Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_avx_128_fma_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
107     real             *vftab;
108     __m128i          ewitab;
109     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
111     real             *ewtab;
112     __m128           dummy_mask,cutoff_mask;
113     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
114     __m128           one     = _mm_set1_ps(1.0);
115     __m128           two     = _mm_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_ps(fr->ic->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     vftab            = kernel_data->table_vdw->data;
134     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
135
136     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
137     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
138     beta2            = _mm_mul_ps(beta,beta);
139     beta3            = _mm_mul_ps(beta,beta2);
140     ewtab            = fr->ic->tabq_coul_FDV0;
141     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
142     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
143
144     /* Setup water-specific parameters */
145     inr              = nlist->iinr[0];
146     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
147     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
148     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
149     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151     /* Avoid stupid compiler warnings */
152     jnrA = jnrB = jnrC = jnrD = 0;
153     j_coord_offsetA = 0;
154     j_coord_offsetB = 0;
155     j_coord_offsetC = 0;
156     j_coord_offsetD = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     for(iidx=0;iidx<4*DIM;iidx++)
162     {
163         scratch[iidx] = 0.0;
164     }
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
183
184         fix0             = _mm_setzero_ps();
185         fiy0             = _mm_setzero_ps();
186         fiz0             = _mm_setzero_ps();
187         fix1             = _mm_setzero_ps();
188         fiy1             = _mm_setzero_ps();
189         fiz1             = _mm_setzero_ps();
190         fix2             = _mm_setzero_ps();
191         fiy2             = _mm_setzero_ps();
192         fiz2             = _mm_setzero_ps();
193         fix3             = _mm_setzero_ps();
194         fiy3             = _mm_setzero_ps();
195         fiz3             = _mm_setzero_ps();
196
197         /* Reset potential sums */
198         velecsum         = _mm_setzero_ps();
199         vvdwsum          = _mm_setzero_ps();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             jnrC             = jjnr[jidx+2];
209             jnrD             = jjnr[jidx+3];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212             j_coord_offsetC  = DIM*jnrC;
213             j_coord_offsetD  = DIM*jnrD;
214
215             /* load j atom coordinates */
216             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
217                                               x+j_coord_offsetC,x+j_coord_offsetD,
218                                               &jx0,&jy0,&jz0);
219
220             /* Calculate displacement vector */
221             dx00             = _mm_sub_ps(ix0,jx0);
222             dy00             = _mm_sub_ps(iy0,jy0);
223             dz00             = _mm_sub_ps(iz0,jz0);
224             dx10             = _mm_sub_ps(ix1,jx0);
225             dy10             = _mm_sub_ps(iy1,jy0);
226             dz10             = _mm_sub_ps(iz1,jz0);
227             dx20             = _mm_sub_ps(ix2,jx0);
228             dy20             = _mm_sub_ps(iy2,jy0);
229             dz20             = _mm_sub_ps(iz2,jz0);
230             dx30             = _mm_sub_ps(ix3,jx0);
231             dy30             = _mm_sub_ps(iy3,jy0);
232             dz30             = _mm_sub_ps(iz3,jz0);
233
234             /* Calculate squared distance and things based on it */
235             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
236             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
237             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
238             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
239
240             rinv00           = avx128fma_invsqrt_f(rsq00);
241             rinv10           = avx128fma_invsqrt_f(rsq10);
242             rinv20           = avx128fma_invsqrt_f(rsq20);
243             rinv30           = avx128fma_invsqrt_f(rsq30);
244
245             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
246             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
247             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
248
249             /* Load parameters for j particles */
250             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
251                                                               charge+jnrC+0,charge+jnrD+0);
252             vdwjidx0A        = 2*vdwtype[jnrA+0];
253             vdwjidx0B        = 2*vdwtype[jnrB+0];
254             vdwjidx0C        = 2*vdwtype[jnrC+0];
255             vdwjidx0D        = 2*vdwtype[jnrD+0];
256
257             fjx0             = _mm_setzero_ps();
258             fjy0             = _mm_setzero_ps();
259             fjz0             = _mm_setzero_ps();
260
261             /**************************
262              * CALCULATE INTERACTIONS *
263              **************************/
264
265             r00              = _mm_mul_ps(rsq00,rinv00);
266
267             /* Compute parameters for interactions between i and j atoms */
268             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
269                                          vdwparam+vdwioffset0+vdwjidx0B,
270                                          vdwparam+vdwioffset0+vdwjidx0C,
271                                          vdwparam+vdwioffset0+vdwjidx0D,
272                                          &c6_00,&c12_00);
273
274             /* Calculate table index by multiplying r with table scale and truncate to integer */
275             rt               = _mm_mul_ps(r00,vftabscale);
276             vfitab           = _mm_cvttps_epi32(rt);
277 #ifdef __XOP__
278             vfeps            = _mm_frcz_ps(rt);
279 #else
280             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
281 #endif
282             twovfeps         = _mm_add_ps(vfeps,vfeps);
283             vfitab           = _mm_slli_epi32(vfitab,3);
284
285             /* CUBIC SPLINE TABLE DISPERSION */
286             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
287             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
288             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
289             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
290             _MM_TRANSPOSE4_PS(Y,F,G,H);
291             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
292             VV               = _mm_macc_ps(vfeps,Fp,Y);
293             vvdw6            = _mm_mul_ps(c6_00,VV);
294             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
295             fvdw6            = _mm_mul_ps(c6_00,FF);
296
297             /* CUBIC SPLINE TABLE REPULSION */
298             vfitab           = _mm_add_epi32(vfitab,ifour);
299             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
300             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
301             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
302             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
303             _MM_TRANSPOSE4_PS(Y,F,G,H);
304             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
305             VV               = _mm_macc_ps(vfeps,Fp,Y);
306             vvdw12           = _mm_mul_ps(c12_00,VV);
307             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
308             fvdw12           = _mm_mul_ps(c12_00,FF);
309             vvdw             = _mm_add_ps(vvdw12,vvdw6);
310             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
314
315             fscal            = fvdw;
316
317              /* Update vectorial force */
318             fix0             = _mm_macc_ps(dx00,fscal,fix0);
319             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
320             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
321
322             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
323             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
324             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             r10              = _mm_mul_ps(rsq10,rinv10);
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq10             = _mm_mul_ps(iq1,jq0);
334
335             /* EWALD ELECTROSTATICS */
336
337             /* Analytical PME correction */
338             zeta2            = _mm_mul_ps(beta2,rsq10);
339             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
340             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
341             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
342             felec            = _mm_mul_ps(qq10,felec);
343             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
344             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
345             velec            = _mm_mul_ps(qq10,velec);
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velecsum         = _mm_add_ps(velecsum,velec);
349
350             fscal            = felec;
351
352              /* Update vectorial force */
353             fix1             = _mm_macc_ps(dx10,fscal,fix1);
354             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
355             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
356
357             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
358             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
359             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             r20              = _mm_mul_ps(rsq20,rinv20);
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq20             = _mm_mul_ps(iq2,jq0);
369
370             /* EWALD ELECTROSTATICS */
371
372             /* Analytical PME correction */
373             zeta2            = _mm_mul_ps(beta2,rsq20);
374             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
375             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
376             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
377             felec            = _mm_mul_ps(qq20,felec);
378             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
379             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
380             velec            = _mm_mul_ps(qq20,velec);
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velecsum         = _mm_add_ps(velecsum,velec);
384
385             fscal            = felec;
386
387              /* Update vectorial force */
388             fix2             = _mm_macc_ps(dx20,fscal,fix2);
389             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
390             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
391
392             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
393             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
394             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
395
396             /**************************
397              * CALCULATE INTERACTIONS *
398              **************************/
399
400             r30              = _mm_mul_ps(rsq30,rinv30);
401
402             /* Compute parameters for interactions between i and j atoms */
403             qq30             = _mm_mul_ps(iq3,jq0);
404
405             /* EWALD ELECTROSTATICS */
406
407             /* Analytical PME correction */
408             zeta2            = _mm_mul_ps(beta2,rsq30);
409             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
410             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
411             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
412             felec            = _mm_mul_ps(qq30,felec);
413             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
414             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
415             velec            = _mm_mul_ps(qq30,velec);
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             velecsum         = _mm_add_ps(velecsum,velec);
419
420             fscal            = felec;
421
422              /* Update vectorial force */
423             fix3             = _mm_macc_ps(dx30,fscal,fix3);
424             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
425             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
426
427             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
428             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
429             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
430
431             fjptrA             = f+j_coord_offsetA;
432             fjptrB             = f+j_coord_offsetB;
433             fjptrC             = f+j_coord_offsetC;
434             fjptrD             = f+j_coord_offsetD;
435
436             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
437
438             /* Inner loop uses 146 flops */
439         }
440
441         if(jidx<j_index_end)
442         {
443
444             /* Get j neighbor index, and coordinate index */
445             jnrlistA         = jjnr[jidx];
446             jnrlistB         = jjnr[jidx+1];
447             jnrlistC         = jjnr[jidx+2];
448             jnrlistD         = jjnr[jidx+3];
449             /* Sign of each element will be negative for non-real atoms.
450              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
451              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
452              */
453             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
454             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
455             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
456             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
457             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
458             j_coord_offsetA  = DIM*jnrA;
459             j_coord_offsetB  = DIM*jnrB;
460             j_coord_offsetC  = DIM*jnrC;
461             j_coord_offsetD  = DIM*jnrD;
462
463             /* load j atom coordinates */
464             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
465                                               x+j_coord_offsetC,x+j_coord_offsetD,
466                                               &jx0,&jy0,&jz0);
467
468             /* Calculate displacement vector */
469             dx00             = _mm_sub_ps(ix0,jx0);
470             dy00             = _mm_sub_ps(iy0,jy0);
471             dz00             = _mm_sub_ps(iz0,jz0);
472             dx10             = _mm_sub_ps(ix1,jx0);
473             dy10             = _mm_sub_ps(iy1,jy0);
474             dz10             = _mm_sub_ps(iz1,jz0);
475             dx20             = _mm_sub_ps(ix2,jx0);
476             dy20             = _mm_sub_ps(iy2,jy0);
477             dz20             = _mm_sub_ps(iz2,jz0);
478             dx30             = _mm_sub_ps(ix3,jx0);
479             dy30             = _mm_sub_ps(iy3,jy0);
480             dz30             = _mm_sub_ps(iz3,jz0);
481
482             /* Calculate squared distance and things based on it */
483             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
484             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
485             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
486             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
487
488             rinv00           = avx128fma_invsqrt_f(rsq00);
489             rinv10           = avx128fma_invsqrt_f(rsq10);
490             rinv20           = avx128fma_invsqrt_f(rsq20);
491             rinv30           = avx128fma_invsqrt_f(rsq30);
492
493             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
494             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
495             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
496
497             /* Load parameters for j particles */
498             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
499                                                               charge+jnrC+0,charge+jnrD+0);
500             vdwjidx0A        = 2*vdwtype[jnrA+0];
501             vdwjidx0B        = 2*vdwtype[jnrB+0];
502             vdwjidx0C        = 2*vdwtype[jnrC+0];
503             vdwjidx0D        = 2*vdwtype[jnrD+0];
504
505             fjx0             = _mm_setzero_ps();
506             fjy0             = _mm_setzero_ps();
507             fjz0             = _mm_setzero_ps();
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             r00              = _mm_mul_ps(rsq00,rinv00);
514             r00              = _mm_andnot_ps(dummy_mask,r00);
515
516             /* Compute parameters for interactions between i and j atoms */
517             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
518                                          vdwparam+vdwioffset0+vdwjidx0B,
519                                          vdwparam+vdwioffset0+vdwjidx0C,
520                                          vdwparam+vdwioffset0+vdwjidx0D,
521                                          &c6_00,&c12_00);
522
523             /* Calculate table index by multiplying r with table scale and truncate to integer */
524             rt               = _mm_mul_ps(r00,vftabscale);
525             vfitab           = _mm_cvttps_epi32(rt);
526 #ifdef __XOP__
527             vfeps            = _mm_frcz_ps(rt);
528 #else
529             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
530 #endif
531             twovfeps         = _mm_add_ps(vfeps,vfeps);
532             vfitab           = _mm_slli_epi32(vfitab,3);
533
534             /* CUBIC SPLINE TABLE DISPERSION */
535             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
536             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
537             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
538             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
539             _MM_TRANSPOSE4_PS(Y,F,G,H);
540             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
541             VV               = _mm_macc_ps(vfeps,Fp,Y);
542             vvdw6            = _mm_mul_ps(c6_00,VV);
543             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
544             fvdw6            = _mm_mul_ps(c6_00,FF);
545
546             /* CUBIC SPLINE TABLE REPULSION */
547             vfitab           = _mm_add_epi32(vfitab,ifour);
548             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
549             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
550             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
551             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
552             _MM_TRANSPOSE4_PS(Y,F,G,H);
553             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
554             VV               = _mm_macc_ps(vfeps,Fp,Y);
555             vvdw12           = _mm_mul_ps(c12_00,VV);
556             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
557             fvdw12           = _mm_mul_ps(c12_00,FF);
558             vvdw             = _mm_add_ps(vvdw12,vvdw6);
559             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
560
561             /* Update potential sum for this i atom from the interaction with this j atom. */
562             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
563             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
564
565             fscal            = fvdw;
566
567             fscal            = _mm_andnot_ps(dummy_mask,fscal);
568
569              /* Update vectorial force */
570             fix0             = _mm_macc_ps(dx00,fscal,fix0);
571             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
572             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
573
574             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
575             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
576             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r10              = _mm_mul_ps(rsq10,rinv10);
583             r10              = _mm_andnot_ps(dummy_mask,r10);
584
585             /* Compute parameters for interactions between i and j atoms */
586             qq10             = _mm_mul_ps(iq1,jq0);
587
588             /* EWALD ELECTROSTATICS */
589
590             /* Analytical PME correction */
591             zeta2            = _mm_mul_ps(beta2,rsq10);
592             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
593             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
594             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
595             felec            = _mm_mul_ps(qq10,felec);
596             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
597             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
598             velec            = _mm_mul_ps(qq10,velec);
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velec            = _mm_andnot_ps(dummy_mask,velec);
602             velecsum         = _mm_add_ps(velecsum,velec);
603
604             fscal            = felec;
605
606             fscal            = _mm_andnot_ps(dummy_mask,fscal);
607
608              /* Update vectorial force */
609             fix1             = _mm_macc_ps(dx10,fscal,fix1);
610             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
611             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
612
613             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
614             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
615             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             r20              = _mm_mul_ps(rsq20,rinv20);
622             r20              = _mm_andnot_ps(dummy_mask,r20);
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq20             = _mm_mul_ps(iq2,jq0);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Analytical PME correction */
630             zeta2            = _mm_mul_ps(beta2,rsq20);
631             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
632             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
633             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
634             felec            = _mm_mul_ps(qq20,felec);
635             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
636             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
637             velec            = _mm_mul_ps(qq20,velec);
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velec            = _mm_andnot_ps(dummy_mask,velec);
641             velecsum         = _mm_add_ps(velecsum,velec);
642
643             fscal            = felec;
644
645             fscal            = _mm_andnot_ps(dummy_mask,fscal);
646
647              /* Update vectorial force */
648             fix2             = _mm_macc_ps(dx20,fscal,fix2);
649             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
650             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
651
652             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
653             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
654             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
655
656             /**************************
657              * CALCULATE INTERACTIONS *
658              **************************/
659
660             r30              = _mm_mul_ps(rsq30,rinv30);
661             r30              = _mm_andnot_ps(dummy_mask,r30);
662
663             /* Compute parameters for interactions between i and j atoms */
664             qq30             = _mm_mul_ps(iq3,jq0);
665
666             /* EWALD ELECTROSTATICS */
667
668             /* Analytical PME correction */
669             zeta2            = _mm_mul_ps(beta2,rsq30);
670             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
671             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
672             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
673             felec            = _mm_mul_ps(qq30,felec);
674             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
675             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
676             velec            = _mm_mul_ps(qq30,velec);
677
678             /* Update potential sum for this i atom from the interaction with this j atom. */
679             velec            = _mm_andnot_ps(dummy_mask,velec);
680             velecsum         = _mm_add_ps(velecsum,velec);
681
682             fscal            = felec;
683
684             fscal            = _mm_andnot_ps(dummy_mask,fscal);
685
686              /* Update vectorial force */
687             fix3             = _mm_macc_ps(dx30,fscal,fix3);
688             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
689             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
690
691             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
692             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
693             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
694
695             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
696             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
697             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
698             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
699
700             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
701
702             /* Inner loop uses 150 flops */
703         }
704
705         /* End of innermost loop */
706
707         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
708                                               f+i_coord_offset,fshift+i_shift_offset);
709
710         ggid                        = gid[iidx];
711         /* Update potential energies */
712         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
713         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
714
715         /* Increment number of inner iterations */
716         inneriter                  += j_index_end - j_index_start;
717
718         /* Outer loop uses 26 flops */
719     }
720
721     /* Increment number of outer iterations */
722     outeriter        += nri;
723
724     /* Update outer/inner flops */
725
726     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*150);
727 }
728 /*
729  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_128_fma_single
730  * Electrostatics interaction: Ewald
731  * VdW interaction:            CubicSplineTable
732  * Geometry:                   Water4-Particle
733  * Calculate force/pot:        Force
734  */
735 void
736 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_128_fma_single
737                     (t_nblist                    * gmx_restrict       nlist,
738                      rvec                        * gmx_restrict          xx,
739                      rvec                        * gmx_restrict          ff,
740                      struct t_forcerec           * gmx_restrict          fr,
741                      t_mdatoms                   * gmx_restrict     mdatoms,
742                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
743                      t_nrnb                      * gmx_restrict        nrnb)
744 {
745     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
746      * just 0 for non-waters.
747      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
748      * jnr indices corresponding to data put in the four positions in the SIMD register.
749      */
750     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
751     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
752     int              jnrA,jnrB,jnrC,jnrD;
753     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
754     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
755     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
756     real             rcutoff_scalar;
757     real             *shiftvec,*fshift,*x,*f;
758     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
759     real             scratch[4*DIM];
760     __m128           fscal,rcutoff,rcutoff2,jidxall;
761     int              vdwioffset0;
762     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
763     int              vdwioffset1;
764     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
765     int              vdwioffset2;
766     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
767     int              vdwioffset3;
768     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
769     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
770     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
771     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
772     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
773     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
774     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
775     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
776     real             *charge;
777     int              nvdwtype;
778     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
779     int              *vdwtype;
780     real             *vdwparam;
781     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
782     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
783     __m128i          vfitab;
784     __m128i          ifour       = _mm_set1_epi32(4);
785     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
786     real             *vftab;
787     __m128i          ewitab;
788     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
789     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
790     real             *ewtab;
791     __m128           dummy_mask,cutoff_mask;
792     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
793     __m128           one     = _mm_set1_ps(1.0);
794     __m128           two     = _mm_set1_ps(2.0);
795     x                = xx[0];
796     f                = ff[0];
797
798     nri              = nlist->nri;
799     iinr             = nlist->iinr;
800     jindex           = nlist->jindex;
801     jjnr             = nlist->jjnr;
802     shiftidx         = nlist->shift;
803     gid              = nlist->gid;
804     shiftvec         = fr->shift_vec[0];
805     fshift           = fr->fshift[0];
806     facel            = _mm_set1_ps(fr->ic->epsfac);
807     charge           = mdatoms->chargeA;
808     nvdwtype         = fr->ntype;
809     vdwparam         = fr->nbfp;
810     vdwtype          = mdatoms->typeA;
811
812     vftab            = kernel_data->table_vdw->data;
813     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
814
815     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
816     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
817     beta2            = _mm_mul_ps(beta,beta);
818     beta3            = _mm_mul_ps(beta,beta2);
819     ewtab            = fr->ic->tabq_coul_F;
820     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
821     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
822
823     /* Setup water-specific parameters */
824     inr              = nlist->iinr[0];
825     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
826     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
827     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
828     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
829
830     /* Avoid stupid compiler warnings */
831     jnrA = jnrB = jnrC = jnrD = 0;
832     j_coord_offsetA = 0;
833     j_coord_offsetB = 0;
834     j_coord_offsetC = 0;
835     j_coord_offsetD = 0;
836
837     outeriter        = 0;
838     inneriter        = 0;
839
840     for(iidx=0;iidx<4*DIM;iidx++)
841     {
842         scratch[iidx] = 0.0;
843     }
844
845     /* Start outer loop over neighborlists */
846     for(iidx=0; iidx<nri; iidx++)
847     {
848         /* Load shift vector for this list */
849         i_shift_offset   = DIM*shiftidx[iidx];
850
851         /* Load limits for loop over neighbors */
852         j_index_start    = jindex[iidx];
853         j_index_end      = jindex[iidx+1];
854
855         /* Get outer coordinate index */
856         inr              = iinr[iidx];
857         i_coord_offset   = DIM*inr;
858
859         /* Load i particle coords and add shift vector */
860         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
861                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
862
863         fix0             = _mm_setzero_ps();
864         fiy0             = _mm_setzero_ps();
865         fiz0             = _mm_setzero_ps();
866         fix1             = _mm_setzero_ps();
867         fiy1             = _mm_setzero_ps();
868         fiz1             = _mm_setzero_ps();
869         fix2             = _mm_setzero_ps();
870         fiy2             = _mm_setzero_ps();
871         fiz2             = _mm_setzero_ps();
872         fix3             = _mm_setzero_ps();
873         fiy3             = _mm_setzero_ps();
874         fiz3             = _mm_setzero_ps();
875
876         /* Start inner kernel loop */
877         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
878         {
879
880             /* Get j neighbor index, and coordinate index */
881             jnrA             = jjnr[jidx];
882             jnrB             = jjnr[jidx+1];
883             jnrC             = jjnr[jidx+2];
884             jnrD             = jjnr[jidx+3];
885             j_coord_offsetA  = DIM*jnrA;
886             j_coord_offsetB  = DIM*jnrB;
887             j_coord_offsetC  = DIM*jnrC;
888             j_coord_offsetD  = DIM*jnrD;
889
890             /* load j atom coordinates */
891             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
892                                               x+j_coord_offsetC,x+j_coord_offsetD,
893                                               &jx0,&jy0,&jz0);
894
895             /* Calculate displacement vector */
896             dx00             = _mm_sub_ps(ix0,jx0);
897             dy00             = _mm_sub_ps(iy0,jy0);
898             dz00             = _mm_sub_ps(iz0,jz0);
899             dx10             = _mm_sub_ps(ix1,jx0);
900             dy10             = _mm_sub_ps(iy1,jy0);
901             dz10             = _mm_sub_ps(iz1,jz0);
902             dx20             = _mm_sub_ps(ix2,jx0);
903             dy20             = _mm_sub_ps(iy2,jy0);
904             dz20             = _mm_sub_ps(iz2,jz0);
905             dx30             = _mm_sub_ps(ix3,jx0);
906             dy30             = _mm_sub_ps(iy3,jy0);
907             dz30             = _mm_sub_ps(iz3,jz0);
908
909             /* Calculate squared distance and things based on it */
910             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
911             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
912             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
913             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
914
915             rinv00           = avx128fma_invsqrt_f(rsq00);
916             rinv10           = avx128fma_invsqrt_f(rsq10);
917             rinv20           = avx128fma_invsqrt_f(rsq20);
918             rinv30           = avx128fma_invsqrt_f(rsq30);
919
920             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
921             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
922             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
923
924             /* Load parameters for j particles */
925             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
926                                                               charge+jnrC+0,charge+jnrD+0);
927             vdwjidx0A        = 2*vdwtype[jnrA+0];
928             vdwjidx0B        = 2*vdwtype[jnrB+0];
929             vdwjidx0C        = 2*vdwtype[jnrC+0];
930             vdwjidx0D        = 2*vdwtype[jnrD+0];
931
932             fjx0             = _mm_setzero_ps();
933             fjy0             = _mm_setzero_ps();
934             fjz0             = _mm_setzero_ps();
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             r00              = _mm_mul_ps(rsq00,rinv00);
941
942             /* Compute parameters for interactions between i and j atoms */
943             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
944                                          vdwparam+vdwioffset0+vdwjidx0B,
945                                          vdwparam+vdwioffset0+vdwjidx0C,
946                                          vdwparam+vdwioffset0+vdwjidx0D,
947                                          &c6_00,&c12_00);
948
949             /* Calculate table index by multiplying r with table scale and truncate to integer */
950             rt               = _mm_mul_ps(r00,vftabscale);
951             vfitab           = _mm_cvttps_epi32(rt);
952 #ifdef __XOP__
953             vfeps            = _mm_frcz_ps(rt);
954 #else
955             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
956 #endif
957             twovfeps         = _mm_add_ps(vfeps,vfeps);
958             vfitab           = _mm_slli_epi32(vfitab,3);
959
960             /* CUBIC SPLINE TABLE DISPERSION */
961             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
962             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
963             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
964             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
965             _MM_TRANSPOSE4_PS(Y,F,G,H);
966             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
967             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
968             fvdw6            = _mm_mul_ps(c6_00,FF);
969
970             /* CUBIC SPLINE TABLE REPULSION */
971             vfitab           = _mm_add_epi32(vfitab,ifour);
972             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
973             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
974             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
975             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
976             _MM_TRANSPOSE4_PS(Y,F,G,H);
977             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
978             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
979             fvdw12           = _mm_mul_ps(c12_00,FF);
980             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
981
982             fscal            = fvdw;
983
984              /* Update vectorial force */
985             fix0             = _mm_macc_ps(dx00,fscal,fix0);
986             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
987             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
988
989             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
990             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
991             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
992
993             /**************************
994              * CALCULATE INTERACTIONS *
995              **************************/
996
997             r10              = _mm_mul_ps(rsq10,rinv10);
998
999             /* Compute parameters for interactions between i and j atoms */
1000             qq10             = _mm_mul_ps(iq1,jq0);
1001
1002             /* EWALD ELECTROSTATICS */
1003
1004             /* Analytical PME correction */
1005             zeta2            = _mm_mul_ps(beta2,rsq10);
1006             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1007             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1008             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1009             felec            = _mm_mul_ps(qq10,felec);
1010
1011             fscal            = felec;
1012
1013              /* Update vectorial force */
1014             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1015             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1016             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1017
1018             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1019             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1020             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1021
1022             /**************************
1023              * CALCULATE INTERACTIONS *
1024              **************************/
1025
1026             r20              = _mm_mul_ps(rsq20,rinv20);
1027
1028             /* Compute parameters for interactions between i and j atoms */
1029             qq20             = _mm_mul_ps(iq2,jq0);
1030
1031             /* EWALD ELECTROSTATICS */
1032
1033             /* Analytical PME correction */
1034             zeta2            = _mm_mul_ps(beta2,rsq20);
1035             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1036             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1037             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1038             felec            = _mm_mul_ps(qq20,felec);
1039
1040             fscal            = felec;
1041
1042              /* Update vectorial force */
1043             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1044             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1045             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1046
1047             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1048             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1049             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             r30              = _mm_mul_ps(rsq30,rinv30);
1056
1057             /* Compute parameters for interactions between i and j atoms */
1058             qq30             = _mm_mul_ps(iq3,jq0);
1059
1060             /* EWALD ELECTROSTATICS */
1061
1062             /* Analytical PME correction */
1063             zeta2            = _mm_mul_ps(beta2,rsq30);
1064             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1065             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1066             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1067             felec            = _mm_mul_ps(qq30,felec);
1068
1069             fscal            = felec;
1070
1071              /* Update vectorial force */
1072             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1073             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1074             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1075
1076             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1077             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1078             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1079
1080             fjptrA             = f+j_coord_offsetA;
1081             fjptrB             = f+j_coord_offsetB;
1082             fjptrC             = f+j_coord_offsetC;
1083             fjptrD             = f+j_coord_offsetD;
1084
1085             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1086
1087             /* Inner loop uses 135 flops */
1088         }
1089
1090         if(jidx<j_index_end)
1091         {
1092
1093             /* Get j neighbor index, and coordinate index */
1094             jnrlistA         = jjnr[jidx];
1095             jnrlistB         = jjnr[jidx+1];
1096             jnrlistC         = jjnr[jidx+2];
1097             jnrlistD         = jjnr[jidx+3];
1098             /* Sign of each element will be negative for non-real atoms.
1099              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1100              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1101              */
1102             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1103             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1104             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1105             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1106             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1107             j_coord_offsetA  = DIM*jnrA;
1108             j_coord_offsetB  = DIM*jnrB;
1109             j_coord_offsetC  = DIM*jnrC;
1110             j_coord_offsetD  = DIM*jnrD;
1111
1112             /* load j atom coordinates */
1113             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1114                                               x+j_coord_offsetC,x+j_coord_offsetD,
1115                                               &jx0,&jy0,&jz0);
1116
1117             /* Calculate displacement vector */
1118             dx00             = _mm_sub_ps(ix0,jx0);
1119             dy00             = _mm_sub_ps(iy0,jy0);
1120             dz00             = _mm_sub_ps(iz0,jz0);
1121             dx10             = _mm_sub_ps(ix1,jx0);
1122             dy10             = _mm_sub_ps(iy1,jy0);
1123             dz10             = _mm_sub_ps(iz1,jz0);
1124             dx20             = _mm_sub_ps(ix2,jx0);
1125             dy20             = _mm_sub_ps(iy2,jy0);
1126             dz20             = _mm_sub_ps(iz2,jz0);
1127             dx30             = _mm_sub_ps(ix3,jx0);
1128             dy30             = _mm_sub_ps(iy3,jy0);
1129             dz30             = _mm_sub_ps(iz3,jz0);
1130
1131             /* Calculate squared distance and things based on it */
1132             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1133             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1134             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1135             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1136
1137             rinv00           = avx128fma_invsqrt_f(rsq00);
1138             rinv10           = avx128fma_invsqrt_f(rsq10);
1139             rinv20           = avx128fma_invsqrt_f(rsq20);
1140             rinv30           = avx128fma_invsqrt_f(rsq30);
1141
1142             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1143             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1144             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1145
1146             /* Load parameters for j particles */
1147             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1148                                                               charge+jnrC+0,charge+jnrD+0);
1149             vdwjidx0A        = 2*vdwtype[jnrA+0];
1150             vdwjidx0B        = 2*vdwtype[jnrB+0];
1151             vdwjidx0C        = 2*vdwtype[jnrC+0];
1152             vdwjidx0D        = 2*vdwtype[jnrD+0];
1153
1154             fjx0             = _mm_setzero_ps();
1155             fjy0             = _mm_setzero_ps();
1156             fjz0             = _mm_setzero_ps();
1157
1158             /**************************
1159              * CALCULATE INTERACTIONS *
1160              **************************/
1161
1162             r00              = _mm_mul_ps(rsq00,rinv00);
1163             r00              = _mm_andnot_ps(dummy_mask,r00);
1164
1165             /* Compute parameters for interactions between i and j atoms */
1166             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1167                                          vdwparam+vdwioffset0+vdwjidx0B,
1168                                          vdwparam+vdwioffset0+vdwjidx0C,
1169                                          vdwparam+vdwioffset0+vdwjidx0D,
1170                                          &c6_00,&c12_00);
1171
1172             /* Calculate table index by multiplying r with table scale and truncate to integer */
1173             rt               = _mm_mul_ps(r00,vftabscale);
1174             vfitab           = _mm_cvttps_epi32(rt);
1175 #ifdef __XOP__
1176             vfeps            = _mm_frcz_ps(rt);
1177 #else
1178             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1179 #endif
1180             twovfeps         = _mm_add_ps(vfeps,vfeps);
1181             vfitab           = _mm_slli_epi32(vfitab,3);
1182
1183             /* CUBIC SPLINE TABLE DISPERSION */
1184             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1185             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1186             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1187             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1188             _MM_TRANSPOSE4_PS(Y,F,G,H);
1189             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1190             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1191             fvdw6            = _mm_mul_ps(c6_00,FF);
1192
1193             /* CUBIC SPLINE TABLE REPULSION */
1194             vfitab           = _mm_add_epi32(vfitab,ifour);
1195             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1196             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1197             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1198             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1199             _MM_TRANSPOSE4_PS(Y,F,G,H);
1200             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1201             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1202             fvdw12           = _mm_mul_ps(c12_00,FF);
1203             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1204
1205             fscal            = fvdw;
1206
1207             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1208
1209              /* Update vectorial force */
1210             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1211             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1212             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1213
1214             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1215             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1216             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1217
1218             /**************************
1219              * CALCULATE INTERACTIONS *
1220              **************************/
1221
1222             r10              = _mm_mul_ps(rsq10,rinv10);
1223             r10              = _mm_andnot_ps(dummy_mask,r10);
1224
1225             /* Compute parameters for interactions between i and j atoms */
1226             qq10             = _mm_mul_ps(iq1,jq0);
1227
1228             /* EWALD ELECTROSTATICS */
1229
1230             /* Analytical PME correction */
1231             zeta2            = _mm_mul_ps(beta2,rsq10);
1232             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1233             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1234             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1235             felec            = _mm_mul_ps(qq10,felec);
1236
1237             fscal            = felec;
1238
1239             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1240
1241              /* Update vectorial force */
1242             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1243             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1244             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1245
1246             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1247             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1248             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1249
1250             /**************************
1251              * CALCULATE INTERACTIONS *
1252              **************************/
1253
1254             r20              = _mm_mul_ps(rsq20,rinv20);
1255             r20              = _mm_andnot_ps(dummy_mask,r20);
1256
1257             /* Compute parameters for interactions between i and j atoms */
1258             qq20             = _mm_mul_ps(iq2,jq0);
1259
1260             /* EWALD ELECTROSTATICS */
1261
1262             /* Analytical PME correction */
1263             zeta2            = _mm_mul_ps(beta2,rsq20);
1264             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1265             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1266             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1267             felec            = _mm_mul_ps(qq20,felec);
1268
1269             fscal            = felec;
1270
1271             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1272
1273              /* Update vectorial force */
1274             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1275             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1276             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1277
1278             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1279             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1280             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1281
1282             /**************************
1283              * CALCULATE INTERACTIONS *
1284              **************************/
1285
1286             r30              = _mm_mul_ps(rsq30,rinv30);
1287             r30              = _mm_andnot_ps(dummy_mask,r30);
1288
1289             /* Compute parameters for interactions between i and j atoms */
1290             qq30             = _mm_mul_ps(iq3,jq0);
1291
1292             /* EWALD ELECTROSTATICS */
1293
1294             /* Analytical PME correction */
1295             zeta2            = _mm_mul_ps(beta2,rsq30);
1296             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1297             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1298             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1299             felec            = _mm_mul_ps(qq30,felec);
1300
1301             fscal            = felec;
1302
1303             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1304
1305              /* Update vectorial force */
1306             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1307             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1308             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1309
1310             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1311             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1312             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1313
1314             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1315             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1316             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1317             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1318
1319             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1320
1321             /* Inner loop uses 139 flops */
1322         }
1323
1324         /* End of innermost loop */
1325
1326         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1327                                               f+i_coord_offset,fshift+i_shift_offset);
1328
1329         /* Increment number of inner iterations */
1330         inneriter                  += j_index_end - j_index_start;
1331
1332         /* Outer loop uses 24 flops */
1333     }
1334
1335     /* Increment number of outer iterations */
1336     outeriter        += nri;
1337
1338     /* Update outer/inner flops */
1339
1340     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*139);
1341 }