Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           c6grid_00;
105     __m128           c6grid_10;
106     __m128           c6grid_20;
107     real             *vdwgridparam;
108     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     __m128           one_half = _mm_set1_ps(0.5);
110     __m128           minus_one = _mm_set1_ps(-1.0);
111     __m128i          ewitab;
112     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
114     real             *ewtab;
115     __m128           dummy_mask,cutoff_mask;
116     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
117     __m128           one     = _mm_set1_ps(1.0);
118     __m128           two     = _mm_set1_ps(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm_set1_ps(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
137     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
138     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
139
140     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
141     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
142     beta2            = _mm_mul_ps(beta,beta);
143     beta3            = _mm_mul_ps(beta,beta2);
144     ewtab            = fr->ic->tabq_coul_FDV0;
145     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
146     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
147
148     /* Setup water-specific parameters */
149     inr              = nlist->iinr[0];
150     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
151     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
152     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
153     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155     /* Avoid stupid compiler warnings */
156     jnrA = jnrB = jnrC = jnrD = 0;
157     j_coord_offsetA = 0;
158     j_coord_offsetB = 0;
159     j_coord_offsetC = 0;
160     j_coord_offsetD = 0;
161
162     outeriter        = 0;
163     inneriter        = 0;
164
165     for(iidx=0;iidx<4*DIM;iidx++)
166     {
167         scratch[iidx] = 0.0;
168     }
169
170     /* Start outer loop over neighborlists */
171     for(iidx=0; iidx<nri; iidx++)
172     {
173         /* Load shift vector for this list */
174         i_shift_offset   = DIM*shiftidx[iidx];
175
176         /* Load limits for loop over neighbors */
177         j_index_start    = jindex[iidx];
178         j_index_end      = jindex[iidx+1];
179
180         /* Get outer coordinate index */
181         inr              = iinr[iidx];
182         i_coord_offset   = DIM*inr;
183
184         /* Load i particle coords and add shift vector */
185         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
186                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
187
188         fix0             = _mm_setzero_ps();
189         fiy0             = _mm_setzero_ps();
190         fiz0             = _mm_setzero_ps();
191         fix1             = _mm_setzero_ps();
192         fiy1             = _mm_setzero_ps();
193         fiz1             = _mm_setzero_ps();
194         fix2             = _mm_setzero_ps();
195         fiy2             = _mm_setzero_ps();
196         fiz2             = _mm_setzero_ps();
197
198         /* Reset potential sums */
199         velecsum         = _mm_setzero_ps();
200         vvdwsum          = _mm_setzero_ps();
201
202         /* Start inner kernel loop */
203         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
204         {
205
206             /* Get j neighbor index, and coordinate index */
207             jnrA             = jjnr[jidx];
208             jnrB             = jjnr[jidx+1];
209             jnrC             = jjnr[jidx+2];
210             jnrD             = jjnr[jidx+3];
211             j_coord_offsetA  = DIM*jnrA;
212             j_coord_offsetB  = DIM*jnrB;
213             j_coord_offsetC  = DIM*jnrC;
214             j_coord_offsetD  = DIM*jnrD;
215
216             /* load j atom coordinates */
217             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
218                                               x+j_coord_offsetC,x+j_coord_offsetD,
219                                               &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm_sub_ps(ix0,jx0);
223             dy00             = _mm_sub_ps(iy0,jy0);
224             dz00             = _mm_sub_ps(iz0,jz0);
225             dx10             = _mm_sub_ps(ix1,jx0);
226             dy10             = _mm_sub_ps(iy1,jy0);
227             dz10             = _mm_sub_ps(iz1,jz0);
228             dx20             = _mm_sub_ps(ix2,jx0);
229             dy20             = _mm_sub_ps(iy2,jy0);
230             dz20             = _mm_sub_ps(iz2,jz0);
231
232             /* Calculate squared distance and things based on it */
233             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
234             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
235             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
236
237             rinv00           = gmx_mm_invsqrt_ps(rsq00);
238             rinv10           = gmx_mm_invsqrt_ps(rsq10);
239             rinv20           = gmx_mm_invsqrt_ps(rsq20);
240
241             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
242             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
243             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
247                                                               charge+jnrC+0,charge+jnrD+0);
248             vdwjidx0A        = 2*vdwtype[jnrA+0];
249             vdwjidx0B        = 2*vdwtype[jnrB+0];
250             vdwjidx0C        = 2*vdwtype[jnrC+0];
251             vdwjidx0D        = 2*vdwtype[jnrD+0];
252
253             fjx0             = _mm_setzero_ps();
254             fjy0             = _mm_setzero_ps();
255             fjz0             = _mm_setzero_ps();
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             r00              = _mm_mul_ps(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             qq00             = _mm_mul_ps(iq0,jq0);
265             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
266                                          vdwparam+vdwioffset0+vdwjidx0B,
267                                          vdwparam+vdwioffset0+vdwjidx0C,
268                                          vdwparam+vdwioffset0+vdwjidx0D,
269                                          &c6_00,&c12_00);
270
271             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
272                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
273                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
274                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
275
276             /* EWALD ELECTROSTATICS */
277
278             /* Analytical PME correction */
279             zeta2            = _mm_mul_ps(beta2,rsq00);
280             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
281             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
282             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
283             felec            = _mm_mul_ps(qq00,felec);
284             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
285             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
286             velec            = _mm_mul_ps(qq00,velec);
287
288             /* Analytical LJ-PME */
289             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
290             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
291             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
292             exponent         = gmx_simd_exp_r(ewcljrsq);
293             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
294             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
295             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
296             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
297             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
298             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
299             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
300             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velecsum         = _mm_add_ps(velecsum,velec);
304             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
305
306             fscal            = _mm_add_ps(felec,fvdw);
307
308              /* Update vectorial force */
309             fix0             = _mm_macc_ps(dx00,fscal,fix0);
310             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
311             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
312
313             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
314             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
315             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             r10              = _mm_mul_ps(rsq10,rinv10);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm_mul_ps(iq1,jq0);
325
326             /* EWALD ELECTROSTATICS */
327
328             /* Analytical PME correction */
329             zeta2            = _mm_mul_ps(beta2,rsq10);
330             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
331             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
332             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
333             felec            = _mm_mul_ps(qq10,felec);
334             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
335             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
336             velec            = _mm_mul_ps(qq10,velec);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velecsum         = _mm_add_ps(velecsum,velec);
340
341             fscal            = felec;
342
343              /* Update vectorial force */
344             fix1             = _mm_macc_ps(dx10,fscal,fix1);
345             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
346             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
347
348             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
349             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
350             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             r20              = _mm_mul_ps(rsq20,rinv20);
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq20             = _mm_mul_ps(iq2,jq0);
360
361             /* EWALD ELECTROSTATICS */
362
363             /* Analytical PME correction */
364             zeta2            = _mm_mul_ps(beta2,rsq20);
365             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
366             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
367             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
368             felec            = _mm_mul_ps(qq20,felec);
369             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
370             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
371             velec            = _mm_mul_ps(qq20,velec);
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velecsum         = _mm_add_ps(velecsum,velec);
375
376             fscal            = felec;
377
378              /* Update vectorial force */
379             fix2             = _mm_macc_ps(dx20,fscal,fix2);
380             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
381             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
382
383             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
384             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
385             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
386
387             fjptrA             = f+j_coord_offsetA;
388             fjptrB             = f+j_coord_offsetB;
389             fjptrC             = f+j_coord_offsetC;
390             fjptrD             = f+j_coord_offsetD;
391
392             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
393
394             /* Inner loop uses 111 flops */
395         }
396
397         if(jidx<j_index_end)
398         {
399
400             /* Get j neighbor index, and coordinate index */
401             jnrlistA         = jjnr[jidx];
402             jnrlistB         = jjnr[jidx+1];
403             jnrlistC         = jjnr[jidx+2];
404             jnrlistD         = jjnr[jidx+3];
405             /* Sign of each element will be negative for non-real atoms.
406              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
407              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
408              */
409             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
410             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
411             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
412             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
413             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
414             j_coord_offsetA  = DIM*jnrA;
415             j_coord_offsetB  = DIM*jnrB;
416             j_coord_offsetC  = DIM*jnrC;
417             j_coord_offsetD  = DIM*jnrD;
418
419             /* load j atom coordinates */
420             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
421                                               x+j_coord_offsetC,x+j_coord_offsetD,
422                                               &jx0,&jy0,&jz0);
423
424             /* Calculate displacement vector */
425             dx00             = _mm_sub_ps(ix0,jx0);
426             dy00             = _mm_sub_ps(iy0,jy0);
427             dz00             = _mm_sub_ps(iz0,jz0);
428             dx10             = _mm_sub_ps(ix1,jx0);
429             dy10             = _mm_sub_ps(iy1,jy0);
430             dz10             = _mm_sub_ps(iz1,jz0);
431             dx20             = _mm_sub_ps(ix2,jx0);
432             dy20             = _mm_sub_ps(iy2,jy0);
433             dz20             = _mm_sub_ps(iz2,jz0);
434
435             /* Calculate squared distance and things based on it */
436             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
437             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
438             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
439
440             rinv00           = gmx_mm_invsqrt_ps(rsq00);
441             rinv10           = gmx_mm_invsqrt_ps(rsq10);
442             rinv20           = gmx_mm_invsqrt_ps(rsq20);
443
444             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
445             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
446             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
447
448             /* Load parameters for j particles */
449             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
450                                                               charge+jnrC+0,charge+jnrD+0);
451             vdwjidx0A        = 2*vdwtype[jnrA+0];
452             vdwjidx0B        = 2*vdwtype[jnrB+0];
453             vdwjidx0C        = 2*vdwtype[jnrC+0];
454             vdwjidx0D        = 2*vdwtype[jnrD+0];
455
456             fjx0             = _mm_setzero_ps();
457             fjy0             = _mm_setzero_ps();
458             fjz0             = _mm_setzero_ps();
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             r00              = _mm_mul_ps(rsq00,rinv00);
465             r00              = _mm_andnot_ps(dummy_mask,r00);
466
467             /* Compute parameters for interactions between i and j atoms */
468             qq00             = _mm_mul_ps(iq0,jq0);
469             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
470                                          vdwparam+vdwioffset0+vdwjidx0B,
471                                          vdwparam+vdwioffset0+vdwjidx0C,
472                                          vdwparam+vdwioffset0+vdwjidx0D,
473                                          &c6_00,&c12_00);
474
475             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
476                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
477                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
478                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
479
480             /* EWALD ELECTROSTATICS */
481
482             /* Analytical PME correction */
483             zeta2            = _mm_mul_ps(beta2,rsq00);
484             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
485             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
486             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
487             felec            = _mm_mul_ps(qq00,felec);
488             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
489             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
490             velec            = _mm_mul_ps(qq00,velec);
491
492             /* Analytical LJ-PME */
493             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
494             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
495             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
496             exponent         = gmx_simd_exp_r(ewcljrsq);
497             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
498             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
499             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
500             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
501             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
502             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
503             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
504             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
505
506             /* Update potential sum for this i atom from the interaction with this j atom. */
507             velec            = _mm_andnot_ps(dummy_mask,velec);
508             velecsum         = _mm_add_ps(velecsum,velec);
509             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
510             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
511
512             fscal            = _mm_add_ps(felec,fvdw);
513
514             fscal            = _mm_andnot_ps(dummy_mask,fscal);
515
516              /* Update vectorial force */
517             fix0             = _mm_macc_ps(dx00,fscal,fix0);
518             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
519             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
520
521             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
522             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
523             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             r10              = _mm_mul_ps(rsq10,rinv10);
530             r10              = _mm_andnot_ps(dummy_mask,r10);
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq10             = _mm_mul_ps(iq1,jq0);
534
535             /* EWALD ELECTROSTATICS */
536
537             /* Analytical PME correction */
538             zeta2            = _mm_mul_ps(beta2,rsq10);
539             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
540             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
541             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
542             felec            = _mm_mul_ps(qq10,felec);
543             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
544             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
545             velec            = _mm_mul_ps(qq10,velec);
546
547             /* Update potential sum for this i atom from the interaction with this j atom. */
548             velec            = _mm_andnot_ps(dummy_mask,velec);
549             velecsum         = _mm_add_ps(velecsum,velec);
550
551             fscal            = felec;
552
553             fscal            = _mm_andnot_ps(dummy_mask,fscal);
554
555              /* Update vectorial force */
556             fix1             = _mm_macc_ps(dx10,fscal,fix1);
557             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
558             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
559
560             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
561             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
562             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
563
564             /**************************
565              * CALCULATE INTERACTIONS *
566              **************************/
567
568             r20              = _mm_mul_ps(rsq20,rinv20);
569             r20              = _mm_andnot_ps(dummy_mask,r20);
570
571             /* Compute parameters for interactions between i and j atoms */
572             qq20             = _mm_mul_ps(iq2,jq0);
573
574             /* EWALD ELECTROSTATICS */
575
576             /* Analytical PME correction */
577             zeta2            = _mm_mul_ps(beta2,rsq20);
578             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
579             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
580             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
581             felec            = _mm_mul_ps(qq20,felec);
582             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
583             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
584             velec            = _mm_mul_ps(qq20,velec);
585
586             /* Update potential sum for this i atom from the interaction with this j atom. */
587             velec            = _mm_andnot_ps(dummy_mask,velec);
588             velecsum         = _mm_add_ps(velecsum,velec);
589
590             fscal            = felec;
591
592             fscal            = _mm_andnot_ps(dummy_mask,fscal);
593
594              /* Update vectorial force */
595             fix2             = _mm_macc_ps(dx20,fscal,fix2);
596             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
597             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
598
599             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
600             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
601             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
602
603             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
604             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
605             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
606             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
607
608             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
609
610             /* Inner loop uses 114 flops */
611         }
612
613         /* End of innermost loop */
614
615         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
616                                               f+i_coord_offset,fshift+i_shift_offset);
617
618         ggid                        = gid[iidx];
619         /* Update potential energies */
620         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
621         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
622
623         /* Increment number of inner iterations */
624         inneriter                  += j_index_end - j_index_start;
625
626         /* Outer loop uses 20 flops */
627     }
628
629     /* Increment number of outer iterations */
630     outeriter        += nri;
631
632     /* Update outer/inner flops */
633
634     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*114);
635 }
636 /*
637  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_128_fma_single
638  * Electrostatics interaction: Ewald
639  * VdW interaction:            LJEwald
640  * Geometry:                   Water3-Particle
641  * Calculate force/pot:        Force
642  */
643 void
644 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_128_fma_single
645                     (t_nblist                    * gmx_restrict       nlist,
646                      rvec                        * gmx_restrict          xx,
647                      rvec                        * gmx_restrict          ff,
648                      t_forcerec                  * gmx_restrict          fr,
649                      t_mdatoms                   * gmx_restrict     mdatoms,
650                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
651                      t_nrnb                      * gmx_restrict        nrnb)
652 {
653     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
654      * just 0 for non-waters.
655      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
656      * jnr indices corresponding to data put in the four positions in the SIMD register.
657      */
658     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
659     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
660     int              jnrA,jnrB,jnrC,jnrD;
661     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
662     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
663     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
664     real             rcutoff_scalar;
665     real             *shiftvec,*fshift,*x,*f;
666     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
667     real             scratch[4*DIM];
668     __m128           fscal,rcutoff,rcutoff2,jidxall;
669     int              vdwioffset0;
670     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
671     int              vdwioffset1;
672     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
673     int              vdwioffset2;
674     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
675     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
676     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
677     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
678     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
679     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
680     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
681     real             *charge;
682     int              nvdwtype;
683     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
684     int              *vdwtype;
685     real             *vdwparam;
686     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
687     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
688     __m128           c6grid_00;
689     __m128           c6grid_10;
690     __m128           c6grid_20;
691     real             *vdwgridparam;
692     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
693     __m128           one_half = _mm_set1_ps(0.5);
694     __m128           minus_one = _mm_set1_ps(-1.0);
695     __m128i          ewitab;
696     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
697     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
698     real             *ewtab;
699     __m128           dummy_mask,cutoff_mask;
700     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
701     __m128           one     = _mm_set1_ps(1.0);
702     __m128           two     = _mm_set1_ps(2.0);
703     x                = xx[0];
704     f                = ff[0];
705
706     nri              = nlist->nri;
707     iinr             = nlist->iinr;
708     jindex           = nlist->jindex;
709     jjnr             = nlist->jjnr;
710     shiftidx         = nlist->shift;
711     gid              = nlist->gid;
712     shiftvec         = fr->shift_vec[0];
713     fshift           = fr->fshift[0];
714     facel            = _mm_set1_ps(fr->epsfac);
715     charge           = mdatoms->chargeA;
716     nvdwtype         = fr->ntype;
717     vdwparam         = fr->nbfp;
718     vdwtype          = mdatoms->typeA;
719     vdwgridparam     = fr->ljpme_c6grid;
720     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
721     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
722     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
723
724     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
725     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
726     beta2            = _mm_mul_ps(beta,beta);
727     beta3            = _mm_mul_ps(beta,beta2);
728     ewtab            = fr->ic->tabq_coul_F;
729     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
730     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
731
732     /* Setup water-specific parameters */
733     inr              = nlist->iinr[0];
734     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
735     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
736     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
737     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
738
739     /* Avoid stupid compiler warnings */
740     jnrA = jnrB = jnrC = jnrD = 0;
741     j_coord_offsetA = 0;
742     j_coord_offsetB = 0;
743     j_coord_offsetC = 0;
744     j_coord_offsetD = 0;
745
746     outeriter        = 0;
747     inneriter        = 0;
748
749     for(iidx=0;iidx<4*DIM;iidx++)
750     {
751         scratch[iidx] = 0.0;
752     }
753
754     /* Start outer loop over neighborlists */
755     for(iidx=0; iidx<nri; iidx++)
756     {
757         /* Load shift vector for this list */
758         i_shift_offset   = DIM*shiftidx[iidx];
759
760         /* Load limits for loop over neighbors */
761         j_index_start    = jindex[iidx];
762         j_index_end      = jindex[iidx+1];
763
764         /* Get outer coordinate index */
765         inr              = iinr[iidx];
766         i_coord_offset   = DIM*inr;
767
768         /* Load i particle coords and add shift vector */
769         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
770                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
771
772         fix0             = _mm_setzero_ps();
773         fiy0             = _mm_setzero_ps();
774         fiz0             = _mm_setzero_ps();
775         fix1             = _mm_setzero_ps();
776         fiy1             = _mm_setzero_ps();
777         fiz1             = _mm_setzero_ps();
778         fix2             = _mm_setzero_ps();
779         fiy2             = _mm_setzero_ps();
780         fiz2             = _mm_setzero_ps();
781
782         /* Start inner kernel loop */
783         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
784         {
785
786             /* Get j neighbor index, and coordinate index */
787             jnrA             = jjnr[jidx];
788             jnrB             = jjnr[jidx+1];
789             jnrC             = jjnr[jidx+2];
790             jnrD             = jjnr[jidx+3];
791             j_coord_offsetA  = DIM*jnrA;
792             j_coord_offsetB  = DIM*jnrB;
793             j_coord_offsetC  = DIM*jnrC;
794             j_coord_offsetD  = DIM*jnrD;
795
796             /* load j atom coordinates */
797             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
798                                               x+j_coord_offsetC,x+j_coord_offsetD,
799                                               &jx0,&jy0,&jz0);
800
801             /* Calculate displacement vector */
802             dx00             = _mm_sub_ps(ix0,jx0);
803             dy00             = _mm_sub_ps(iy0,jy0);
804             dz00             = _mm_sub_ps(iz0,jz0);
805             dx10             = _mm_sub_ps(ix1,jx0);
806             dy10             = _mm_sub_ps(iy1,jy0);
807             dz10             = _mm_sub_ps(iz1,jz0);
808             dx20             = _mm_sub_ps(ix2,jx0);
809             dy20             = _mm_sub_ps(iy2,jy0);
810             dz20             = _mm_sub_ps(iz2,jz0);
811
812             /* Calculate squared distance and things based on it */
813             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
814             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
815             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
816
817             rinv00           = gmx_mm_invsqrt_ps(rsq00);
818             rinv10           = gmx_mm_invsqrt_ps(rsq10);
819             rinv20           = gmx_mm_invsqrt_ps(rsq20);
820
821             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
822             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
823             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
824
825             /* Load parameters for j particles */
826             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
827                                                               charge+jnrC+0,charge+jnrD+0);
828             vdwjidx0A        = 2*vdwtype[jnrA+0];
829             vdwjidx0B        = 2*vdwtype[jnrB+0];
830             vdwjidx0C        = 2*vdwtype[jnrC+0];
831             vdwjidx0D        = 2*vdwtype[jnrD+0];
832
833             fjx0             = _mm_setzero_ps();
834             fjy0             = _mm_setzero_ps();
835             fjz0             = _mm_setzero_ps();
836
837             /**************************
838              * CALCULATE INTERACTIONS *
839              **************************/
840
841             r00              = _mm_mul_ps(rsq00,rinv00);
842
843             /* Compute parameters for interactions between i and j atoms */
844             qq00             = _mm_mul_ps(iq0,jq0);
845             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
846                                          vdwparam+vdwioffset0+vdwjidx0B,
847                                          vdwparam+vdwioffset0+vdwjidx0C,
848                                          vdwparam+vdwioffset0+vdwjidx0D,
849                                          &c6_00,&c12_00);
850
851             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
852                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
853                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
854                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
855
856             /* EWALD ELECTROSTATICS */
857
858             /* Analytical PME correction */
859             zeta2            = _mm_mul_ps(beta2,rsq00);
860             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
861             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
862             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
863             felec            = _mm_mul_ps(qq00,felec);
864
865             /* Analytical LJ-PME */
866             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
867             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
868             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
869             exponent         = gmx_simd_exp_r(ewcljrsq);
870             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
871             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
872             /* f6A = 6 * C6grid * (1 - poly) */
873             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
874             /* f6B = C6grid * exponent * beta^6 */
875             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
876             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
877             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
878
879             fscal            = _mm_add_ps(felec,fvdw);
880
881              /* Update vectorial force */
882             fix0             = _mm_macc_ps(dx00,fscal,fix0);
883             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
884             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
885
886             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
887             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
888             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
889
890             /**************************
891              * CALCULATE INTERACTIONS *
892              **************************/
893
894             r10              = _mm_mul_ps(rsq10,rinv10);
895
896             /* Compute parameters for interactions between i and j atoms */
897             qq10             = _mm_mul_ps(iq1,jq0);
898
899             /* EWALD ELECTROSTATICS */
900
901             /* Analytical PME correction */
902             zeta2            = _mm_mul_ps(beta2,rsq10);
903             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
904             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
905             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
906             felec            = _mm_mul_ps(qq10,felec);
907
908             fscal            = felec;
909
910              /* Update vectorial force */
911             fix1             = _mm_macc_ps(dx10,fscal,fix1);
912             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
913             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
914
915             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
916             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
917             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
918
919             /**************************
920              * CALCULATE INTERACTIONS *
921              **************************/
922
923             r20              = _mm_mul_ps(rsq20,rinv20);
924
925             /* Compute parameters for interactions between i and j atoms */
926             qq20             = _mm_mul_ps(iq2,jq0);
927
928             /* EWALD ELECTROSTATICS */
929
930             /* Analytical PME correction */
931             zeta2            = _mm_mul_ps(beta2,rsq20);
932             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
933             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
934             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
935             felec            = _mm_mul_ps(qq20,felec);
936
937             fscal            = felec;
938
939              /* Update vectorial force */
940             fix2             = _mm_macc_ps(dx20,fscal,fix2);
941             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
942             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
943
944             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
945             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
946             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
947
948             fjptrA             = f+j_coord_offsetA;
949             fjptrB             = f+j_coord_offsetB;
950             fjptrC             = f+j_coord_offsetC;
951             fjptrD             = f+j_coord_offsetD;
952
953             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
954
955             /* Inner loop uses 105 flops */
956         }
957
958         if(jidx<j_index_end)
959         {
960
961             /* Get j neighbor index, and coordinate index */
962             jnrlistA         = jjnr[jidx];
963             jnrlistB         = jjnr[jidx+1];
964             jnrlistC         = jjnr[jidx+2];
965             jnrlistD         = jjnr[jidx+3];
966             /* Sign of each element will be negative for non-real atoms.
967              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
968              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
969              */
970             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
971             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
972             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
973             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
974             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
975             j_coord_offsetA  = DIM*jnrA;
976             j_coord_offsetB  = DIM*jnrB;
977             j_coord_offsetC  = DIM*jnrC;
978             j_coord_offsetD  = DIM*jnrD;
979
980             /* load j atom coordinates */
981             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
982                                               x+j_coord_offsetC,x+j_coord_offsetD,
983                                               &jx0,&jy0,&jz0);
984
985             /* Calculate displacement vector */
986             dx00             = _mm_sub_ps(ix0,jx0);
987             dy00             = _mm_sub_ps(iy0,jy0);
988             dz00             = _mm_sub_ps(iz0,jz0);
989             dx10             = _mm_sub_ps(ix1,jx0);
990             dy10             = _mm_sub_ps(iy1,jy0);
991             dz10             = _mm_sub_ps(iz1,jz0);
992             dx20             = _mm_sub_ps(ix2,jx0);
993             dy20             = _mm_sub_ps(iy2,jy0);
994             dz20             = _mm_sub_ps(iz2,jz0);
995
996             /* Calculate squared distance and things based on it */
997             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
998             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
999             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1000
1001             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1002             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1003             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1004
1005             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1006             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1007             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1008
1009             /* Load parameters for j particles */
1010             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1011                                                               charge+jnrC+0,charge+jnrD+0);
1012             vdwjidx0A        = 2*vdwtype[jnrA+0];
1013             vdwjidx0B        = 2*vdwtype[jnrB+0];
1014             vdwjidx0C        = 2*vdwtype[jnrC+0];
1015             vdwjidx0D        = 2*vdwtype[jnrD+0];
1016
1017             fjx0             = _mm_setzero_ps();
1018             fjy0             = _mm_setzero_ps();
1019             fjz0             = _mm_setzero_ps();
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             r00              = _mm_mul_ps(rsq00,rinv00);
1026             r00              = _mm_andnot_ps(dummy_mask,r00);
1027
1028             /* Compute parameters for interactions between i and j atoms */
1029             qq00             = _mm_mul_ps(iq0,jq0);
1030             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1031                                          vdwparam+vdwioffset0+vdwjidx0B,
1032                                          vdwparam+vdwioffset0+vdwjidx0C,
1033                                          vdwparam+vdwioffset0+vdwjidx0D,
1034                                          &c6_00,&c12_00);
1035
1036             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1037                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1038                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1039                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1040
1041             /* EWALD ELECTROSTATICS */
1042
1043             /* Analytical PME correction */
1044             zeta2            = _mm_mul_ps(beta2,rsq00);
1045             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1046             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1047             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1048             felec            = _mm_mul_ps(qq00,felec);
1049
1050             /* Analytical LJ-PME */
1051             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1052             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1053             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1054             exponent         = gmx_simd_exp_r(ewcljrsq);
1055             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1056             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
1057             /* f6A = 6 * C6grid * (1 - poly) */
1058             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1059             /* f6B = C6grid * exponent * beta^6 */
1060             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1061             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1062             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1063
1064             fscal            = _mm_add_ps(felec,fvdw);
1065
1066             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1067
1068              /* Update vectorial force */
1069             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1070             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1071             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1072
1073             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1074             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1075             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1076
1077             /**************************
1078              * CALCULATE INTERACTIONS *
1079              **************************/
1080
1081             r10              = _mm_mul_ps(rsq10,rinv10);
1082             r10              = _mm_andnot_ps(dummy_mask,r10);
1083
1084             /* Compute parameters for interactions between i and j atoms */
1085             qq10             = _mm_mul_ps(iq1,jq0);
1086
1087             /* EWALD ELECTROSTATICS */
1088
1089             /* Analytical PME correction */
1090             zeta2            = _mm_mul_ps(beta2,rsq10);
1091             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1092             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1093             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1094             felec            = _mm_mul_ps(qq10,felec);
1095
1096             fscal            = felec;
1097
1098             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1099
1100              /* Update vectorial force */
1101             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1102             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1103             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1104
1105             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1106             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1107             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1108
1109             /**************************
1110              * CALCULATE INTERACTIONS *
1111              **************************/
1112
1113             r20              = _mm_mul_ps(rsq20,rinv20);
1114             r20              = _mm_andnot_ps(dummy_mask,r20);
1115
1116             /* Compute parameters for interactions between i and j atoms */
1117             qq20             = _mm_mul_ps(iq2,jq0);
1118
1119             /* EWALD ELECTROSTATICS */
1120
1121             /* Analytical PME correction */
1122             zeta2            = _mm_mul_ps(beta2,rsq20);
1123             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1124             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1125             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1126             felec            = _mm_mul_ps(qq20,felec);
1127
1128             fscal            = felec;
1129
1130             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1131
1132              /* Update vectorial force */
1133             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1134             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1135             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1136
1137             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1138             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1139             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1140
1141             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1142             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1143             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1144             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1145
1146             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1147
1148             /* Inner loop uses 108 flops */
1149         }
1150
1151         /* End of innermost loop */
1152
1153         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1154                                               f+i_coord_offset,fshift+i_shift_offset);
1155
1156         /* Increment number of inner iterations */
1157         inneriter                  += j_index_end - j_index_start;
1158
1159         /* Outer loop uses 18 flops */
1160     }
1161
1162     /* Increment number of outer iterations */
1163     outeriter        += nri;
1164
1165     /* Update outer/inner flops */
1166
1167     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*108);
1168 }