Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           c6grid_00;
103     __m128           c6grid_10;
104     __m128           c6grid_20;
105     real             *vdwgridparam;
106     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
107     __m128           one_half = _mm_set1_ps(0.5);
108     __m128           minus_one = _mm_set1_ps(-1.0);
109     __m128i          ewitab;
110     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
112     real             *ewtab;
113     __m128           dummy_mask,cutoff_mask;
114     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
115     __m128           one     = _mm_set1_ps(1.0);
116     __m128           two     = _mm_set1_ps(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm_set1_ps(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133     vdwgridparam     = fr->ljpme_c6grid;
134     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
135     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
136     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
137
138     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
139     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
140     beta2            = _mm_mul_ps(beta,beta);
141     beta3            = _mm_mul_ps(beta,beta2);
142     ewtab            = fr->ic->tabq_coul_FDV0;
143     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
144     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
145
146     /* Setup water-specific parameters */
147     inr              = nlist->iinr[0];
148     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
149     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
150     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
151     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153     /* Avoid stupid compiler warnings */
154     jnrA = jnrB = jnrC = jnrD = 0;
155     j_coord_offsetA = 0;
156     j_coord_offsetB = 0;
157     j_coord_offsetC = 0;
158     j_coord_offsetD = 0;
159
160     outeriter        = 0;
161     inneriter        = 0;
162
163     for(iidx=0;iidx<4*DIM;iidx++)
164     {
165         scratch[iidx] = 0.0;
166     }
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
184                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
185
186         fix0             = _mm_setzero_ps();
187         fiy0             = _mm_setzero_ps();
188         fiz0             = _mm_setzero_ps();
189         fix1             = _mm_setzero_ps();
190         fiy1             = _mm_setzero_ps();
191         fiz1             = _mm_setzero_ps();
192         fix2             = _mm_setzero_ps();
193         fiy2             = _mm_setzero_ps();
194         fiz2             = _mm_setzero_ps();
195
196         /* Reset potential sums */
197         velecsum         = _mm_setzero_ps();
198         vvdwsum          = _mm_setzero_ps();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             jnrC             = jjnr[jidx+2];
208             jnrD             = jjnr[jidx+3];
209             j_coord_offsetA  = DIM*jnrA;
210             j_coord_offsetB  = DIM*jnrB;
211             j_coord_offsetC  = DIM*jnrC;
212             j_coord_offsetD  = DIM*jnrD;
213
214             /* load j atom coordinates */
215             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                               x+j_coord_offsetC,x+j_coord_offsetD,
217                                               &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm_sub_ps(ix0,jx0);
221             dy00             = _mm_sub_ps(iy0,jy0);
222             dz00             = _mm_sub_ps(iz0,jz0);
223             dx10             = _mm_sub_ps(ix1,jx0);
224             dy10             = _mm_sub_ps(iy1,jy0);
225             dz10             = _mm_sub_ps(iz1,jz0);
226             dx20             = _mm_sub_ps(ix2,jx0);
227             dy20             = _mm_sub_ps(iy2,jy0);
228             dz20             = _mm_sub_ps(iz2,jz0);
229
230             /* Calculate squared distance and things based on it */
231             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
232             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
233             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
234
235             rinv00           = gmx_mm_invsqrt_ps(rsq00);
236             rinv10           = gmx_mm_invsqrt_ps(rsq10);
237             rinv20           = gmx_mm_invsqrt_ps(rsq20);
238
239             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
240             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
241             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
242
243             /* Load parameters for j particles */
244             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
245                                                               charge+jnrC+0,charge+jnrD+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248             vdwjidx0C        = 2*vdwtype[jnrC+0];
249             vdwjidx0D        = 2*vdwtype[jnrD+0];
250
251             fjx0             = _mm_setzero_ps();
252             fjy0             = _mm_setzero_ps();
253             fjz0             = _mm_setzero_ps();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             r00              = _mm_mul_ps(rsq00,rinv00);
260
261             /* Compute parameters for interactions between i and j atoms */
262             qq00             = _mm_mul_ps(iq0,jq0);
263             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
264                                          vdwparam+vdwioffset0+vdwjidx0B,
265                                          vdwparam+vdwioffset0+vdwjidx0C,
266                                          vdwparam+vdwioffset0+vdwjidx0D,
267                                          &c6_00,&c12_00);
268
269             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
270                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
271                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
272                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
273
274             /* EWALD ELECTROSTATICS */
275
276             /* Analytical PME correction */
277             zeta2            = _mm_mul_ps(beta2,rsq00);
278             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
279             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
280             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
281             felec            = _mm_mul_ps(qq00,felec);
282             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
283             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
284             velec            = _mm_mul_ps(qq00,velec);
285
286             /* Analytical LJ-PME */
287             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
288             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
289             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
290             exponent         = gmx_simd_exp_r(ewcljrsq);
291             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
292             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
293             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
294             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
295             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
296             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
297             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
298             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velecsum         = _mm_add_ps(velecsum,velec);
302             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
303
304             fscal            = _mm_add_ps(felec,fvdw);
305
306              /* Update vectorial force */
307             fix0             = _mm_macc_ps(dx00,fscal,fix0);
308             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
309             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
310
311             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
312             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
313             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             r10              = _mm_mul_ps(rsq10,rinv10);
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq10             = _mm_mul_ps(iq1,jq0);
323
324             /* EWALD ELECTROSTATICS */
325
326             /* Analytical PME correction */
327             zeta2            = _mm_mul_ps(beta2,rsq10);
328             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
329             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
330             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
331             felec            = _mm_mul_ps(qq10,felec);
332             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
333             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
334             velec            = _mm_mul_ps(qq10,velec);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velecsum         = _mm_add_ps(velecsum,velec);
338
339             fscal            = felec;
340
341              /* Update vectorial force */
342             fix1             = _mm_macc_ps(dx10,fscal,fix1);
343             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
344             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
345
346             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
347             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
348             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
349
350             /**************************
351              * CALCULATE INTERACTIONS *
352              **************************/
353
354             r20              = _mm_mul_ps(rsq20,rinv20);
355
356             /* Compute parameters for interactions between i and j atoms */
357             qq20             = _mm_mul_ps(iq2,jq0);
358
359             /* EWALD ELECTROSTATICS */
360
361             /* Analytical PME correction */
362             zeta2            = _mm_mul_ps(beta2,rsq20);
363             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
364             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
365             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
366             felec            = _mm_mul_ps(qq20,felec);
367             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
368             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
369             velec            = _mm_mul_ps(qq20,velec);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velecsum         = _mm_add_ps(velecsum,velec);
373
374             fscal            = felec;
375
376              /* Update vectorial force */
377             fix2             = _mm_macc_ps(dx20,fscal,fix2);
378             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
379             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
380
381             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
382             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
383             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
384
385             fjptrA             = f+j_coord_offsetA;
386             fjptrB             = f+j_coord_offsetB;
387             fjptrC             = f+j_coord_offsetC;
388             fjptrD             = f+j_coord_offsetD;
389
390             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
391
392             /* Inner loop uses 111 flops */
393         }
394
395         if(jidx<j_index_end)
396         {
397
398             /* Get j neighbor index, and coordinate index */
399             jnrlistA         = jjnr[jidx];
400             jnrlistB         = jjnr[jidx+1];
401             jnrlistC         = jjnr[jidx+2];
402             jnrlistD         = jjnr[jidx+3];
403             /* Sign of each element will be negative for non-real atoms.
404              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
405              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
406              */
407             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
408             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
409             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
410             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
411             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
412             j_coord_offsetA  = DIM*jnrA;
413             j_coord_offsetB  = DIM*jnrB;
414             j_coord_offsetC  = DIM*jnrC;
415             j_coord_offsetD  = DIM*jnrD;
416
417             /* load j atom coordinates */
418             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
419                                               x+j_coord_offsetC,x+j_coord_offsetD,
420                                               &jx0,&jy0,&jz0);
421
422             /* Calculate displacement vector */
423             dx00             = _mm_sub_ps(ix0,jx0);
424             dy00             = _mm_sub_ps(iy0,jy0);
425             dz00             = _mm_sub_ps(iz0,jz0);
426             dx10             = _mm_sub_ps(ix1,jx0);
427             dy10             = _mm_sub_ps(iy1,jy0);
428             dz10             = _mm_sub_ps(iz1,jz0);
429             dx20             = _mm_sub_ps(ix2,jx0);
430             dy20             = _mm_sub_ps(iy2,jy0);
431             dz20             = _mm_sub_ps(iz2,jz0);
432
433             /* Calculate squared distance and things based on it */
434             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
435             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
436             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
437
438             rinv00           = gmx_mm_invsqrt_ps(rsq00);
439             rinv10           = gmx_mm_invsqrt_ps(rsq10);
440             rinv20           = gmx_mm_invsqrt_ps(rsq20);
441
442             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
443             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
444             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
445
446             /* Load parameters for j particles */
447             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
448                                                               charge+jnrC+0,charge+jnrD+0);
449             vdwjidx0A        = 2*vdwtype[jnrA+0];
450             vdwjidx0B        = 2*vdwtype[jnrB+0];
451             vdwjidx0C        = 2*vdwtype[jnrC+0];
452             vdwjidx0D        = 2*vdwtype[jnrD+0];
453
454             fjx0             = _mm_setzero_ps();
455             fjy0             = _mm_setzero_ps();
456             fjz0             = _mm_setzero_ps();
457
458             /**************************
459              * CALCULATE INTERACTIONS *
460              **************************/
461
462             r00              = _mm_mul_ps(rsq00,rinv00);
463             r00              = _mm_andnot_ps(dummy_mask,r00);
464
465             /* Compute parameters for interactions between i and j atoms */
466             qq00             = _mm_mul_ps(iq0,jq0);
467             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
468                                          vdwparam+vdwioffset0+vdwjidx0B,
469                                          vdwparam+vdwioffset0+vdwjidx0C,
470                                          vdwparam+vdwioffset0+vdwjidx0D,
471                                          &c6_00,&c12_00);
472
473             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
474                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
475                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
476                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
477
478             /* EWALD ELECTROSTATICS */
479
480             /* Analytical PME correction */
481             zeta2            = _mm_mul_ps(beta2,rsq00);
482             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
483             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
484             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
485             felec            = _mm_mul_ps(qq00,felec);
486             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
487             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
488             velec            = _mm_mul_ps(qq00,velec);
489
490             /* Analytical LJ-PME */
491             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
492             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
493             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
494             exponent         = gmx_simd_exp_r(ewcljrsq);
495             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
496             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
497             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
498             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
499             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
500             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
501             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
502             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
503
504             /* Update potential sum for this i atom from the interaction with this j atom. */
505             velec            = _mm_andnot_ps(dummy_mask,velec);
506             velecsum         = _mm_add_ps(velecsum,velec);
507             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
508             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
509
510             fscal            = _mm_add_ps(felec,fvdw);
511
512             fscal            = _mm_andnot_ps(dummy_mask,fscal);
513
514              /* Update vectorial force */
515             fix0             = _mm_macc_ps(dx00,fscal,fix0);
516             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
517             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
518
519             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
520             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
521             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
522
523             /**************************
524              * CALCULATE INTERACTIONS *
525              **************************/
526
527             r10              = _mm_mul_ps(rsq10,rinv10);
528             r10              = _mm_andnot_ps(dummy_mask,r10);
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq10             = _mm_mul_ps(iq1,jq0);
532
533             /* EWALD ELECTROSTATICS */
534
535             /* Analytical PME correction */
536             zeta2            = _mm_mul_ps(beta2,rsq10);
537             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
538             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
539             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
540             felec            = _mm_mul_ps(qq10,felec);
541             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
542             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
543             velec            = _mm_mul_ps(qq10,velec);
544
545             /* Update potential sum for this i atom from the interaction with this j atom. */
546             velec            = _mm_andnot_ps(dummy_mask,velec);
547             velecsum         = _mm_add_ps(velecsum,velec);
548
549             fscal            = felec;
550
551             fscal            = _mm_andnot_ps(dummy_mask,fscal);
552
553              /* Update vectorial force */
554             fix1             = _mm_macc_ps(dx10,fscal,fix1);
555             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
556             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
557
558             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
559             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
560             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             r20              = _mm_mul_ps(rsq20,rinv20);
567             r20              = _mm_andnot_ps(dummy_mask,r20);
568
569             /* Compute parameters for interactions between i and j atoms */
570             qq20             = _mm_mul_ps(iq2,jq0);
571
572             /* EWALD ELECTROSTATICS */
573
574             /* Analytical PME correction */
575             zeta2            = _mm_mul_ps(beta2,rsq20);
576             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
577             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
578             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
579             felec            = _mm_mul_ps(qq20,felec);
580             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
581             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
582             velec            = _mm_mul_ps(qq20,velec);
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm_andnot_ps(dummy_mask,velec);
586             velecsum         = _mm_add_ps(velecsum,velec);
587
588             fscal            = felec;
589
590             fscal            = _mm_andnot_ps(dummy_mask,fscal);
591
592              /* Update vectorial force */
593             fix2             = _mm_macc_ps(dx20,fscal,fix2);
594             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
595             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
596
597             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
598             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
599             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
600
601             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
602             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
603             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
604             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
605
606             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
607
608             /* Inner loop uses 114 flops */
609         }
610
611         /* End of innermost loop */
612
613         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
614                                               f+i_coord_offset,fshift+i_shift_offset);
615
616         ggid                        = gid[iidx];
617         /* Update potential energies */
618         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
619         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
620
621         /* Increment number of inner iterations */
622         inneriter                  += j_index_end - j_index_start;
623
624         /* Outer loop uses 20 flops */
625     }
626
627     /* Increment number of outer iterations */
628     outeriter        += nri;
629
630     /* Update outer/inner flops */
631
632     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*114);
633 }
634 /*
635  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_128_fma_single
636  * Electrostatics interaction: Ewald
637  * VdW interaction:            LJEwald
638  * Geometry:                   Water3-Particle
639  * Calculate force/pot:        Force
640  */
641 void
642 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_128_fma_single
643                     (t_nblist                    * gmx_restrict       nlist,
644                      rvec                        * gmx_restrict          xx,
645                      rvec                        * gmx_restrict          ff,
646                      t_forcerec                  * gmx_restrict          fr,
647                      t_mdatoms                   * gmx_restrict     mdatoms,
648                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
649                      t_nrnb                      * gmx_restrict        nrnb)
650 {
651     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
652      * just 0 for non-waters.
653      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
654      * jnr indices corresponding to data put in the four positions in the SIMD register.
655      */
656     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
657     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
658     int              jnrA,jnrB,jnrC,jnrD;
659     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
660     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
661     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
662     real             rcutoff_scalar;
663     real             *shiftvec,*fshift,*x,*f;
664     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
665     real             scratch[4*DIM];
666     __m128           fscal,rcutoff,rcutoff2,jidxall;
667     int              vdwioffset0;
668     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
669     int              vdwioffset1;
670     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
671     int              vdwioffset2;
672     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
673     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
674     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
675     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
676     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
677     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
678     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
679     real             *charge;
680     int              nvdwtype;
681     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
682     int              *vdwtype;
683     real             *vdwparam;
684     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
685     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
686     __m128           c6grid_00;
687     __m128           c6grid_10;
688     __m128           c6grid_20;
689     real             *vdwgridparam;
690     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
691     __m128           one_half = _mm_set1_ps(0.5);
692     __m128           minus_one = _mm_set1_ps(-1.0);
693     __m128i          ewitab;
694     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
695     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
696     real             *ewtab;
697     __m128           dummy_mask,cutoff_mask;
698     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
699     __m128           one     = _mm_set1_ps(1.0);
700     __m128           two     = _mm_set1_ps(2.0);
701     x                = xx[0];
702     f                = ff[0];
703
704     nri              = nlist->nri;
705     iinr             = nlist->iinr;
706     jindex           = nlist->jindex;
707     jjnr             = nlist->jjnr;
708     shiftidx         = nlist->shift;
709     gid              = nlist->gid;
710     shiftvec         = fr->shift_vec[0];
711     fshift           = fr->fshift[0];
712     facel            = _mm_set1_ps(fr->epsfac);
713     charge           = mdatoms->chargeA;
714     nvdwtype         = fr->ntype;
715     vdwparam         = fr->nbfp;
716     vdwtype          = mdatoms->typeA;
717     vdwgridparam     = fr->ljpme_c6grid;
718     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
719     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
720     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
721
722     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
723     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
724     beta2            = _mm_mul_ps(beta,beta);
725     beta3            = _mm_mul_ps(beta,beta2);
726     ewtab            = fr->ic->tabq_coul_F;
727     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
728     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
729
730     /* Setup water-specific parameters */
731     inr              = nlist->iinr[0];
732     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
733     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
734     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
735     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
736
737     /* Avoid stupid compiler warnings */
738     jnrA = jnrB = jnrC = jnrD = 0;
739     j_coord_offsetA = 0;
740     j_coord_offsetB = 0;
741     j_coord_offsetC = 0;
742     j_coord_offsetD = 0;
743
744     outeriter        = 0;
745     inneriter        = 0;
746
747     for(iidx=0;iidx<4*DIM;iidx++)
748     {
749         scratch[iidx] = 0.0;
750     }
751
752     /* Start outer loop over neighborlists */
753     for(iidx=0; iidx<nri; iidx++)
754     {
755         /* Load shift vector for this list */
756         i_shift_offset   = DIM*shiftidx[iidx];
757
758         /* Load limits for loop over neighbors */
759         j_index_start    = jindex[iidx];
760         j_index_end      = jindex[iidx+1];
761
762         /* Get outer coordinate index */
763         inr              = iinr[iidx];
764         i_coord_offset   = DIM*inr;
765
766         /* Load i particle coords and add shift vector */
767         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
768                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
769
770         fix0             = _mm_setzero_ps();
771         fiy0             = _mm_setzero_ps();
772         fiz0             = _mm_setzero_ps();
773         fix1             = _mm_setzero_ps();
774         fiy1             = _mm_setzero_ps();
775         fiz1             = _mm_setzero_ps();
776         fix2             = _mm_setzero_ps();
777         fiy2             = _mm_setzero_ps();
778         fiz2             = _mm_setzero_ps();
779
780         /* Start inner kernel loop */
781         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
782         {
783
784             /* Get j neighbor index, and coordinate index */
785             jnrA             = jjnr[jidx];
786             jnrB             = jjnr[jidx+1];
787             jnrC             = jjnr[jidx+2];
788             jnrD             = jjnr[jidx+3];
789             j_coord_offsetA  = DIM*jnrA;
790             j_coord_offsetB  = DIM*jnrB;
791             j_coord_offsetC  = DIM*jnrC;
792             j_coord_offsetD  = DIM*jnrD;
793
794             /* load j atom coordinates */
795             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
796                                               x+j_coord_offsetC,x+j_coord_offsetD,
797                                               &jx0,&jy0,&jz0);
798
799             /* Calculate displacement vector */
800             dx00             = _mm_sub_ps(ix0,jx0);
801             dy00             = _mm_sub_ps(iy0,jy0);
802             dz00             = _mm_sub_ps(iz0,jz0);
803             dx10             = _mm_sub_ps(ix1,jx0);
804             dy10             = _mm_sub_ps(iy1,jy0);
805             dz10             = _mm_sub_ps(iz1,jz0);
806             dx20             = _mm_sub_ps(ix2,jx0);
807             dy20             = _mm_sub_ps(iy2,jy0);
808             dz20             = _mm_sub_ps(iz2,jz0);
809
810             /* Calculate squared distance and things based on it */
811             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
812             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
813             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
814
815             rinv00           = gmx_mm_invsqrt_ps(rsq00);
816             rinv10           = gmx_mm_invsqrt_ps(rsq10);
817             rinv20           = gmx_mm_invsqrt_ps(rsq20);
818
819             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
820             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
821             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
822
823             /* Load parameters for j particles */
824             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
825                                                               charge+jnrC+0,charge+jnrD+0);
826             vdwjidx0A        = 2*vdwtype[jnrA+0];
827             vdwjidx0B        = 2*vdwtype[jnrB+0];
828             vdwjidx0C        = 2*vdwtype[jnrC+0];
829             vdwjidx0D        = 2*vdwtype[jnrD+0];
830
831             fjx0             = _mm_setzero_ps();
832             fjy0             = _mm_setzero_ps();
833             fjz0             = _mm_setzero_ps();
834
835             /**************************
836              * CALCULATE INTERACTIONS *
837              **************************/
838
839             r00              = _mm_mul_ps(rsq00,rinv00);
840
841             /* Compute parameters for interactions between i and j atoms */
842             qq00             = _mm_mul_ps(iq0,jq0);
843             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
844                                          vdwparam+vdwioffset0+vdwjidx0B,
845                                          vdwparam+vdwioffset0+vdwjidx0C,
846                                          vdwparam+vdwioffset0+vdwjidx0D,
847                                          &c6_00,&c12_00);
848
849             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
850                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
851                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
852                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
853
854             /* EWALD ELECTROSTATICS */
855
856             /* Analytical PME correction */
857             zeta2            = _mm_mul_ps(beta2,rsq00);
858             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
859             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
860             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
861             felec            = _mm_mul_ps(qq00,felec);
862
863             /* Analytical LJ-PME */
864             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
865             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
866             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
867             exponent         = gmx_simd_exp_r(ewcljrsq);
868             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
869             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
870             /* f6A = 6 * C6grid * (1 - poly) */
871             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
872             /* f6B = C6grid * exponent * beta^6 */
873             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
874             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
875             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
876
877             fscal            = _mm_add_ps(felec,fvdw);
878
879              /* Update vectorial force */
880             fix0             = _mm_macc_ps(dx00,fscal,fix0);
881             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
882             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
883
884             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
885             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
886             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
887
888             /**************************
889              * CALCULATE INTERACTIONS *
890              **************************/
891
892             r10              = _mm_mul_ps(rsq10,rinv10);
893
894             /* Compute parameters for interactions between i and j atoms */
895             qq10             = _mm_mul_ps(iq1,jq0);
896
897             /* EWALD ELECTROSTATICS */
898
899             /* Analytical PME correction */
900             zeta2            = _mm_mul_ps(beta2,rsq10);
901             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
902             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
903             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
904             felec            = _mm_mul_ps(qq10,felec);
905
906             fscal            = felec;
907
908              /* Update vectorial force */
909             fix1             = _mm_macc_ps(dx10,fscal,fix1);
910             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
911             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
912
913             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
914             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
915             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
916
917             /**************************
918              * CALCULATE INTERACTIONS *
919              **************************/
920
921             r20              = _mm_mul_ps(rsq20,rinv20);
922
923             /* Compute parameters for interactions between i and j atoms */
924             qq20             = _mm_mul_ps(iq2,jq0);
925
926             /* EWALD ELECTROSTATICS */
927
928             /* Analytical PME correction */
929             zeta2            = _mm_mul_ps(beta2,rsq20);
930             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
931             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
932             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
933             felec            = _mm_mul_ps(qq20,felec);
934
935             fscal            = felec;
936
937              /* Update vectorial force */
938             fix2             = _mm_macc_ps(dx20,fscal,fix2);
939             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
940             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
941
942             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
943             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
944             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
945
946             fjptrA             = f+j_coord_offsetA;
947             fjptrB             = f+j_coord_offsetB;
948             fjptrC             = f+j_coord_offsetC;
949             fjptrD             = f+j_coord_offsetD;
950
951             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
952
953             /* Inner loop uses 105 flops */
954         }
955
956         if(jidx<j_index_end)
957         {
958
959             /* Get j neighbor index, and coordinate index */
960             jnrlistA         = jjnr[jidx];
961             jnrlistB         = jjnr[jidx+1];
962             jnrlistC         = jjnr[jidx+2];
963             jnrlistD         = jjnr[jidx+3];
964             /* Sign of each element will be negative for non-real atoms.
965              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
966              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
967              */
968             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
969             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
970             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
971             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
972             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
973             j_coord_offsetA  = DIM*jnrA;
974             j_coord_offsetB  = DIM*jnrB;
975             j_coord_offsetC  = DIM*jnrC;
976             j_coord_offsetD  = DIM*jnrD;
977
978             /* load j atom coordinates */
979             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
980                                               x+j_coord_offsetC,x+j_coord_offsetD,
981                                               &jx0,&jy0,&jz0);
982
983             /* Calculate displacement vector */
984             dx00             = _mm_sub_ps(ix0,jx0);
985             dy00             = _mm_sub_ps(iy0,jy0);
986             dz00             = _mm_sub_ps(iz0,jz0);
987             dx10             = _mm_sub_ps(ix1,jx0);
988             dy10             = _mm_sub_ps(iy1,jy0);
989             dz10             = _mm_sub_ps(iz1,jz0);
990             dx20             = _mm_sub_ps(ix2,jx0);
991             dy20             = _mm_sub_ps(iy2,jy0);
992             dz20             = _mm_sub_ps(iz2,jz0);
993
994             /* Calculate squared distance and things based on it */
995             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
996             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
997             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
998
999             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1000             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1001             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1002
1003             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1004             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1005             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1006
1007             /* Load parameters for j particles */
1008             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1009                                                               charge+jnrC+0,charge+jnrD+0);
1010             vdwjidx0A        = 2*vdwtype[jnrA+0];
1011             vdwjidx0B        = 2*vdwtype[jnrB+0];
1012             vdwjidx0C        = 2*vdwtype[jnrC+0];
1013             vdwjidx0D        = 2*vdwtype[jnrD+0];
1014
1015             fjx0             = _mm_setzero_ps();
1016             fjy0             = _mm_setzero_ps();
1017             fjz0             = _mm_setzero_ps();
1018
1019             /**************************
1020              * CALCULATE INTERACTIONS *
1021              **************************/
1022
1023             r00              = _mm_mul_ps(rsq00,rinv00);
1024             r00              = _mm_andnot_ps(dummy_mask,r00);
1025
1026             /* Compute parameters for interactions between i and j atoms */
1027             qq00             = _mm_mul_ps(iq0,jq0);
1028             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1029                                          vdwparam+vdwioffset0+vdwjidx0B,
1030                                          vdwparam+vdwioffset0+vdwjidx0C,
1031                                          vdwparam+vdwioffset0+vdwjidx0D,
1032                                          &c6_00,&c12_00);
1033
1034             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1035                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1036                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1037                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1038
1039             /* EWALD ELECTROSTATICS */
1040
1041             /* Analytical PME correction */
1042             zeta2            = _mm_mul_ps(beta2,rsq00);
1043             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1044             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1045             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1046             felec            = _mm_mul_ps(qq00,felec);
1047
1048             /* Analytical LJ-PME */
1049             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1050             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1051             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1052             exponent         = gmx_simd_exp_r(ewcljrsq);
1053             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1054             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
1055             /* f6A = 6 * C6grid * (1 - poly) */
1056             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1057             /* f6B = C6grid * exponent * beta^6 */
1058             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1059             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1060             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1061
1062             fscal            = _mm_add_ps(felec,fvdw);
1063
1064             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1065
1066              /* Update vectorial force */
1067             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1068             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1069             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1070
1071             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1072             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1073             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1074
1075             /**************************
1076              * CALCULATE INTERACTIONS *
1077              **************************/
1078
1079             r10              = _mm_mul_ps(rsq10,rinv10);
1080             r10              = _mm_andnot_ps(dummy_mask,r10);
1081
1082             /* Compute parameters for interactions between i and j atoms */
1083             qq10             = _mm_mul_ps(iq1,jq0);
1084
1085             /* EWALD ELECTROSTATICS */
1086
1087             /* Analytical PME correction */
1088             zeta2            = _mm_mul_ps(beta2,rsq10);
1089             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1090             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1091             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1092             felec            = _mm_mul_ps(qq10,felec);
1093
1094             fscal            = felec;
1095
1096             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1097
1098              /* Update vectorial force */
1099             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1100             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1101             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1102
1103             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1104             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1105             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1106
1107             /**************************
1108              * CALCULATE INTERACTIONS *
1109              **************************/
1110
1111             r20              = _mm_mul_ps(rsq20,rinv20);
1112             r20              = _mm_andnot_ps(dummy_mask,r20);
1113
1114             /* Compute parameters for interactions between i and j atoms */
1115             qq20             = _mm_mul_ps(iq2,jq0);
1116
1117             /* EWALD ELECTROSTATICS */
1118
1119             /* Analytical PME correction */
1120             zeta2            = _mm_mul_ps(beta2,rsq20);
1121             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1122             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1123             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1124             felec            = _mm_mul_ps(qq20,felec);
1125
1126             fscal            = felec;
1127
1128             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1129
1130              /* Update vectorial force */
1131             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1132             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1133             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1134
1135             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1136             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1137             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1138
1139             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1140             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1141             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1142             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1143
1144             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1145
1146             /* Inner loop uses 108 flops */
1147         }
1148
1149         /* End of innermost loop */
1150
1151         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1152                                               f+i_coord_offset,fshift+i_shift_offset);
1153
1154         /* Increment number of inner iterations */
1155         inneriter                  += j_index_end - j_index_start;
1156
1157         /* Outer loop uses 18 flops */
1158     }
1159
1160     /* Increment number of outer iterations */
1161     outeriter        += nri;
1162
1163     /* Update outer/inner flops */
1164
1165     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*108);
1166 }