Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_128_fma_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128           c6grid_00;
96     real             *vdwgridparam;
97     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98     __m128           one_half = _mm_set1_ps(0.5);
99     __m128           minus_one = _mm_set1_ps(-1.0);
100     __m128i          ewitab;
101     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
103     real             *ewtab;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->ic->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124     vdwgridparam     = fr->ljpme_c6grid;
125     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
126     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
127     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
128
129     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
130     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
131     beta2            = _mm_mul_ps(beta,beta);
132     beta3            = _mm_mul_ps(beta,beta2);
133     ewtab            = fr->ic->tabq_coul_FDV0;
134     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
135     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
168
169         fix0             = _mm_setzero_ps();
170         fiy0             = _mm_setzero_ps();
171         fiz0             = _mm_setzero_ps();
172
173         /* Load parameters for i particles */
174         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
175         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
176
177         /* Reset potential sums */
178         velecsum         = _mm_setzero_ps();
179         vvdwsum          = _mm_setzero_ps();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192             j_coord_offsetC  = DIM*jnrC;
193             j_coord_offsetD  = DIM*jnrD;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               x+j_coord_offsetC,x+j_coord_offsetD,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_ps(ix0,jx0);
202             dy00             = _mm_sub_ps(iy0,jy0);
203             dz00             = _mm_sub_ps(iz0,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
207
208             rinv00           = avx128fma_invsqrt_f(rsq00);
209
210             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
214                                                               charge+jnrC+0,charge+jnrD+0);
215             vdwjidx0A        = 2*vdwtype[jnrA+0];
216             vdwjidx0B        = 2*vdwtype[jnrB+0];
217             vdwjidx0C        = 2*vdwtype[jnrC+0];
218             vdwjidx0D        = 2*vdwtype[jnrD+0];
219
220             /**************************
221              * CALCULATE INTERACTIONS *
222              **************************/
223
224             r00              = _mm_mul_ps(rsq00,rinv00);
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq00             = _mm_mul_ps(iq0,jq0);
228             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
229                                          vdwparam+vdwioffset0+vdwjidx0B,
230                                          vdwparam+vdwioffset0+vdwjidx0C,
231                                          vdwparam+vdwioffset0+vdwjidx0D,
232                                          &c6_00,&c12_00);
233
234             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
235                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
236                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
237                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
238
239             /* EWALD ELECTROSTATICS */
240
241             /* Analytical PME correction */
242             zeta2            = _mm_mul_ps(beta2,rsq00);
243             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
244             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
245             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
246             felec            = _mm_mul_ps(qq00,felec);
247             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
248             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
249             velec            = _mm_mul_ps(qq00,velec);
250
251             /* Analytical LJ-PME */
252             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
253             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
254             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
255             exponent         = avx128fma_exp_f(ewcljrsq);
256             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
257             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
258             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
259             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
260             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
261             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
262             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
263             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velecsum         = _mm_add_ps(velecsum,velec);
267             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
268
269             fscal            = _mm_add_ps(felec,fvdw);
270
271              /* Update vectorial force */
272             fix0             = _mm_macc_ps(dx00,fscal,fix0);
273             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
274             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
275
276             fjptrA             = f+j_coord_offsetA;
277             fjptrB             = f+j_coord_offsetB;
278             fjptrC             = f+j_coord_offsetC;
279             fjptrD             = f+j_coord_offsetD;
280             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
281                                                    _mm_mul_ps(dx00,fscal),
282                                                    _mm_mul_ps(dy00,fscal),
283                                                    _mm_mul_ps(dz00,fscal));
284
285             /* Inner loop uses 53 flops */
286         }
287
288         if(jidx<j_index_end)
289         {
290
291             /* Get j neighbor index, and coordinate index */
292             jnrlistA         = jjnr[jidx];
293             jnrlistB         = jjnr[jidx+1];
294             jnrlistC         = jjnr[jidx+2];
295             jnrlistD         = jjnr[jidx+3];
296             /* Sign of each element will be negative for non-real atoms.
297              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
298              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
299              */
300             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
301             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
302             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
303             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
304             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
305             j_coord_offsetA  = DIM*jnrA;
306             j_coord_offsetB  = DIM*jnrB;
307             j_coord_offsetC  = DIM*jnrC;
308             j_coord_offsetD  = DIM*jnrD;
309
310             /* load j atom coordinates */
311             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
312                                               x+j_coord_offsetC,x+j_coord_offsetD,
313                                               &jx0,&jy0,&jz0);
314
315             /* Calculate displacement vector */
316             dx00             = _mm_sub_ps(ix0,jx0);
317             dy00             = _mm_sub_ps(iy0,jy0);
318             dz00             = _mm_sub_ps(iz0,jz0);
319
320             /* Calculate squared distance and things based on it */
321             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
322
323             rinv00           = avx128fma_invsqrt_f(rsq00);
324
325             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
326
327             /* Load parameters for j particles */
328             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
329                                                               charge+jnrC+0,charge+jnrD+0);
330             vdwjidx0A        = 2*vdwtype[jnrA+0];
331             vdwjidx0B        = 2*vdwtype[jnrB+0];
332             vdwjidx0C        = 2*vdwtype[jnrC+0];
333             vdwjidx0D        = 2*vdwtype[jnrD+0];
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             r00              = _mm_mul_ps(rsq00,rinv00);
340             r00              = _mm_andnot_ps(dummy_mask,r00);
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq00             = _mm_mul_ps(iq0,jq0);
344             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
345                                          vdwparam+vdwioffset0+vdwjidx0B,
346                                          vdwparam+vdwioffset0+vdwjidx0C,
347                                          vdwparam+vdwioffset0+vdwjidx0D,
348                                          &c6_00,&c12_00);
349
350             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
351                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
352                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
353                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
354
355             /* EWALD ELECTROSTATICS */
356
357             /* Analytical PME correction */
358             zeta2            = _mm_mul_ps(beta2,rsq00);
359             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
360             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
361             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
362             felec            = _mm_mul_ps(qq00,felec);
363             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
364             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
365             velec            = _mm_mul_ps(qq00,velec);
366
367             /* Analytical LJ-PME */
368             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
369             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
370             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
371             exponent         = avx128fma_exp_f(ewcljrsq);
372             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
373             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
374             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
375             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
376             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
377             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
378             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
379             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velec            = _mm_andnot_ps(dummy_mask,velec);
383             velecsum         = _mm_add_ps(velecsum,velec);
384             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
385             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
386
387             fscal            = _mm_add_ps(felec,fvdw);
388
389             fscal            = _mm_andnot_ps(dummy_mask,fscal);
390
391              /* Update vectorial force */
392             fix0             = _mm_macc_ps(dx00,fscal,fix0);
393             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
394             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
395
396             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
397             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
398             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
399             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
400             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
401                                                    _mm_mul_ps(dx00,fscal),
402                                                    _mm_mul_ps(dy00,fscal),
403                                                    _mm_mul_ps(dz00,fscal));
404
405             /* Inner loop uses 54 flops */
406         }
407
408         /* End of innermost loop */
409
410         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
411                                               f+i_coord_offset,fshift+i_shift_offset);
412
413         ggid                        = gid[iidx];
414         /* Update potential energies */
415         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
416         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
417
418         /* Increment number of inner iterations */
419         inneriter                  += j_index_end - j_index_start;
420
421         /* Outer loop uses 9 flops */
422     }
423
424     /* Increment number of outer iterations */
425     outeriter        += nri;
426
427     /* Update outer/inner flops */
428
429     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
430 }
431 /*
432  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_128_fma_single
433  * Electrostatics interaction: Ewald
434  * VdW interaction:            LJEwald
435  * Geometry:                   Particle-Particle
436  * Calculate force/pot:        Force
437  */
438 void
439 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_128_fma_single
440                     (t_nblist                    * gmx_restrict       nlist,
441                      rvec                        * gmx_restrict          xx,
442                      rvec                        * gmx_restrict          ff,
443                      struct t_forcerec           * gmx_restrict          fr,
444                      t_mdatoms                   * gmx_restrict     mdatoms,
445                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
446                      t_nrnb                      * gmx_restrict        nrnb)
447 {
448     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
449      * just 0 for non-waters.
450      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
451      * jnr indices corresponding to data put in the four positions in the SIMD register.
452      */
453     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
454     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
455     int              jnrA,jnrB,jnrC,jnrD;
456     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
457     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
458     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
459     real             rcutoff_scalar;
460     real             *shiftvec,*fshift,*x,*f;
461     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
462     real             scratch[4*DIM];
463     __m128           fscal,rcutoff,rcutoff2,jidxall;
464     int              vdwioffset0;
465     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
466     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
467     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
468     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
469     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
470     real             *charge;
471     int              nvdwtype;
472     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
473     int              *vdwtype;
474     real             *vdwparam;
475     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
476     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
477     __m128           c6grid_00;
478     real             *vdwgridparam;
479     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
480     __m128           one_half = _mm_set1_ps(0.5);
481     __m128           minus_one = _mm_set1_ps(-1.0);
482     __m128i          ewitab;
483     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
484     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
485     real             *ewtab;
486     __m128           dummy_mask,cutoff_mask;
487     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
488     __m128           one     = _mm_set1_ps(1.0);
489     __m128           two     = _mm_set1_ps(2.0);
490     x                = xx[0];
491     f                = ff[0];
492
493     nri              = nlist->nri;
494     iinr             = nlist->iinr;
495     jindex           = nlist->jindex;
496     jjnr             = nlist->jjnr;
497     shiftidx         = nlist->shift;
498     gid              = nlist->gid;
499     shiftvec         = fr->shift_vec[0];
500     fshift           = fr->fshift[0];
501     facel            = _mm_set1_ps(fr->ic->epsfac);
502     charge           = mdatoms->chargeA;
503     nvdwtype         = fr->ntype;
504     vdwparam         = fr->nbfp;
505     vdwtype          = mdatoms->typeA;
506     vdwgridparam     = fr->ljpme_c6grid;
507     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
508     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
509     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
510
511     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
512     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
513     beta2            = _mm_mul_ps(beta,beta);
514     beta3            = _mm_mul_ps(beta,beta2);
515     ewtab            = fr->ic->tabq_coul_F;
516     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
517     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
518
519     /* Avoid stupid compiler warnings */
520     jnrA = jnrB = jnrC = jnrD = 0;
521     j_coord_offsetA = 0;
522     j_coord_offsetB = 0;
523     j_coord_offsetC = 0;
524     j_coord_offsetD = 0;
525
526     outeriter        = 0;
527     inneriter        = 0;
528
529     for(iidx=0;iidx<4*DIM;iidx++)
530     {
531         scratch[iidx] = 0.0;
532     }
533
534     /* Start outer loop over neighborlists */
535     for(iidx=0; iidx<nri; iidx++)
536     {
537         /* Load shift vector for this list */
538         i_shift_offset   = DIM*shiftidx[iidx];
539
540         /* Load limits for loop over neighbors */
541         j_index_start    = jindex[iidx];
542         j_index_end      = jindex[iidx+1];
543
544         /* Get outer coordinate index */
545         inr              = iinr[iidx];
546         i_coord_offset   = DIM*inr;
547
548         /* Load i particle coords and add shift vector */
549         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
550
551         fix0             = _mm_setzero_ps();
552         fiy0             = _mm_setzero_ps();
553         fiz0             = _mm_setzero_ps();
554
555         /* Load parameters for i particles */
556         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
557         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
558
559         /* Start inner kernel loop */
560         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
561         {
562
563             /* Get j neighbor index, and coordinate index */
564             jnrA             = jjnr[jidx];
565             jnrB             = jjnr[jidx+1];
566             jnrC             = jjnr[jidx+2];
567             jnrD             = jjnr[jidx+3];
568             j_coord_offsetA  = DIM*jnrA;
569             j_coord_offsetB  = DIM*jnrB;
570             j_coord_offsetC  = DIM*jnrC;
571             j_coord_offsetD  = DIM*jnrD;
572
573             /* load j atom coordinates */
574             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
575                                               x+j_coord_offsetC,x+j_coord_offsetD,
576                                               &jx0,&jy0,&jz0);
577
578             /* Calculate displacement vector */
579             dx00             = _mm_sub_ps(ix0,jx0);
580             dy00             = _mm_sub_ps(iy0,jy0);
581             dz00             = _mm_sub_ps(iz0,jz0);
582
583             /* Calculate squared distance and things based on it */
584             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
585
586             rinv00           = avx128fma_invsqrt_f(rsq00);
587
588             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
589
590             /* Load parameters for j particles */
591             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
592                                                               charge+jnrC+0,charge+jnrD+0);
593             vdwjidx0A        = 2*vdwtype[jnrA+0];
594             vdwjidx0B        = 2*vdwtype[jnrB+0];
595             vdwjidx0C        = 2*vdwtype[jnrC+0];
596             vdwjidx0D        = 2*vdwtype[jnrD+0];
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             r00              = _mm_mul_ps(rsq00,rinv00);
603
604             /* Compute parameters for interactions between i and j atoms */
605             qq00             = _mm_mul_ps(iq0,jq0);
606             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
607                                          vdwparam+vdwioffset0+vdwjidx0B,
608                                          vdwparam+vdwioffset0+vdwjidx0C,
609                                          vdwparam+vdwioffset0+vdwjidx0D,
610                                          &c6_00,&c12_00);
611
612             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
613                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
614                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
615                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
616
617             /* EWALD ELECTROSTATICS */
618
619             /* Analytical PME correction */
620             zeta2            = _mm_mul_ps(beta2,rsq00);
621             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
622             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
623             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
624             felec            = _mm_mul_ps(qq00,felec);
625
626             /* Analytical LJ-PME */
627             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
628             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
629             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
630             exponent         = avx128fma_exp_f(ewcljrsq);
631             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
632             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
633             /* f6A = 6 * C6grid * (1 - poly) */
634             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
635             /* f6B = C6grid * exponent * beta^6 */
636             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
637             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
638             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
639
640             fscal            = _mm_add_ps(felec,fvdw);
641
642              /* Update vectorial force */
643             fix0             = _mm_macc_ps(dx00,fscal,fix0);
644             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
645             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
646
647             fjptrA             = f+j_coord_offsetA;
648             fjptrB             = f+j_coord_offsetB;
649             fjptrC             = f+j_coord_offsetC;
650             fjptrD             = f+j_coord_offsetD;
651             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
652                                                    _mm_mul_ps(dx00,fscal),
653                                                    _mm_mul_ps(dy00,fscal),
654                                                    _mm_mul_ps(dz00,fscal));
655
656             /* Inner loop uses 49 flops */
657         }
658
659         if(jidx<j_index_end)
660         {
661
662             /* Get j neighbor index, and coordinate index */
663             jnrlistA         = jjnr[jidx];
664             jnrlistB         = jjnr[jidx+1];
665             jnrlistC         = jjnr[jidx+2];
666             jnrlistD         = jjnr[jidx+3];
667             /* Sign of each element will be negative for non-real atoms.
668              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
669              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
670              */
671             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
672             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
673             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
674             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
675             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
676             j_coord_offsetA  = DIM*jnrA;
677             j_coord_offsetB  = DIM*jnrB;
678             j_coord_offsetC  = DIM*jnrC;
679             j_coord_offsetD  = DIM*jnrD;
680
681             /* load j atom coordinates */
682             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
683                                               x+j_coord_offsetC,x+j_coord_offsetD,
684                                               &jx0,&jy0,&jz0);
685
686             /* Calculate displacement vector */
687             dx00             = _mm_sub_ps(ix0,jx0);
688             dy00             = _mm_sub_ps(iy0,jy0);
689             dz00             = _mm_sub_ps(iz0,jz0);
690
691             /* Calculate squared distance and things based on it */
692             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
693
694             rinv00           = avx128fma_invsqrt_f(rsq00);
695
696             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
697
698             /* Load parameters for j particles */
699             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
700                                                               charge+jnrC+0,charge+jnrD+0);
701             vdwjidx0A        = 2*vdwtype[jnrA+0];
702             vdwjidx0B        = 2*vdwtype[jnrB+0];
703             vdwjidx0C        = 2*vdwtype[jnrC+0];
704             vdwjidx0D        = 2*vdwtype[jnrD+0];
705
706             /**************************
707              * CALCULATE INTERACTIONS *
708              **************************/
709
710             r00              = _mm_mul_ps(rsq00,rinv00);
711             r00              = _mm_andnot_ps(dummy_mask,r00);
712
713             /* Compute parameters for interactions between i and j atoms */
714             qq00             = _mm_mul_ps(iq0,jq0);
715             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
716                                          vdwparam+vdwioffset0+vdwjidx0B,
717                                          vdwparam+vdwioffset0+vdwjidx0C,
718                                          vdwparam+vdwioffset0+vdwjidx0D,
719                                          &c6_00,&c12_00);
720
721             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
722                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
723                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
724                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
725
726             /* EWALD ELECTROSTATICS */
727
728             /* Analytical PME correction */
729             zeta2            = _mm_mul_ps(beta2,rsq00);
730             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
731             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
732             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
733             felec            = _mm_mul_ps(qq00,felec);
734
735             /* Analytical LJ-PME */
736             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
737             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
738             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
739             exponent         = avx128fma_exp_f(ewcljrsq);
740             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
741             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
742             /* f6A = 6 * C6grid * (1 - poly) */
743             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
744             /* f6B = C6grid * exponent * beta^6 */
745             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
746             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
747             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
748
749             fscal            = _mm_add_ps(felec,fvdw);
750
751             fscal            = _mm_andnot_ps(dummy_mask,fscal);
752
753              /* Update vectorial force */
754             fix0             = _mm_macc_ps(dx00,fscal,fix0);
755             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
756             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
757
758             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
759             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
760             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
761             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
762             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
763                                                    _mm_mul_ps(dx00,fscal),
764                                                    _mm_mul_ps(dy00,fscal),
765                                                    _mm_mul_ps(dz00,fscal));
766
767             /* Inner loop uses 50 flops */
768         }
769
770         /* End of innermost loop */
771
772         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
773                                               f+i_coord_offset,fshift+i_shift_offset);
774
775         /* Increment number of inner iterations */
776         inneriter                  += j_index_end - j_index_start;
777
778         /* Outer loop uses 7 flops */
779     }
780
781     /* Increment number of outer iterations */
782     outeriter        += nri;
783
784     /* Update outer/inner flops */
785
786     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*50);
787 }