwtype[jnrB+0];
450             vdwjidx0C        = 2*vdwtype[jnrC+0];
451             vdwjidx0D        = 2*vdwtype[jnrD+0];
452
453             fjx0             = _mm_setzero_ps();
454             fjy0             = _mm_setzero_ps();
455             fjz0             = _mm_setzero_ps();
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             r00              = _mm_mul_ps(rsq00,rinv00);
462             r00              = _mm_andnot_ps(dummy_mask,r00);
463
464             /* Compute parameters for interactions between i and j atoms */
465             qq00             = _mm_mul_ps(iq0,jq0);
466             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
467                                          vdwparam+vdwioffset0+vdwjidx0B,
468                                          vdwparam+vdwioffset0+vdwjidx0C,
469                                          vdwparam+vdwioffset0+vdwjidx0D,
470                                          &c6_00,&c12_00);
471
472             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
473                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
474                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
475                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
476
477             /* EWALD ELECTROSTATICS */
478
479             /* Analytical PME correction */
480             zeta2            = _mm_mul_ps(beta2,rsq00);
481             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
482             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
483             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
484             felec            = _mm_mul_ps(qq00,felec);
485             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
486             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
487             velec            = _mm_mul_ps(qq00,velec);
488
489             /* Analytical LJ-PME */
490             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
491             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
492             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
493             exponent         = avx128fma_exp_f(ewcljrsq);
494             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
495             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
496             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
497             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
498             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
499             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
500             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
501             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
502
503             /* Update potential sum for this i atom from the interaction with this j atom. */
504             velec            = _mm_andnot_ps(dummy_mask,velec);
505             velecsum         = _mm_add_ps(velecsum,velec);
506             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
507             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
508
509             fscal            = _mm_add_ps(felec,fvdw);
510
511             fscal            = _mm_andnot_ps(dummy_mask,fscal);
512
513              /* Update vectorial force */
514             fix0             = _mm_macc_ps(dx00,fscal,fix0);
515             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
516             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
517
518             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
519             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
520             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
521
522             /**************************
523              * CALCULATE INTERACTIONS *
524              **************************/
525
526             r10              = _mm_mul_ps(rsq10,rinv10);
527             r10              = _mm_andnot_ps(dummy_mask,r10);
528
529             /* Compute parameters for interactions between i and j atoms */
530             qq10             = _mm_mul_ps(iq1,jq0);
531
532             /* EWALD ELECTROSTATICS */
533
534             /* Analytical PME correction */
535             zeta2            = _mm_mul_ps(beta2,rsq10);
536             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
537             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
538             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
539             felec            = _mm_mul_ps(qq10,felec);
540             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
541             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
542             velec            = _mm_mul_ps(qq10,velec);
543
544             /* Update potential sum for this i atom from the interaction with this j atom. */
545             velec            = _mm_andnot_ps(dummy_mask,velec);
546             velecsum         = _mm_add_ps(velecsum,velec);
547
548             fscal            = felec;
549
550             fscal            = _mm_andnot_ps(dummy_mask,fscal);
551
552              /* Update vectorial force */
553             fix1             = _mm_macc_ps(dx10,fscal,fix1);
554             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
555             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
556
557             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
558             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
559             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             r20              = _mm_mul_ps(rsq20,rinv20);
566             r20              = _mm_andnot_ps(dummy_mask,r20);
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq20             = _mm_mul_ps(iq2,jq0);
570
571             /* EWALD ELECTROSTATICS */
572
573             /* Analytical PME correction */
574             zeta2            = _mm_mul_ps(beta2,rsq20);
575             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
576             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
577             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
578             felec            = _mm_mul_ps(qq20,felec);
579             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
580             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
581             velec            = _mm_mul_ps(qq20,velec);
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velec            = _mm_andnot_ps(dummy_mask,velec);
585             velecsum         = _mm_add_ps(velecsum,velec);
586
587             fscal            = felec;
588
589             fscal            = _mm_andnot_ps(dummy_mask,fscal);
590
591              /* Update vectorial force */
592             fix2             = _mm_macc_ps(dx20,fscal,fix2);
593             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
594             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
595
596             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
597             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
598             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
599
600             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
601             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
602             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
603             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
604
605             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
606
607             /* Inner loop uses 114 flops */
608         }
609
610         /* End of innermost loop */
611
612         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
613                                               f+i_coord_offset,fshift+i_shift_offset);
614
615         ggid                        = gid[iidx];
616         /* Update potential energies */
617         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
618         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
619
620         /* Increment number of inner iterations */
621         inneriter                  += j_index_end - j_index_start;
622
623         /* Outer loop uses 20 flops */
624     }
625
626     /* Increment number of outer iterations */
627     outeriter        += nri;
628
629     /* Update outer/inner flops */
630
631     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*114);
632 }
633 /*
634  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_128_fma_single
635  * Electrostatics interaction: Ewald
636  * VdW interaction:            LJEwald
637  * Geometry:                   Water3-Particle
638  * Calculate force/pot:        Force
639  */
640 void
641 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_128_fma_single
642                     (t_nblist                    * gmx_restrict       nlist,
643                      rvec                        * gmx_restrict          xx,
644                      rvec                        * gmx_restrict          ff,
645                      struct t_forcerec           * gmx_restrict          fr,
646                      t_mdatoms                   * gmx_restrict     mdatoms,
647                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
648                      t_nrnb                      * gmx_restrict        nrnb)
649 {
650     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
651      * just 0 for non-waters.
652      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
653      * jnr indices corresponding to data put in the four positions in the SIMD register.
654      */
655     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
656     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
657     int              jnrA,jnrB,jnrC,jnrD;
658     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
659     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
660     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
661     real             rcutoff_scalar;
662     real             *shiftvec,*fshift,*x,*f;
663     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
664     real             scratch[4*DIM];
665     __m128           fscal,rcutoff,rcutoff2,jidxall;
666     int              vdwioffset0;
667     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
668     int              vdwioffset1;
669     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
670     int              vdwioffset2;
671     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
672     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
673     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
674     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
675     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
676     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
677     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
678     real             *charge;
679     int              nvdwtype;
680     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
681     int              *vdwtype;
682     real             *vdwparam;
683     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
684     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
685     __m128           c6grid_00;
686     __m128           c6grid_10;
687     __m128           c6grid_20;
688     real             *vdwgridparam;
689     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
690     __m128           one_half = _mm_set1_ps(0.5);
691     __m128           minus_one = _mm_set1_ps(-1.0);
692     __m128i          ewitab;
693     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
694     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
695     real             *ewtab;
696     __m128           dummy_mask,cutoff_mask;
697     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
698     __m128           one     = _mm_set1_ps(1.0);
699     __m128           two     = _mm_set1_ps(2.0);
700     x                = xx[0];
701     f                = ff[0];
702
703     nri              = nlist->nri;
704     iinr             = nlist->iinr;
705     jindex           = nlist->jindex;
706     jjnr             = nlist->jjnr;
707     shiftidx         = nlist->shift;
708     gid              = nlist->gid;
709     shiftvec         = fr->shift_vec[0];
710     fshift           = fr->fshift[0];
711     facel            = _mm_set1_ps(fr->ic->epsfac);
712     charge           = mdatoms->chargeA;
713     nvdwtype         = fr->ntype;
714     vdwparam         = fr->nbfp;
715     vdwtype          = mdatoms->typeA;
716     vdwgridparam     = fr->ljpme_c6grid;
717     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
718     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
719     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
720
721     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
722     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
723     beta2            = _mm_mul_ps(beta,beta);
724     beta3            = _mm_mul_ps(beta,beta2);
725     ewtab            = fr->ic->tabq_coul_F;
726     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
727     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
728
729     /* Setup water-specific parameters */
730     inr              = nlist->iinr[0];
731     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
732     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
733     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
734     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
735
736     /* Avoid stupid compiler warnings */
737     jnrA = jnrB = jnrC = jnrD = 0;
738     j_coord_offsetA = 0;
739     j_coord_offsetB = 0;
740     j_coord_offsetC = 0;
741     j_coord_offsetD = 0;
742
743     outeriter        = 0;
744     inneriter        = 0;
745
746     for(iidx=0;iidx<4*DIM;iidx++)
747     {
748         scratch[iidx] = 0.0;
749     }
750
751     /* Start outer loop over neighborlists */
752     for(iidx=0; iidx<nri; iidx++)
753     {
754         /* Load shift vector for this list */
755         i_shift_offset   = DIM*shiftidx[iidx];
756
757         /* Load limits for loop over neighbors */
758         j_index_start    = jindex[iidx];
759         j_index_end      = jindex[iidx+1];
760
761         /* Get outer coordinate index */
762         inr              = iinr[iidx];
763         i_coord_offset   = DIM*inr;
764
765         /* Load i particle coords and add shift vector */
766         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
767                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
768
769         fix0             = _mm_setzero_ps();
770         fiy0             = _mm_setzero_ps();
771         fiz0             = _mm_setzero_ps();
772         fix1             = _mm_setzero_ps();
773         fiy1             = _mm_setzero_ps();
774         fiz1             = _mm_setzero_ps();
775         fix2             = _mm_setzero_ps();
776         fiy2             = _mm_setzero_ps();
777         fiz2             = _mm_setzero_ps();
778
779         /* Start inner kernel loop */
780         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
781         {
782
783             /* Get j neighbor index, and coordinate index */
784             jnrA             = jjnr[jidx];
785             jnrB             = jjnr[jidx+1];
786             jnrC             = jjnr[jidx+2];
787             jnrD             = jjnr[jidx+3];
788             j_coord_offsetA  = DIM*jnrA;
789             j_coord_offsetB  = DIM*jnrB;
790             j_coord_offsetC  = DIM*jnrC;
791             j_coord_offsetD  = DIM*jnrD;
792
793             /* load j atom coordinates */
794             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
795                                               x+j_coord_offsetC,x+j_coord_offsetD,
796                                               &jx0,&jy0,&jz0);
797
798             /* Calculate displacement vector */
799             dx00             = _mm_sub_ps(ix0,jx0);
800             dy00             = _mm_sub_ps(iy0,jy0);
801             dz00             = _mm_sub_ps(iz0,jz0);
802             dx10             = _mm_sub_ps(ix1,jx0);
803             dy10             = _mm_sub_ps(iy1,jy0);
804             dz10             = _mm_sub_ps(iz1,jz0);
805             dx20             = _mm_sub_ps(ix2,jx0);
806             dy20             = _mm_sub_ps(iy2,jy0);
807             dz20             = _mm_sub_ps(iz2,jz0);
808
809             /* Calculate squared distance and things based on it */
810             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
811             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
812             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
813
814             rinv00           = avx128fma_invsqrt_f(rsq00);
815             rinv10           = avx128fma_invsqrt_f(rsq10);
816             rinv20           = avx128fma_invsqrt_f(rsq20);
817
818             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
819             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
820             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
821
822             /* Load parameters for j particles */
823             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
824                                                               charge+jnrC+0,charge+jnrD+0);
825             vdwjidx0A        = 2*vdwtype[jnrA+0];
826             vdwjidx0B        = 2*vdwtype[jnrB+0];
827             vdwjidx0C        = 2*vdwtype[jnrC+0];
828             vdwjidx0D        = 2*vdwtype[jnrD+0];
829
830             fjx0             = _mm_setzero_ps();
831             fjy0             = _mm_setzero_ps();
832             fjz0             = _mm_setzero_ps();
833
834             /**************************
835              * CALCULATE INTERACTIONS *
836              **************************/
837
838             r00              = _mm_mul_ps(rsq00,rinv00);
839
840             /* Compute parameters for interactions between i and j atoms */
841             qq00             = _mm_mul_ps(iq0,jq0);
842             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
843                                          vdwparam+vdwioffset0+vdwjidx0B,
844                                          vdwparam+vdwioffset0+vdwjidx0C,
845                                          vdwparam+vdwioffset0+vdwjidx0D,
846                                          &c6_00,&c12_00);
847
848             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
849                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
850                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
851                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
852
853             /* EWALD ELECTROSTATICS */
854
855             /* Analytical PME correction */
856             zeta2            = _mm_mul_ps(beta2,rsq00);
857             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
858             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
859             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
860             felec            = _mm_mul_ps(qq00,felec);
861
862             /* Analytical LJ-PME */
863             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
864             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
865             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
866             exponent         = avx128fma_exp_f(ewcljrsq);
867             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
868             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
869             /* f6A = 6 * C6grid * (1 - poly) */
870             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
871             /* f6B = C6grid * exponent * beta^6 */
872             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
873             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
874             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
875
876             fscal            = _mm_add_ps(felec,fvdw);
877
878              /* Update vectorial force */
879             fix0             = _mm_macc_ps(dx00,fscal,fix0);
880             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
881             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
882
883             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
884             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
885             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             r10              = _mm_mul_ps(rsq10,rinv10);
892
893             /* Compute parameters for interactions between i and j atoms */
894             qq10             = _mm_mul_ps(iq1,jq0);
895
896             /* EWALD ELECTROSTATICS */
897
898             /* Analytical PME correction */
899             zeta2            = _mm_mul_ps(beta2,rsq10);
900             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
901             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
902             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
903             felec            = _mm_mul_ps(qq10,felec);
904
905             fscal            = felec;
906
907              /* Update vectorial force */
908             fix1             = _mm_macc_ps(dx10,fscal,fix1);
909             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
910             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
911
912             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
913             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
914             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
915
916             /**************************
917              * CALCULATE INTERACTIONS *
918              **************************/
919
920             r20              = _mm_mul_ps(rsq20,rinv20);
921
922             /* Compute parameters for interactions between i and j atoms */
923             qq20             = _mm_mul_ps(iq2,jq0);
924
925             /* EWALD ELECTROSTATICS */
926
927             /* Analytical PME correction */
928             zeta2            = _mm_mul_ps(beta2,rsq20);
929             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
930             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
931             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
932             felec            = _mm_mul_ps(qq20,felec);
933
934             fscal            = felec;
935
936              /* Update vectorial force */
937             fix2             = _mm_macc_ps(dx20,fscal,fix2);
938             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
939             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
940
941             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
942             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
943             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
944
945             fjptrA             = f+j_coord_offsetA;
946             fjptrB             = f+j_coord_offsetB;
947             fjptrC             = f+j_coord_offsetC;
948             fjptrD             = f+j_coord_offsetD;
949
950             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
951
952             /* Inner loop uses 105 flops */
953         }
954
955         if(jidx<j_index_end)
956         {
957
958             /* Get j neighbor index, and coordinate index */
959             jnrlistA         = jjnr[jidx];
960             jnrlistB         = jjnr[jidx+1];
961             jnrlistC         = jjnr[jidx+2];
962             jnrlistD         = jjnr[jidx+3];
963             /* Sign of each element will be negative for non-real atoms.
964              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
965              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
966              */
967             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
968             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
969             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
970             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
971             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
972             j_coord_offsetA  = DIM*jnrA;
973             j_coord_offsetB  = DIM*jnrB;
974             j_coord_offsetC  = DIM*jnrC;
975             j_coord_offsetD  = DIM*jnrD;
976
977             /* load j atom coordinates */
978             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
979                                               x+j_coord_offsetC,x+j_coord_offsetD,
980                                               &jx0,&jy0,&jz0);
981
982             /* Calculate displacement vector */
983             dx00             = _mm_sub_ps(ix0,jx0);
984             dy00             = _mm_sub_ps(iy0,jy0);
985             dz00             = _mm_sub_ps(iz0,jz0);
986             dx10             = _mm_sub_ps(ix1,jx0);
987             dy10             = _mm_sub_ps(iy1,jy0);
988             dz10             = _mm_sub_ps(iz1,jz0);
989             dx20             = _mm_sub_ps(ix2,jx0);
990             dy20             = _mm_sub_ps(iy2,jy0);
991             dz20             = _mm_sub_ps(iz2,jz0);
992
993             /* Calculate squared distance and things based on it */
994             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
995             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
996             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
997
998             rinv00           = avx128fma_invsqrt_f(rsq00);
999             rinv10           = avx128fma_invsqrt_f(rsq10);
1000             rinv20           = avx128fma_invsqrt_f(rsq20);
1001
1002             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1003             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1004             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1005
1006             /* Load parameters for j particles */
1007             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1008                                                               charge+jnrC+0,charge+jnrD+0);
1009             vdwjidx0A        = 2*vdwtype[jnrA+0];
1010             vdwjidx0B        = 2*vdwtype[jnrB+0];
1011             vdwjidx0C        = 2*vdwtype[jnrC+0];
1012             vdwjidx0D        = 2*vdwtype[jnrD+0];
1013
1014             fjx0             = _mm_setzero_ps();
1015             fjy0             = _mm_setzero_ps();
1016             fjz0             = _mm_setzero_ps();
1017
1018             /**************************
1019              * CALCULATE INTERACTIONS *
1020              **************************/
1021
1022             r00              = _mm_mul_ps(rsq00,rinv00);
1023             r00              = _mm_andnot_ps(dummy_mask,r00);
1024
1025             /* Compute parameters for interactions between i and j atoms */
1026             qq00             = _mm_mul_ps(iq0,jq0);
1027             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1028                                          vdwparam+vdwioffset0+vdwjidx0B,
1029                                          vdwparam+vdwioffset0+vdwjidx0C,
1030                                          vdwparam+vdwioffset0+vdwjidx0D,
1031                                          &c6_00,&c12_00);
1032
1033             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1034                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1035                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1036                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1037
1038             /* EWALD ELECTROSTATICS */
1039
1040             /* Analytical PME correction */
1041             zeta2            = _mm_mul_ps(beta2,rsq00);
1042             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1043             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1044             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1045             felec            = _mm_mul_ps(qq00,felec);
1046
1047             /* Analytical LJ-PME */
1048             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1049             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1050             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1051             exponent         = avx128fma_exp_f(ewcljrsq);
1052             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1053             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
1054             /* f6A = 6 * C6grid * (1 - poly) */
1055             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1056             /* f6B = C6grid * exponent * beta^6 */
1057             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1058             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1059             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1060
1061             fscal            = _mm_add_ps(felec,fvdw);
1062
1063             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1064
1065              /* Update vectorial force */
1066             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1067             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1068             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1069
1070             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1071             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1072             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1073
1074             /**************************
1075              * CALCULATE INTERACTIONS *
1076              **************************/
1077
1078             r10              = _mm_mul_ps(rsq10,rinv10);
1079             r10              = _mm_andnot_ps(dummy_mask,r10);
1080
1081             /* Compute parameters for interactions between i and j atoms */
1082             qq10             = _mm_mul_ps(iq1,jq0);
1083
1084             /* EWALD ELECTROSTATICS */
1085
1086             /* Analytical PME correction */
1087             zeta2            = _mm_mul_ps(beta2,rsq10);
1088             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1089             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1090             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1091             felec            = _mm_mul_ps(qq10,felec);
1092
1093             fscal            = felec;
1094
1095             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1096
1097              /* Update vectorial force */
1098             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1099             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1100             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1101
1102             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1103             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1104             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1105
1106             /**************************
1107              * CALCULATE INTERACTIONS *
1108              **************************/
1109
1110             r20              = _mm_mul_ps(rsq20,rinv20);
1111             r20              = _mm_andnot_ps(dummy_mask,r20);
1112
1113             /* Compute parameters for interactions between i and j atoms */
1114             qq20             = _mm_mul_ps(iq2,jq0);
1115
1116             /* EWALD ELECTROSTATICS */
1117
1118             /* Analytical PME correction */
1119             zeta2            = _mm_mul_ps(beta2,rsq20);
1120             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1121             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1122             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1123             felec            = _mm_mul_ps(qq20,felec);
1124
1125             fscal            = felec;
1126
1127             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1128
1129              /* Update vectorial force */
1130             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1131             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1132             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1133
1134             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1135             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1136             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1137
1138             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1139             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1140             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1141             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1142
1143             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1144
1145             /* Inner loop uses 108 flops */
1146         }
1147
1148         /* End of innermost loop */
1149
1150         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1151                                               f+i_coord_offset,fshift+i_shift_offset);
1152
1153         /* Increment number of inner iterations */
1154         inneriter                  += j_index_end - j_index_start;
1155
1156         /* Outer loop uses 18 flops */
1157     }
1158
1159     /* Increment number of outer iterations */
1160     outeriter        += nri;
1161
1162     /* Update outer/inner flops */
1163
1164     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*108);
1165 }