Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
94     real             *vftab;
95     __m128i          ewitab;
96     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
98     real             *ewtab;
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_ps(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_vdw->data;
121     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
122
123     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
124     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
125     beta2            = _mm_mul_ps(beta,beta);
126     beta3            = _mm_mul_ps(beta,beta2);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
136     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
170
171         fix0             = _mm_setzero_ps();
172         fiy0             = _mm_setzero_ps();
173         fiz0             = _mm_setzero_ps();
174         fix1             = _mm_setzero_ps();
175         fiy1             = _mm_setzero_ps();
176         fiz1             = _mm_setzero_ps();
177         fix2             = _mm_setzero_ps();
178         fiy2             = _mm_setzero_ps();
179         fiz2             = _mm_setzero_ps();
180         fix3             = _mm_setzero_ps();
181         fiy3             = _mm_setzero_ps();
182         fiz3             = _mm_setzero_ps();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_ps();
186         vvdwsum          = _mm_setzero_ps();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             jnrC             = jjnr[jidx+2];
196             jnrD             = jjnr[jidx+3];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201
202             /* load j atom coordinates */
203             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
204                                               x+j_coord_offsetC,x+j_coord_offsetD,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_ps(ix0,jx0);
209             dy00             = _mm_sub_ps(iy0,jy0);
210             dz00             = _mm_sub_ps(iz0,jz0);
211             dx10             = _mm_sub_ps(ix1,jx0);
212             dy10             = _mm_sub_ps(iy1,jy0);
213             dz10             = _mm_sub_ps(iz1,jz0);
214             dx20             = _mm_sub_ps(ix2,jx0);
215             dy20             = _mm_sub_ps(iy2,jy0);
216             dz20             = _mm_sub_ps(iz2,jz0);
217             dx30             = _mm_sub_ps(ix3,jx0);
218             dy30             = _mm_sub_ps(iy3,jy0);
219             dz30             = _mm_sub_ps(iz3,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
223             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
224             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
225             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
226
227             rinv00           = gmx_mm_invsqrt_ps(rsq00);
228             rinv10           = gmx_mm_invsqrt_ps(rsq10);
229             rinv20           = gmx_mm_invsqrt_ps(rsq20);
230             rinv30           = gmx_mm_invsqrt_ps(rsq30);
231
232             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
233             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
234             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
235
236             /* Load parameters for j particles */
237             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
238                                                               charge+jnrC+0,charge+jnrD+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241             vdwjidx0C        = 2*vdwtype[jnrC+0];
242             vdwjidx0D        = 2*vdwtype[jnrD+0];
243
244             fjx0             = _mm_setzero_ps();
245             fjy0             = _mm_setzero_ps();
246             fjz0             = _mm_setzero_ps();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             r00              = _mm_mul_ps(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
256                                          vdwparam+vdwioffset0+vdwjidx0B,
257                                          vdwparam+vdwioffset0+vdwjidx0C,
258                                          vdwparam+vdwioffset0+vdwjidx0D,
259                                          &c6_00,&c12_00);
260
261             /* Calculate table index by multiplying r with table scale and truncate to integer */
262             rt               = _mm_mul_ps(r00,vftabscale);
263             vfitab           = _mm_cvttps_epi32(rt);
264 #ifdef __XOP__
265             vfeps            = _mm_frcz_ps(rt);
266 #else
267             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
268 #endif
269             twovfeps         = _mm_add_ps(vfeps,vfeps);
270             vfitab           = _mm_slli_epi32(vfitab,3);
271
272             /* CUBIC SPLINE TABLE DISPERSION */
273             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
274             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
275             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
276             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
277             _MM_TRANSPOSE4_PS(Y,F,G,H);
278             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
279             VV               = _mm_macc_ps(vfeps,Fp,Y);
280             vvdw6            = _mm_mul_ps(c6_00,VV);
281             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
282             fvdw6            = _mm_mul_ps(c6_00,FF);
283
284             /* CUBIC SPLINE TABLE REPULSION */
285             vfitab           = _mm_add_epi32(vfitab,ifour);
286             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
287             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
288             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
289             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
290             _MM_TRANSPOSE4_PS(Y,F,G,H);
291             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
292             VV               = _mm_macc_ps(vfeps,Fp,Y);
293             vvdw12           = _mm_mul_ps(c12_00,VV);
294             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
295             fvdw12           = _mm_mul_ps(c12_00,FF);
296             vvdw             = _mm_add_ps(vvdw12,vvdw6);
297             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
301
302             fscal            = fvdw;
303
304              /* Update vectorial force */
305             fix0             = _mm_macc_ps(dx00,fscal,fix0);
306             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
307             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
308
309             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
310             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
311             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             r10              = _mm_mul_ps(rsq10,rinv10);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm_mul_ps(iq1,jq0);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Analytical PME correction */
325             zeta2            = _mm_mul_ps(beta2,rsq10);
326             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
327             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
328             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
329             felec            = _mm_mul_ps(qq10,felec);
330             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
331             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
332             velec            = _mm_mul_ps(qq10,velec);
333
334             /* Update potential sum for this i atom from the interaction with this j atom. */
335             velecsum         = _mm_add_ps(velecsum,velec);
336
337             fscal            = felec;
338
339              /* Update vectorial force */
340             fix1             = _mm_macc_ps(dx10,fscal,fix1);
341             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
342             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
343
344             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
345             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
346             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             r20              = _mm_mul_ps(rsq20,rinv20);
353
354             /* Compute parameters for interactions between i and j atoms */
355             qq20             = _mm_mul_ps(iq2,jq0);
356
357             /* EWALD ELECTROSTATICS */
358
359             /* Analytical PME correction */
360             zeta2            = _mm_mul_ps(beta2,rsq20);
361             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
362             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
363             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
364             felec            = _mm_mul_ps(qq20,felec);
365             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
366             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
367             velec            = _mm_mul_ps(qq20,velec);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velecsum         = _mm_add_ps(velecsum,velec);
371
372             fscal            = felec;
373
374              /* Update vectorial force */
375             fix2             = _mm_macc_ps(dx20,fscal,fix2);
376             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
377             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
378
379             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
380             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
381             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
382
383             /**************************
384              * CALCULATE INTERACTIONS *
385              **************************/
386
387             r30              = _mm_mul_ps(rsq30,rinv30);
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq30             = _mm_mul_ps(iq3,jq0);
391
392             /* EWALD ELECTROSTATICS */
393
394             /* Analytical PME correction */
395             zeta2            = _mm_mul_ps(beta2,rsq30);
396             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
397             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
398             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
399             felec            = _mm_mul_ps(qq30,felec);
400             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
401             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
402             velec            = _mm_mul_ps(qq30,velec);
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velecsum         = _mm_add_ps(velecsum,velec);
406
407             fscal            = felec;
408
409              /* Update vectorial force */
410             fix3             = _mm_macc_ps(dx30,fscal,fix3);
411             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
412             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
413
414             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
415             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
416             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
417
418             fjptrA             = f+j_coord_offsetA;
419             fjptrB             = f+j_coord_offsetB;
420             fjptrC             = f+j_coord_offsetC;
421             fjptrD             = f+j_coord_offsetD;
422
423             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
424
425             /* Inner loop uses 146 flops */
426         }
427
428         if(jidx<j_index_end)
429         {
430
431             /* Get j neighbor index, and coordinate index */
432             jnrlistA         = jjnr[jidx];
433             jnrlistB         = jjnr[jidx+1];
434             jnrlistC         = jjnr[jidx+2];
435             jnrlistD         = jjnr[jidx+3];
436             /* Sign of each element will be negative for non-real atoms.
437              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
438              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
439              */
440             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
441             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
442             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
443             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
444             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
445             j_coord_offsetA  = DIM*jnrA;
446             j_coord_offsetB  = DIM*jnrB;
447             j_coord_offsetC  = DIM*jnrC;
448             j_coord_offsetD  = DIM*jnrD;
449
450             /* load j atom coordinates */
451             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
452                                               x+j_coord_offsetC,x+j_coord_offsetD,
453                                               &jx0,&jy0,&jz0);
454
455             /* Calculate displacement vector */
456             dx00             = _mm_sub_ps(ix0,jx0);
457             dy00             = _mm_sub_ps(iy0,jy0);
458             dz00             = _mm_sub_ps(iz0,jz0);
459             dx10             = _mm_sub_ps(ix1,jx0);
460             dy10             = _mm_sub_ps(iy1,jy0);
461             dz10             = _mm_sub_ps(iz1,jz0);
462             dx20             = _mm_sub_ps(ix2,jx0);
463             dy20             = _mm_sub_ps(iy2,jy0);
464             dz20             = _mm_sub_ps(iz2,jz0);
465             dx30             = _mm_sub_ps(ix3,jx0);
466             dy30             = _mm_sub_ps(iy3,jy0);
467             dz30             = _mm_sub_ps(iz3,jz0);
468
469             /* Calculate squared distance and things based on it */
470             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
471             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
472             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
473             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
474
475             rinv00           = gmx_mm_invsqrt_ps(rsq00);
476             rinv10           = gmx_mm_invsqrt_ps(rsq10);
477             rinv20           = gmx_mm_invsqrt_ps(rsq20);
478             rinv30           = gmx_mm_invsqrt_ps(rsq30);
479
480             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
481             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
482             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
483
484             /* Load parameters for j particles */
485             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
486                                                               charge+jnrC+0,charge+jnrD+0);
487             vdwjidx0A        = 2*vdwtype[jnrA+0];
488             vdwjidx0B        = 2*vdwtype[jnrB+0];
489             vdwjidx0C        = 2*vdwtype[jnrC+0];
490             vdwjidx0D        = 2*vdwtype[jnrD+0];
491
492             fjx0             = _mm_setzero_ps();
493             fjy0             = _mm_setzero_ps();
494             fjz0             = _mm_setzero_ps();
495
496             /**************************
497              * CALCULATE INTERACTIONS *
498              **************************/
499
500             r00              = _mm_mul_ps(rsq00,rinv00);
501             r00              = _mm_andnot_ps(dummy_mask,r00);
502
503             /* Compute parameters for interactions between i and j atoms */
504             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
505                                          vdwparam+vdwioffset0+vdwjidx0B,
506                                          vdwparam+vdwioffset0+vdwjidx0C,
507                                          vdwparam+vdwioffset0+vdwjidx0D,
508                                          &c6_00,&c12_00);
509
510             /* Calculate table index by multiplying r with table scale and truncate to integer */
511             rt               = _mm_mul_ps(r00,vftabscale);
512             vfitab           = _mm_cvttps_epi32(rt);
513 #ifdef __XOP__
514             vfeps            = _mm_frcz_ps(rt);
515 #else
516             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
517 #endif
518             twovfeps         = _mm_add_ps(vfeps,vfeps);
519             vfitab           = _mm_slli_epi32(vfitab,3);
520
521             /* CUBIC SPLINE TABLE DISPERSION */
522             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
523             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
524             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
525             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
526             _MM_TRANSPOSE4_PS(Y,F,G,H);
527             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
528             VV               = _mm_macc_ps(vfeps,Fp,Y);
529             vvdw6            = _mm_mul_ps(c6_00,VV);
530             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
531             fvdw6            = _mm_mul_ps(c6_00,FF);
532
533             /* CUBIC SPLINE TABLE REPULSION */
534             vfitab           = _mm_add_epi32(vfitab,ifour);
535             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
536             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
537             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
538             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
539             _MM_TRANSPOSE4_PS(Y,F,G,H);
540             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
541             VV               = _mm_macc_ps(vfeps,Fp,Y);
542             vvdw12           = _mm_mul_ps(c12_00,VV);
543             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
544             fvdw12           = _mm_mul_ps(c12_00,FF);
545             vvdw             = _mm_add_ps(vvdw12,vvdw6);
546             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
550             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
551
552             fscal            = fvdw;
553
554             fscal            = _mm_andnot_ps(dummy_mask,fscal);
555
556              /* Update vectorial force */
557             fix0             = _mm_macc_ps(dx00,fscal,fix0);
558             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
559             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
560
561             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
562             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
563             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             r10              = _mm_mul_ps(rsq10,rinv10);
570             r10              = _mm_andnot_ps(dummy_mask,r10);
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq10             = _mm_mul_ps(iq1,jq0);
574
575             /* EWALD ELECTROSTATICS */
576
577             /* Analytical PME correction */
578             zeta2            = _mm_mul_ps(beta2,rsq10);
579             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
580             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
581             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
582             felec            = _mm_mul_ps(qq10,felec);
583             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
584             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
585             velec            = _mm_mul_ps(qq10,velec);
586
587             /* Update potential sum for this i atom from the interaction with this j atom. */
588             velec            = _mm_andnot_ps(dummy_mask,velec);
589             velecsum         = _mm_add_ps(velecsum,velec);
590
591             fscal            = felec;
592
593             fscal            = _mm_andnot_ps(dummy_mask,fscal);
594
595              /* Update vectorial force */
596             fix1             = _mm_macc_ps(dx10,fscal,fix1);
597             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
598             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
599
600             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
601             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
602             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
603
604             /**************************
605              * CALCULATE INTERACTIONS *
606              **************************/
607
608             r20              = _mm_mul_ps(rsq20,rinv20);
609             r20              = _mm_andnot_ps(dummy_mask,r20);
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq20             = _mm_mul_ps(iq2,jq0);
613
614             /* EWALD ELECTROSTATICS */
615
616             /* Analytical PME correction */
617             zeta2            = _mm_mul_ps(beta2,rsq20);
618             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
619             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
620             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
621             felec            = _mm_mul_ps(qq20,felec);
622             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
623             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
624             velec            = _mm_mul_ps(qq20,velec);
625
626             /* Update potential sum for this i atom from the interaction with this j atom. */
627             velec            = _mm_andnot_ps(dummy_mask,velec);
628             velecsum         = _mm_add_ps(velecsum,velec);
629
630             fscal            = felec;
631
632             fscal            = _mm_andnot_ps(dummy_mask,fscal);
633
634              /* Update vectorial force */
635             fix2             = _mm_macc_ps(dx20,fscal,fix2);
636             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
637             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
638
639             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
640             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
641             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
642
643             /**************************
644              * CALCULATE INTERACTIONS *
645              **************************/
646
647             r30              = _mm_mul_ps(rsq30,rinv30);
648             r30              = _mm_andnot_ps(dummy_mask,r30);
649
650             /* Compute parameters for interactions between i and j atoms */
651             qq30             = _mm_mul_ps(iq3,jq0);
652
653             /* EWALD ELECTROSTATICS */
654
655             /* Analytical PME correction */
656             zeta2            = _mm_mul_ps(beta2,rsq30);
657             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
658             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
659             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
660             felec            = _mm_mul_ps(qq30,felec);
661             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
662             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
663             velec            = _mm_mul_ps(qq30,velec);
664
665             /* Update potential sum for this i atom from the interaction with this j atom. */
666             velec            = _mm_andnot_ps(dummy_mask,velec);
667             velecsum         = _mm_add_ps(velecsum,velec);
668
669             fscal            = felec;
670
671             fscal            = _mm_andnot_ps(dummy_mask,fscal);
672
673              /* Update vectorial force */
674             fix3             = _mm_macc_ps(dx30,fscal,fix3);
675             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
676             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
677
678             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
679             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
680             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
681
682             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
683             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
684             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
685             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
686
687             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
688
689             /* Inner loop uses 150 flops */
690         }
691
692         /* End of innermost loop */
693
694         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
695                                               f+i_coord_offset,fshift+i_shift_offset);
696
697         ggid                        = gid[iidx];
698         /* Update potential energies */
699         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
700         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
701
702         /* Increment number of inner iterations */
703         inneriter                  += j_index_end - j_index_start;
704
705         /* Outer loop uses 26 flops */
706     }
707
708     /* Increment number of outer iterations */
709     outeriter        += nri;
710
711     /* Update outer/inner flops */
712
713     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*150);
714 }
715 /*
716  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_128_fma_single
717  * Electrostatics interaction: Ewald
718  * VdW interaction:            CubicSplineTable
719  * Geometry:                   Water4-Particle
720  * Calculate force/pot:        Force
721  */
722 void
723 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_128_fma_single
724                     (t_nblist * gmx_restrict                nlist,
725                      rvec * gmx_restrict                    xx,
726                      rvec * gmx_restrict                    ff,
727                      t_forcerec * gmx_restrict              fr,
728                      t_mdatoms * gmx_restrict               mdatoms,
729                      nb_kernel_data_t * gmx_restrict        kernel_data,
730                      t_nrnb * gmx_restrict                  nrnb)
731 {
732     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
733      * just 0 for non-waters.
734      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
735      * jnr indices corresponding to data put in the four positions in the SIMD register.
736      */
737     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
738     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
739     int              jnrA,jnrB,jnrC,jnrD;
740     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
741     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
742     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
743     real             rcutoff_scalar;
744     real             *shiftvec,*fshift,*x,*f;
745     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
746     real             scratch[4*DIM];
747     __m128           fscal,rcutoff,rcutoff2,jidxall;
748     int              vdwioffset0;
749     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
750     int              vdwioffset1;
751     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
752     int              vdwioffset2;
753     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
754     int              vdwioffset3;
755     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
756     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
757     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
758     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
759     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
760     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
761     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
762     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
763     real             *charge;
764     int              nvdwtype;
765     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
766     int              *vdwtype;
767     real             *vdwparam;
768     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
769     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
770     __m128i          vfitab;
771     __m128i          ifour       = _mm_set1_epi32(4);
772     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
773     real             *vftab;
774     __m128i          ewitab;
775     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
776     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
777     real             *ewtab;
778     __m128           dummy_mask,cutoff_mask;
779     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
780     __m128           one     = _mm_set1_ps(1.0);
781     __m128           two     = _mm_set1_ps(2.0);
782     x                = xx[0];
783     f                = ff[0];
784
785     nri              = nlist->nri;
786     iinr             = nlist->iinr;
787     jindex           = nlist->jindex;
788     jjnr             = nlist->jjnr;
789     shiftidx         = nlist->shift;
790     gid              = nlist->gid;
791     shiftvec         = fr->shift_vec[0];
792     fshift           = fr->fshift[0];
793     facel            = _mm_set1_ps(fr->epsfac);
794     charge           = mdatoms->chargeA;
795     nvdwtype         = fr->ntype;
796     vdwparam         = fr->nbfp;
797     vdwtype          = mdatoms->typeA;
798
799     vftab            = kernel_data->table_vdw->data;
800     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
801
802     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
803     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
804     beta2            = _mm_mul_ps(beta,beta);
805     beta3            = _mm_mul_ps(beta,beta2);
806     ewtab            = fr->ic->tabq_coul_F;
807     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
808     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
809
810     /* Setup water-specific parameters */
811     inr              = nlist->iinr[0];
812     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
813     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
814     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
815     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
816
817     /* Avoid stupid compiler warnings */
818     jnrA = jnrB = jnrC = jnrD = 0;
819     j_coord_offsetA = 0;
820     j_coord_offsetB = 0;
821     j_coord_offsetC = 0;
822     j_coord_offsetD = 0;
823
824     outeriter        = 0;
825     inneriter        = 0;
826
827     for(iidx=0;iidx<4*DIM;iidx++)
828     {
829         scratch[iidx] = 0.0;
830     }
831
832     /* Start outer loop over neighborlists */
833     for(iidx=0; iidx<nri; iidx++)
834     {
835         /* Load shift vector for this list */
836         i_shift_offset   = DIM*shiftidx[iidx];
837
838         /* Load limits for loop over neighbors */
839         j_index_start    = jindex[iidx];
840         j_index_end      = jindex[iidx+1];
841
842         /* Get outer coordinate index */
843         inr              = iinr[iidx];
844         i_coord_offset   = DIM*inr;
845
846         /* Load i particle coords and add shift vector */
847         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
848                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
849
850         fix0             = _mm_setzero_ps();
851         fiy0             = _mm_setzero_ps();
852         fiz0             = _mm_setzero_ps();
853         fix1             = _mm_setzero_ps();
854         fiy1             = _mm_setzero_ps();
855         fiz1             = _mm_setzero_ps();
856         fix2             = _mm_setzero_ps();
857         fiy2             = _mm_setzero_ps();
858         fiz2             = _mm_setzero_ps();
859         fix3             = _mm_setzero_ps();
860         fiy3             = _mm_setzero_ps();
861         fiz3             = _mm_setzero_ps();
862
863         /* Start inner kernel loop */
864         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
865         {
866
867             /* Get j neighbor index, and coordinate index */
868             jnrA             = jjnr[jidx];
869             jnrB             = jjnr[jidx+1];
870             jnrC             = jjnr[jidx+2];
871             jnrD             = jjnr[jidx+3];
872             j_coord_offsetA  = DIM*jnrA;
873             j_coord_offsetB  = DIM*jnrB;
874             j_coord_offsetC  = DIM*jnrC;
875             j_coord_offsetD  = DIM*jnrD;
876
877             /* load j atom coordinates */
878             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
879                                               x+j_coord_offsetC,x+j_coord_offsetD,
880                                               &jx0,&jy0,&jz0);
881
882             /* Calculate displacement vector */
883             dx00             = _mm_sub_ps(ix0,jx0);
884             dy00             = _mm_sub_ps(iy0,jy0);
885             dz00             = _mm_sub_ps(iz0,jz0);
886             dx10             = _mm_sub_ps(ix1,jx0);
887             dy10             = _mm_sub_ps(iy1,jy0);
888             dz10             = _mm_sub_ps(iz1,jz0);
889             dx20             = _mm_sub_ps(ix2,jx0);
890             dy20             = _mm_sub_ps(iy2,jy0);
891             dz20             = _mm_sub_ps(iz2,jz0);
892             dx30             = _mm_sub_ps(ix3,jx0);
893             dy30             = _mm_sub_ps(iy3,jy0);
894             dz30             = _mm_sub_ps(iz3,jz0);
895
896             /* Calculate squared distance and things based on it */
897             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
898             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
899             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
900             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
901
902             rinv00           = gmx_mm_invsqrt_ps(rsq00);
903             rinv10           = gmx_mm_invsqrt_ps(rsq10);
904             rinv20           = gmx_mm_invsqrt_ps(rsq20);
905             rinv30           = gmx_mm_invsqrt_ps(rsq30);
906
907             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
908             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
909             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
910
911             /* Load parameters for j particles */
912             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
913                                                               charge+jnrC+0,charge+jnrD+0);
914             vdwjidx0A        = 2*vdwtype[jnrA+0];
915             vdwjidx0B        = 2*vdwtype[jnrB+0];
916             vdwjidx0C        = 2*vdwtype[jnrC+0];
917             vdwjidx0D        = 2*vdwtype[jnrD+0];
918
919             fjx0             = _mm_setzero_ps();
920             fjy0             = _mm_setzero_ps();
921             fjz0             = _mm_setzero_ps();
922
923             /**************************
924              * CALCULATE INTERACTIONS *
925              **************************/
926
927             r00              = _mm_mul_ps(rsq00,rinv00);
928
929             /* Compute parameters for interactions between i and j atoms */
930             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
931                                          vdwparam+vdwioffset0+vdwjidx0B,
932                                          vdwparam+vdwioffset0+vdwjidx0C,
933                                          vdwparam+vdwioffset0+vdwjidx0D,
934                                          &c6_00,&c12_00);
935
936             /* Calculate table index by multiplying r with table scale and truncate to integer */
937             rt               = _mm_mul_ps(r00,vftabscale);
938             vfitab           = _mm_cvttps_epi32(rt);
939 #ifdef __XOP__
940             vfeps            = _mm_frcz_ps(rt);
941 #else
942             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
943 #endif
944             twovfeps         = _mm_add_ps(vfeps,vfeps);
945             vfitab           = _mm_slli_epi32(vfitab,3);
946
947             /* CUBIC SPLINE TABLE DISPERSION */
948             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
949             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
950             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
951             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
952             _MM_TRANSPOSE4_PS(Y,F,G,H);
953             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
954             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
955             fvdw6            = _mm_mul_ps(c6_00,FF);
956
957             /* CUBIC SPLINE TABLE REPULSION */
958             vfitab           = _mm_add_epi32(vfitab,ifour);
959             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
960             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
961             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
962             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
963             _MM_TRANSPOSE4_PS(Y,F,G,H);
964             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
965             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
966             fvdw12           = _mm_mul_ps(c12_00,FF);
967             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
968
969             fscal            = fvdw;
970
971              /* Update vectorial force */
972             fix0             = _mm_macc_ps(dx00,fscal,fix0);
973             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
974             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
975
976             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
977             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
978             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
979
980             /**************************
981              * CALCULATE INTERACTIONS *
982              **************************/
983
984             r10              = _mm_mul_ps(rsq10,rinv10);
985
986             /* Compute parameters for interactions between i and j atoms */
987             qq10             = _mm_mul_ps(iq1,jq0);
988
989             /* EWALD ELECTROSTATICS */
990
991             /* Analytical PME correction */
992             zeta2            = _mm_mul_ps(beta2,rsq10);
993             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
994             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
995             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
996             felec            = _mm_mul_ps(qq10,felec);
997
998             fscal            = felec;
999
1000              /* Update vectorial force */
1001             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1002             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1003             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1004
1005             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1006             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1007             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1008
1009             /**************************
1010              * CALCULATE INTERACTIONS *
1011              **************************/
1012
1013             r20              = _mm_mul_ps(rsq20,rinv20);
1014
1015             /* Compute parameters for interactions between i and j atoms */
1016             qq20             = _mm_mul_ps(iq2,jq0);
1017
1018             /* EWALD ELECTROSTATICS */
1019
1020             /* Analytical PME correction */
1021             zeta2            = _mm_mul_ps(beta2,rsq20);
1022             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1023             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1024             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1025             felec            = _mm_mul_ps(qq20,felec);
1026
1027             fscal            = felec;
1028
1029              /* Update vectorial force */
1030             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1031             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1032             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1033
1034             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1035             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1036             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             r30              = _mm_mul_ps(rsq30,rinv30);
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             qq30             = _mm_mul_ps(iq3,jq0);
1046
1047             /* EWALD ELECTROSTATICS */
1048
1049             /* Analytical PME correction */
1050             zeta2            = _mm_mul_ps(beta2,rsq30);
1051             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1052             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1053             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1054             felec            = _mm_mul_ps(qq30,felec);
1055
1056             fscal            = felec;
1057
1058              /* Update vectorial force */
1059             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1060             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1061             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1062
1063             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1064             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1065             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1066
1067             fjptrA             = f+j_coord_offsetA;
1068             fjptrB             = f+j_coord_offsetB;
1069             fjptrC             = f+j_coord_offsetC;
1070             fjptrD             = f+j_coord_offsetD;
1071
1072             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1073
1074             /* Inner loop uses 135 flops */
1075         }
1076
1077         if(jidx<j_index_end)
1078         {
1079
1080             /* Get j neighbor index, and coordinate index */
1081             jnrlistA         = jjnr[jidx];
1082             jnrlistB         = jjnr[jidx+1];
1083             jnrlistC         = jjnr[jidx+2];
1084             jnrlistD         = jjnr[jidx+3];
1085             /* Sign of each element will be negative for non-real atoms.
1086              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1087              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1088              */
1089             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1090             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1091             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1092             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1093             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1094             j_coord_offsetA  = DIM*jnrA;
1095             j_coord_offsetB  = DIM*jnrB;
1096             j_coord_offsetC  = DIM*jnrC;
1097             j_coord_offsetD  = DIM*jnrD;
1098
1099             /* load j atom coordinates */
1100             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1101                                               x+j_coord_offsetC,x+j_coord_offsetD,
1102                                               &jx0,&jy0,&jz0);
1103
1104             /* Calculate displacement vector */
1105             dx00             = _mm_sub_ps(ix0,jx0);
1106             dy00             = _mm_sub_ps(iy0,jy0);
1107             dz00             = _mm_sub_ps(iz0,jz0);
1108             dx10             = _mm_sub_ps(ix1,jx0);
1109             dy10             = _mm_sub_ps(iy1,jy0);
1110             dz10             = _mm_sub_ps(iz1,jz0);
1111             dx20             = _mm_sub_ps(ix2,jx0);
1112             dy20             = _mm_sub_ps(iy2,jy0);
1113             dz20             = _mm_sub_ps(iz2,jz0);
1114             dx30             = _mm_sub_ps(ix3,jx0);
1115             dy30             = _mm_sub_ps(iy3,jy0);
1116             dz30             = _mm_sub_ps(iz3,jz0);
1117
1118             /* Calculate squared distance and things based on it */
1119             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1120             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1121             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1122             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1123
1124             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1125             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1126             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1127             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1128
1129             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1130             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1131             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1132
1133             /* Load parameters for j particles */
1134             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1135                                                               charge+jnrC+0,charge+jnrD+0);
1136             vdwjidx0A        = 2*vdwtype[jnrA+0];
1137             vdwjidx0B        = 2*vdwtype[jnrB+0];
1138             vdwjidx0C        = 2*vdwtype[jnrC+0];
1139             vdwjidx0D        = 2*vdwtype[jnrD+0];
1140
1141             fjx0             = _mm_setzero_ps();
1142             fjy0             = _mm_setzero_ps();
1143             fjz0             = _mm_setzero_ps();
1144
1145             /**************************
1146              * CALCULATE INTERACTIONS *
1147              **************************/
1148
1149             r00              = _mm_mul_ps(rsq00,rinv00);
1150             r00              = _mm_andnot_ps(dummy_mask,r00);
1151
1152             /* Compute parameters for interactions between i and j atoms */
1153             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1154                                          vdwparam+vdwioffset0+vdwjidx0B,
1155                                          vdwparam+vdwioffset0+vdwjidx0C,
1156                                          vdwparam+vdwioffset0+vdwjidx0D,
1157                                          &c6_00,&c12_00);
1158
1159             /* Calculate table index by multiplying r with table scale and truncate to integer */
1160             rt               = _mm_mul_ps(r00,vftabscale);
1161             vfitab           = _mm_cvttps_epi32(rt);
1162 #ifdef __XOP__
1163             vfeps            = _mm_frcz_ps(rt);
1164 #else
1165             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1166 #endif
1167             twovfeps         = _mm_add_ps(vfeps,vfeps);
1168             vfitab           = _mm_slli_epi32(vfitab,3);
1169
1170             /* CUBIC SPLINE TABLE DISPERSION */
1171             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1172             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1173             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1174             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1175             _MM_TRANSPOSE4_PS(Y,F,G,H);
1176             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1177             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1178             fvdw6            = _mm_mul_ps(c6_00,FF);
1179
1180             /* CUBIC SPLINE TABLE REPULSION */
1181             vfitab           = _mm_add_epi32(vfitab,ifour);
1182             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1183             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1184             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1185             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1186             _MM_TRANSPOSE4_PS(Y,F,G,H);
1187             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1188             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1189             fvdw12           = _mm_mul_ps(c12_00,FF);
1190             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1191
1192             fscal            = fvdw;
1193
1194             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1195
1196              /* Update vectorial force */
1197             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1198             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1199             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1200
1201             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1202             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1203             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1204
1205             /**************************
1206              * CALCULATE INTERACTIONS *
1207              **************************/
1208
1209             r10              = _mm_mul_ps(rsq10,rinv10);
1210             r10              = _mm_andnot_ps(dummy_mask,r10);
1211
1212             /* Compute parameters for interactions between i and j atoms */
1213             qq10             = _mm_mul_ps(iq1,jq0);
1214
1215             /* EWALD ELECTROSTATICS */
1216
1217             /* Analytical PME correction */
1218             zeta2            = _mm_mul_ps(beta2,rsq10);
1219             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1220             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1221             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1222             felec            = _mm_mul_ps(qq10,felec);
1223
1224             fscal            = felec;
1225
1226             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1227
1228              /* Update vectorial force */
1229             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1230             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1231             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1232
1233             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1234             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1235             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1236
1237             /**************************
1238              * CALCULATE INTERACTIONS *
1239              **************************/
1240
1241             r20              = _mm_mul_ps(rsq20,rinv20);
1242             r20              = _mm_andnot_ps(dummy_mask,r20);
1243
1244             /* Compute parameters for interactions between i and j atoms */
1245             qq20             = _mm_mul_ps(iq2,jq0);
1246
1247             /* EWALD ELECTROSTATICS */
1248
1249             /* Analytical PME correction */
1250             zeta2            = _mm_mul_ps(beta2,rsq20);
1251             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1252             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1253             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1254             felec            = _mm_mul_ps(qq20,felec);
1255
1256             fscal            = felec;
1257
1258             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1259
1260              /* Update vectorial force */
1261             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1262             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1263             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1264
1265             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1266             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1267             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1268
1269             /**************************
1270              * CALCULATE INTERACTIONS *
1271              **************************/
1272
1273             r30              = _mm_mul_ps(rsq30,rinv30);
1274             r30              = _mm_andnot_ps(dummy_mask,r30);
1275
1276             /* Compute parameters for interactions between i and j atoms */
1277             qq30             = _mm_mul_ps(iq3,jq0);
1278
1279             /* EWALD ELECTROSTATICS */
1280
1281             /* Analytical PME correction */
1282             zeta2            = _mm_mul_ps(beta2,rsq30);
1283             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1284             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1285             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1286             felec            = _mm_mul_ps(qq30,felec);
1287
1288             fscal            = felec;
1289
1290             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1291
1292              /* Update vectorial force */
1293             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1294             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1295             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1296
1297             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1298             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1299             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1300
1301             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1302             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1303             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1304             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1305
1306             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1307
1308             /* Inner loop uses 139 flops */
1309         }
1310
1311         /* End of innermost loop */
1312
1313         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1314                                               f+i_coord_offset,fshift+i_shift_offset);
1315
1316         /* Increment number of inner iterations */
1317         inneriter                  += j_index_end - j_index_start;
1318
1319         /* Outer loop uses 24 flops */
1320     }
1321
1322     /* Increment number of outer iterations */
1323     outeriter        += nri;
1324
1325     /* Update outer/inner flops */
1326
1327     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*139);
1328 }