8fc5afe2dd8640288600c92046b1107043badeb7
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           c6grid_00;
97     real             *vdwgridparam;
98     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
99     __m128           one_half = _mm_set1_ps(0.5);
100     __m128           minus_one = _mm_set1_ps(-1.0);
101     __m128i          ewitab;
102     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
104     real             *ewtab;
105     __m128           dummy_mask,cutoff_mask;
106     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107     __m128           one     = _mm_set1_ps(1.0);
108     __m128           two     = _mm_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_ps(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125     vdwgridparam     = fr->ljpme_c6grid;
126     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
127     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
128     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
129
130     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
131     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
132     beta2            = _mm_mul_ps(beta,beta);
133     beta3            = _mm_mul_ps(beta,beta2);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
169
170         fix0             = _mm_setzero_ps();
171         fiy0             = _mm_setzero_ps();
172         fiz0             = _mm_setzero_ps();
173
174         /* Load parameters for i particles */
175         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
176         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_ps();
180         vvdwsum          = _mm_setzero_ps();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               x+j_coord_offsetC,x+j_coord_offsetD,
199                                               &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm_sub_ps(ix0,jx0);
203             dy00             = _mm_sub_ps(iy0,jy0);
204             dz00             = _mm_sub_ps(iz0,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
208
209             rinv00           = gmx_mm_invsqrt_ps(rsq00);
210
211             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
215                                                               charge+jnrC+0,charge+jnrD+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218             vdwjidx0C        = 2*vdwtype[jnrC+0];
219             vdwjidx0D        = 2*vdwtype[jnrD+0];
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm_mul_ps(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm_mul_ps(iq0,jq0);
229             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
230                                          vdwparam+vdwioffset0+vdwjidx0B,
231                                          vdwparam+vdwioffset0+vdwjidx0C,
232                                          vdwparam+vdwioffset0+vdwjidx0D,
233                                          &c6_00,&c12_00);
234
235             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
236                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
237                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
238                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
239
240             /* EWALD ELECTROSTATICS */
241
242             /* Analytical PME correction */
243             zeta2            = _mm_mul_ps(beta2,rsq00);
244             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
245             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
246             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
247             felec            = _mm_mul_ps(qq00,felec);
248             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
249             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
250             velec            = _mm_mul_ps(qq00,velec);
251
252             /* Analytical LJ-PME */
253             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
254             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
255             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
256             exponent         = gmx_simd_exp_r(ewcljrsq);
257             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
258             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
259             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
260             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
261             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
262             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
263             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
264             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velecsum         = _mm_add_ps(velecsum,velec);
268             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
269
270             fscal            = _mm_add_ps(felec,fvdw);
271
272              /* Update vectorial force */
273             fix0             = _mm_macc_ps(dx00,fscal,fix0);
274             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
275             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
276
277             fjptrA             = f+j_coord_offsetA;
278             fjptrB             = f+j_coord_offsetB;
279             fjptrC             = f+j_coord_offsetC;
280             fjptrD             = f+j_coord_offsetD;
281             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
282                                                    _mm_mul_ps(dx00,fscal),
283                                                    _mm_mul_ps(dy00,fscal),
284                                                    _mm_mul_ps(dz00,fscal));
285
286             /* Inner loop uses 53 flops */
287         }
288
289         if(jidx<j_index_end)
290         {
291
292             /* Get j neighbor index, and coordinate index */
293             jnrlistA         = jjnr[jidx];
294             jnrlistB         = jjnr[jidx+1];
295             jnrlistC         = jjnr[jidx+2];
296             jnrlistD         = jjnr[jidx+3];
297             /* Sign of each element will be negative for non-real atoms.
298              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
299              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
300              */
301             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
302             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
303             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
304             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
305             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
306             j_coord_offsetA  = DIM*jnrA;
307             j_coord_offsetB  = DIM*jnrB;
308             j_coord_offsetC  = DIM*jnrC;
309             j_coord_offsetD  = DIM*jnrD;
310
311             /* load j atom coordinates */
312             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
313                                               x+j_coord_offsetC,x+j_coord_offsetD,
314                                               &jx0,&jy0,&jz0);
315
316             /* Calculate displacement vector */
317             dx00             = _mm_sub_ps(ix0,jx0);
318             dy00             = _mm_sub_ps(iy0,jy0);
319             dz00             = _mm_sub_ps(iz0,jz0);
320
321             /* Calculate squared distance and things based on it */
322             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
323
324             rinv00           = gmx_mm_invsqrt_ps(rsq00);
325
326             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
327
328             /* Load parameters for j particles */
329             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
330                                                               charge+jnrC+0,charge+jnrD+0);
331             vdwjidx0A        = 2*vdwtype[jnrA+0];
332             vdwjidx0B        = 2*vdwtype[jnrB+0];
333             vdwjidx0C        = 2*vdwtype[jnrC+0];
334             vdwjidx0D        = 2*vdwtype[jnrD+0];
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             r00              = _mm_mul_ps(rsq00,rinv00);
341             r00              = _mm_andnot_ps(dummy_mask,r00);
342
343             /* Compute parameters for interactions between i and j atoms */
344             qq00             = _mm_mul_ps(iq0,jq0);
345             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
346                                          vdwparam+vdwioffset0+vdwjidx0B,
347                                          vdwparam+vdwioffset0+vdwjidx0C,
348                                          vdwparam+vdwioffset0+vdwjidx0D,
349                                          &c6_00,&c12_00);
350
351             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
352                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
353                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
354                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
355
356             /* EWALD ELECTROSTATICS */
357
358             /* Analytical PME correction */
359             zeta2            = _mm_mul_ps(beta2,rsq00);
360             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
361             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
362             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
363             felec            = _mm_mul_ps(qq00,felec);
364             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
365             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
366             velec            = _mm_mul_ps(qq00,velec);
367
368             /* Analytical LJ-PME */
369             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
370             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
371             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
372             exponent         = gmx_simd_exp_r(ewcljrsq);
373             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
374             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
375             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
376             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
377             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
378             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
379             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
380             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velec            = _mm_andnot_ps(dummy_mask,velec);
384             velecsum         = _mm_add_ps(velecsum,velec);
385             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
386             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
387
388             fscal            = _mm_add_ps(felec,fvdw);
389
390             fscal            = _mm_andnot_ps(dummy_mask,fscal);
391
392              /* Update vectorial force */
393             fix0             = _mm_macc_ps(dx00,fscal,fix0);
394             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
395             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
396
397             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
398             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
399             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
400             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
401             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
402                                                    _mm_mul_ps(dx00,fscal),
403                                                    _mm_mul_ps(dy00,fscal),
404                                                    _mm_mul_ps(dz00,fscal));
405
406             /* Inner loop uses 54 flops */
407         }
408
409         /* End of innermost loop */
410
411         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
412                                               f+i_coord_offset,fshift+i_shift_offset);
413
414         ggid                        = gid[iidx];
415         /* Update potential energies */
416         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
417         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
418
419         /* Increment number of inner iterations */
420         inneriter                  += j_index_end - j_index_start;
421
422         /* Outer loop uses 9 flops */
423     }
424
425     /* Increment number of outer iterations */
426     outeriter        += nri;
427
428     /* Update outer/inner flops */
429
430     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
431 }
432 /*
433  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_128_fma_single
434  * Electrostatics interaction: Ewald
435  * VdW interaction:            LJEwald
436  * Geometry:                   Particle-Particle
437  * Calculate force/pot:        Force
438  */
439 void
440 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_128_fma_single
441                     (t_nblist                    * gmx_restrict       nlist,
442                      rvec                        * gmx_restrict          xx,
443                      rvec                        * gmx_restrict          ff,
444                      t_forcerec                  * gmx_restrict          fr,
445                      t_mdatoms                   * gmx_restrict     mdatoms,
446                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
447                      t_nrnb                      * gmx_restrict        nrnb)
448 {
449     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
450      * just 0 for non-waters.
451      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
452      * jnr indices corresponding to data put in the four positions in the SIMD register.
453      */
454     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
455     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
456     int              jnrA,jnrB,jnrC,jnrD;
457     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
458     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
459     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
460     real             rcutoff_scalar;
461     real             *shiftvec,*fshift,*x,*f;
462     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
463     real             scratch[4*DIM];
464     __m128           fscal,rcutoff,rcutoff2,jidxall;
465     int              vdwioffset0;
466     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
467     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
468     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
469     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
470     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
471     real             *charge;
472     int              nvdwtype;
473     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
474     int              *vdwtype;
475     real             *vdwparam;
476     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
477     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
478     __m128           c6grid_00;
479     real             *vdwgridparam;
480     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
481     __m128           one_half = _mm_set1_ps(0.5);
482     __m128           minus_one = _mm_set1_ps(-1.0);
483     __m128i          ewitab;
484     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
485     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
486     real             *ewtab;
487     __m128           dummy_mask,cutoff_mask;
488     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
489     __m128           one     = _mm_set1_ps(1.0);
490     __m128           two     = _mm_set1_ps(2.0);
491     x                = xx[0];
492     f                = ff[0];
493
494     nri              = nlist->nri;
495     iinr             = nlist->iinr;
496     jindex           = nlist->jindex;
497     jjnr             = nlist->jjnr;
498     shiftidx         = nlist->shift;
499     gid              = nlist->gid;
500     shiftvec         = fr->shift_vec[0];
501     fshift           = fr->fshift[0];
502     facel            = _mm_set1_ps(fr->epsfac);
503     charge           = mdatoms->chargeA;
504     nvdwtype         = fr->ntype;
505     vdwparam         = fr->nbfp;
506     vdwtype          = mdatoms->typeA;
507     vdwgridparam     = fr->ljpme_c6grid;
508     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
509     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
510     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
511
512     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
513     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
514     beta2            = _mm_mul_ps(beta,beta);
515     beta3            = _mm_mul_ps(beta,beta2);
516     ewtab            = fr->ic->tabq_coul_F;
517     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
518     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
519
520     /* Avoid stupid compiler warnings */
521     jnrA = jnrB = jnrC = jnrD = 0;
522     j_coord_offsetA = 0;
523     j_coord_offsetB = 0;
524     j_coord_offsetC = 0;
525     j_coord_offsetD = 0;
526
527     outeriter        = 0;
528     inneriter        = 0;
529
530     for(iidx=0;iidx<4*DIM;iidx++)
531     {
532         scratch[iidx] = 0.0;
533     }
534
535     /* Start outer loop over neighborlists */
536     for(iidx=0; iidx<nri; iidx++)
537     {
538         /* Load shift vector for this list */
539         i_shift_offset   = DIM*shiftidx[iidx];
540
541         /* Load limits for loop over neighbors */
542         j_index_start    = jindex[iidx];
543         j_index_end      = jindex[iidx+1];
544
545         /* Get outer coordinate index */
546         inr              = iinr[iidx];
547         i_coord_offset   = DIM*inr;
548
549         /* Load i particle coords and add shift vector */
550         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
551
552         fix0             = _mm_setzero_ps();
553         fiy0             = _mm_setzero_ps();
554         fiz0             = _mm_setzero_ps();
555
556         /* Load parameters for i particles */
557         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
558         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
559
560         /* Start inner kernel loop */
561         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
562         {
563
564             /* Get j neighbor index, and coordinate index */
565             jnrA             = jjnr[jidx];
566             jnrB             = jjnr[jidx+1];
567             jnrC             = jjnr[jidx+2];
568             jnrD             = jjnr[jidx+3];
569             j_coord_offsetA  = DIM*jnrA;
570             j_coord_offsetB  = DIM*jnrB;
571             j_coord_offsetC  = DIM*jnrC;
572             j_coord_offsetD  = DIM*jnrD;
573
574             /* load j atom coordinates */
575             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
576                                               x+j_coord_offsetC,x+j_coord_offsetD,
577                                               &jx0,&jy0,&jz0);
578
579             /* Calculate displacement vector */
580             dx00             = _mm_sub_ps(ix0,jx0);
581             dy00             = _mm_sub_ps(iy0,jy0);
582             dz00             = _mm_sub_ps(iz0,jz0);
583
584             /* Calculate squared distance and things based on it */
585             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
586
587             rinv00           = gmx_mm_invsqrt_ps(rsq00);
588
589             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
590
591             /* Load parameters for j particles */
592             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
593                                                               charge+jnrC+0,charge+jnrD+0);
594             vdwjidx0A        = 2*vdwtype[jnrA+0];
595             vdwjidx0B        = 2*vdwtype[jnrB+0];
596             vdwjidx0C        = 2*vdwtype[jnrC+0];
597             vdwjidx0D        = 2*vdwtype[jnrD+0];
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             r00              = _mm_mul_ps(rsq00,rinv00);
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq00             = _mm_mul_ps(iq0,jq0);
607             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
608                                          vdwparam+vdwioffset0+vdwjidx0B,
609                                          vdwparam+vdwioffset0+vdwjidx0C,
610                                          vdwparam+vdwioffset0+vdwjidx0D,
611                                          &c6_00,&c12_00);
612
613             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
614                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
615                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
616                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
617
618             /* EWALD ELECTROSTATICS */
619
620             /* Analytical PME correction */
621             zeta2            = _mm_mul_ps(beta2,rsq00);
622             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
623             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
624             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
625             felec            = _mm_mul_ps(qq00,felec);
626
627             /* Analytical LJ-PME */
628             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
629             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
630             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
631             exponent         = gmx_simd_exp_r(ewcljrsq);
632             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
633             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
634             /* f6A = 6 * C6grid * (1 - poly) */
635             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
636             /* f6B = C6grid * exponent * beta^6 */
637             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
638             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
639             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
640
641             fscal            = _mm_add_ps(felec,fvdw);
642
643              /* Update vectorial force */
644             fix0             = _mm_macc_ps(dx00,fscal,fix0);
645             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
646             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
647
648             fjptrA             = f+j_coord_offsetA;
649             fjptrB             = f+j_coord_offsetB;
650             fjptrC             = f+j_coord_offsetC;
651             fjptrD             = f+j_coord_offsetD;
652             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
653                                                    _mm_mul_ps(dx00,fscal),
654                                                    _mm_mul_ps(dy00,fscal),
655                                                    _mm_mul_ps(dz00,fscal));
656
657             /* Inner loop uses 49 flops */
658         }
659
660         if(jidx<j_index_end)
661         {
662
663             /* Get j neighbor index, and coordinate index */
664             jnrlistA         = jjnr[jidx];
665             jnrlistB         = jjnr[jidx+1];
666             jnrlistC         = jjnr[jidx+2];
667             jnrlistD         = jjnr[jidx+3];
668             /* Sign of each element will be negative for non-real atoms.
669              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
670              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
671              */
672             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
673             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
674             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
675             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
676             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
677             j_coord_offsetA  = DIM*jnrA;
678             j_coord_offsetB  = DIM*jnrB;
679             j_coord_offsetC  = DIM*jnrC;
680             j_coord_offsetD  = DIM*jnrD;
681
682             /* load j atom coordinates */
683             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
684                                               x+j_coord_offsetC,x+j_coord_offsetD,
685                                               &jx0,&jy0,&jz0);
686
687             /* Calculate displacement vector */
688             dx00             = _mm_sub_ps(ix0,jx0);
689             dy00             = _mm_sub_ps(iy0,jy0);
690             dz00             = _mm_sub_ps(iz0,jz0);
691
692             /* Calculate squared distance and things based on it */
693             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
694
695             rinv00           = gmx_mm_invsqrt_ps(rsq00);
696
697             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
698
699             /* Load parameters for j particles */
700             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
701                                                               charge+jnrC+0,charge+jnrD+0);
702             vdwjidx0A        = 2*vdwtype[jnrA+0];
703             vdwjidx0B        = 2*vdwtype[jnrB+0];
704             vdwjidx0C        = 2*vdwtype[jnrC+0];
705             vdwjidx0D        = 2*vdwtype[jnrD+0];
706
707             /**************************
708              * CALCULATE INTERACTIONS *
709              **************************/
710
711             r00              = _mm_mul_ps(rsq00,rinv00);
712             r00              = _mm_andnot_ps(dummy_mask,r00);
713
714             /* Compute parameters for interactions between i and j atoms */
715             qq00             = _mm_mul_ps(iq0,jq0);
716             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
717                                          vdwparam+vdwioffset0+vdwjidx0B,
718                                          vdwparam+vdwioffset0+vdwjidx0C,
719                                          vdwparam+vdwioffset0+vdwjidx0D,
720                                          &c6_00,&c12_00);
721
722             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
723                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
724                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
725                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
726
727             /* EWALD ELECTROSTATICS */
728
729             /* Analytical PME correction */
730             zeta2            = _mm_mul_ps(beta2,rsq00);
731             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
732             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
733             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
734             felec            = _mm_mul_ps(qq00,felec);
735
736             /* Analytical LJ-PME */
737             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
738             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
739             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
740             exponent         = gmx_simd_exp_r(ewcljrsq);
741             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
742             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
743             /* f6A = 6 * C6grid * (1 - poly) */
744             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
745             /* f6B = C6grid * exponent * beta^6 */
746             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
747             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
748             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
749
750             fscal            = _mm_add_ps(felec,fvdw);
751
752             fscal            = _mm_andnot_ps(dummy_mask,fscal);
753
754              /* Update vectorial force */
755             fix0             = _mm_macc_ps(dx00,fscal,fix0);
756             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
757             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
758
759             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
760             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
761             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
762             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
763             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
764                                                    _mm_mul_ps(dx00,fscal),
765                                                    _mm_mul_ps(dy00,fscal),
766                                                    _mm_mul_ps(dz00,fscal));
767
768             /* Inner loop uses 50 flops */
769         }
770
771         /* End of innermost loop */
772
773         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
774                                               f+i_coord_offset,fshift+i_shift_offset);
775
776         /* Increment number of inner iterations */
777         inneriter                  += j_index_end - j_index_start;
778
779         /* Outer loop uses 7 flops */
780     }
781
782     /* Increment number of outer iterations */
783     outeriter        += nri;
784
785     /* Update outer/inner flops */
786
787     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*50);
788 }