Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_128_fma_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
104     real             *vftab;
105     __m128i          ewitab;
106     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
108     real             *ewtab;
109     __m128           dummy_mask,cutoff_mask;
110     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
111     __m128           one     = _mm_set1_ps(1.0);
112     __m128           two     = _mm_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_ps(fr->ic->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
132
133     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
134     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
135     beta2            = _mm_mul_ps(beta,beta);
136     beta3            = _mm_mul_ps(beta,beta2);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
144     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
145     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = jnrC = jnrD = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152     j_coord_offsetC = 0;
153     j_coord_offsetD = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
180
181         fix0             = _mm_setzero_ps();
182         fiy0             = _mm_setzero_ps();
183         fiz0             = _mm_setzero_ps();
184         fix1             = _mm_setzero_ps();
185         fiy1             = _mm_setzero_ps();
186         fiz1             = _mm_setzero_ps();
187         fix2             = _mm_setzero_ps();
188         fiy2             = _mm_setzero_ps();
189         fiz2             = _mm_setzero_ps();
190
191         /* Reset potential sums */
192         velecsum         = _mm_setzero_ps();
193         vvdwsum          = _mm_setzero_ps();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208
209             /* load j atom coordinates */
210             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211                                               x+j_coord_offsetC,x+j_coord_offsetD,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_ps(ix0,jx0);
216             dy00             = _mm_sub_ps(iy0,jy0);
217             dz00             = _mm_sub_ps(iz0,jz0);
218             dx10             = _mm_sub_ps(ix1,jx0);
219             dy10             = _mm_sub_ps(iy1,jy0);
220             dz10             = _mm_sub_ps(iz1,jz0);
221             dx20             = _mm_sub_ps(ix2,jx0);
222             dy20             = _mm_sub_ps(iy2,jy0);
223             dz20             = _mm_sub_ps(iz2,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
227             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
228             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
229
230             rinv00           = avx128fma_invsqrt_f(rsq00);
231             rinv10           = avx128fma_invsqrt_f(rsq10);
232             rinv20           = avx128fma_invsqrt_f(rsq20);
233
234             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
235             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
236             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
237
238             /* Load parameters for j particles */
239             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
240                                                               charge+jnrC+0,charge+jnrD+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243             vdwjidx0C        = 2*vdwtype[jnrC+0];
244             vdwjidx0D        = 2*vdwtype[jnrD+0];
245
246             fjx0             = _mm_setzero_ps();
247             fjy0             = _mm_setzero_ps();
248             fjz0             = _mm_setzero_ps();
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             r00              = _mm_mul_ps(rsq00,rinv00);
255
256             /* Compute parameters for interactions between i and j atoms */
257             qq00             = _mm_mul_ps(iq0,jq0);
258             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
259                                          vdwparam+vdwioffset0+vdwjidx0B,
260                                          vdwparam+vdwioffset0+vdwjidx0C,
261                                          vdwparam+vdwioffset0+vdwjidx0D,
262                                          &c6_00,&c12_00);
263
264             /* Calculate table index by multiplying r with table scale and truncate to integer */
265             rt               = _mm_mul_ps(r00,vftabscale);
266             vfitab           = _mm_cvttps_epi32(rt);
267 #ifdef __XOP__
268             vfeps            = _mm_frcz_ps(rt);
269 #else
270             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
271 #endif
272             twovfeps         = _mm_add_ps(vfeps,vfeps);
273             vfitab           = _mm_slli_epi32(vfitab,3);
274
275             /* EWALD ELECTROSTATICS */
276
277             /* Analytical PME correction */
278             zeta2            = _mm_mul_ps(beta2,rsq00);
279             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
280             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
281             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
282             felec            = _mm_mul_ps(qq00,felec);
283             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
284             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
285             velec            = _mm_mul_ps(qq00,velec);
286
287             /* CUBIC SPLINE TABLE DISPERSION */
288             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
289             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
290             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
291             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
292             _MM_TRANSPOSE4_PS(Y,F,G,H);
293             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
294             VV               = _mm_macc_ps(vfeps,Fp,Y);
295             vvdw6            = _mm_mul_ps(c6_00,VV);
296             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
297             fvdw6            = _mm_mul_ps(c6_00,FF);
298
299             /* CUBIC SPLINE TABLE REPULSION */
300             vfitab           = _mm_add_epi32(vfitab,ifour);
301             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
302             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
303             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
304             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
305             _MM_TRANSPOSE4_PS(Y,F,G,H);
306             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
307             VV               = _mm_macc_ps(vfeps,Fp,Y);
308             vvdw12           = _mm_mul_ps(c12_00,VV);
309             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
310             fvdw12           = _mm_mul_ps(c12_00,FF);
311             vvdw             = _mm_add_ps(vvdw12,vvdw6);
312             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velecsum         = _mm_add_ps(velecsum,velec);
316             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
317
318             fscal            = _mm_add_ps(felec,fvdw);
319
320              /* Update vectorial force */
321             fix0             = _mm_macc_ps(dx00,fscal,fix0);
322             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
323             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
324
325             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
326             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
327             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             r10              = _mm_mul_ps(rsq10,rinv10);
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq10             = _mm_mul_ps(iq1,jq0);
337
338             /* EWALD ELECTROSTATICS */
339
340             /* Analytical PME correction */
341             zeta2            = _mm_mul_ps(beta2,rsq10);
342             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
343             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
344             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
345             felec            = _mm_mul_ps(qq10,felec);
346             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
347             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
348             velec            = _mm_mul_ps(qq10,velec);
349
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velecsum         = _mm_add_ps(velecsum,velec);
352
353             fscal            = felec;
354
355              /* Update vectorial force */
356             fix1             = _mm_macc_ps(dx10,fscal,fix1);
357             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
358             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
359
360             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
361             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
362             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             r20              = _mm_mul_ps(rsq20,rinv20);
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq20             = _mm_mul_ps(iq2,jq0);
372
373             /* EWALD ELECTROSTATICS */
374
375             /* Analytical PME correction */
376             zeta2            = _mm_mul_ps(beta2,rsq20);
377             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
378             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
379             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
380             felec            = _mm_mul_ps(qq20,felec);
381             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
382             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
383             velec            = _mm_mul_ps(qq20,velec);
384
385             /* Update potential sum for this i atom from the interaction with this j atom. */
386             velecsum         = _mm_add_ps(velecsum,velec);
387
388             fscal            = felec;
389
390              /* Update vectorial force */
391             fix2             = _mm_macc_ps(dx20,fscal,fix2);
392             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
393             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
394
395             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
396             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
397             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
398
399             fjptrA             = f+j_coord_offsetA;
400             fjptrB             = f+j_coord_offsetB;
401             fjptrC             = f+j_coord_offsetC;
402             fjptrD             = f+j_coord_offsetD;
403
404             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
405
406             /* Inner loop uses 121 flops */
407         }
408
409         if(jidx<j_index_end)
410         {
411
412             /* Get j neighbor index, and coordinate index */
413             jnrlistA         = jjnr[jidx];
414             jnrlistB         = jjnr[jidx+1];
415             jnrlistC         = jjnr[jidx+2];
416             jnrlistD         = jjnr[jidx+3];
417             /* Sign of each element will be negative for non-real atoms.
418              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
419              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
420              */
421             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
422             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
423             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
424             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
425             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
426             j_coord_offsetA  = DIM*jnrA;
427             j_coord_offsetB  = DIM*jnrB;
428             j_coord_offsetC  = DIM*jnrC;
429             j_coord_offsetD  = DIM*jnrD;
430
431             /* load j atom coordinates */
432             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
433                                               x+j_coord_offsetC,x+j_coord_offsetD,
434                                               &jx0,&jy0,&jz0);
435
436             /* Calculate displacement vector */
437             dx00             = _mm_sub_ps(ix0,jx0);
438             dy00             = _mm_sub_ps(iy0,jy0);
439             dz00             = _mm_sub_ps(iz0,jz0);
440             dx10             = _mm_sub_ps(ix1,jx0);
441             dy10             = _mm_sub_ps(iy1,jy0);
442             dz10             = _mm_sub_ps(iz1,jz0);
443             dx20             = _mm_sub_ps(ix2,jx0);
444             dy20             = _mm_sub_ps(iy2,jy0);
445             dz20             = _mm_sub_ps(iz2,jz0);
446
447             /* Calculate squared distance and things based on it */
448             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
449             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
450             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
451
452             rinv00           = avx128fma_invsqrt_f(rsq00);
453             rinv10           = avx128fma_invsqrt_f(rsq10);
454             rinv20           = avx128fma_invsqrt_f(rsq20);
455
456             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
457             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
458             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
459
460             /* Load parameters for j particles */
461             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
462                                                               charge+jnrC+0,charge+jnrD+0);
463             vdwjidx0A        = 2*vdwtype[jnrA+0];
464             vdwjidx0B        = 2*vdwtype[jnrB+0];
465             vdwjidx0C        = 2*vdwtype[jnrC+0];
466             vdwjidx0D        = 2*vdwtype[jnrD+0];
467
468             fjx0             = _mm_setzero_ps();
469             fjy0             = _mm_setzero_ps();
470             fjz0             = _mm_setzero_ps();
471
472             /**************************
473              * CALCULATE INTERACTIONS *
474              **************************/
475
476             r00              = _mm_mul_ps(rsq00,rinv00);
477             r00              = _mm_andnot_ps(dummy_mask,r00);
478
479             /* Compute parameters for interactions between i and j atoms */
480             qq00             = _mm_mul_ps(iq0,jq0);
481             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
482                                          vdwparam+vdwioffset0+vdwjidx0B,
483                                          vdwparam+vdwioffset0+vdwjidx0C,
484                                          vdwparam+vdwioffset0+vdwjidx0D,
485                                          &c6_00,&c12_00);
486
487             /* Calculate table index by multiplying r with table scale and truncate to integer */
488             rt               = _mm_mul_ps(r00,vftabscale);
489             vfitab           = _mm_cvttps_epi32(rt);
490 #ifdef __XOP__
491             vfeps            = _mm_frcz_ps(rt);
492 #else
493             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
494 #endif
495             twovfeps         = _mm_add_ps(vfeps,vfeps);
496             vfitab           = _mm_slli_epi32(vfitab,3);
497
498             /* EWALD ELECTROSTATICS */
499
500             /* Analytical PME correction */
501             zeta2            = _mm_mul_ps(beta2,rsq00);
502             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
503             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
504             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
505             felec            = _mm_mul_ps(qq00,felec);
506             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
507             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
508             velec            = _mm_mul_ps(qq00,velec);
509
510             /* CUBIC SPLINE TABLE DISPERSION */
511             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
512             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
513             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
514             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
515             _MM_TRANSPOSE4_PS(Y,F,G,H);
516             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
517             VV               = _mm_macc_ps(vfeps,Fp,Y);
518             vvdw6            = _mm_mul_ps(c6_00,VV);
519             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
520             fvdw6            = _mm_mul_ps(c6_00,FF);
521
522             /* CUBIC SPLINE TABLE REPULSION */
523             vfitab           = _mm_add_epi32(vfitab,ifour);
524             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
525             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
526             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
527             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
528             _MM_TRANSPOSE4_PS(Y,F,G,H);
529             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
530             VV               = _mm_macc_ps(vfeps,Fp,Y);
531             vvdw12           = _mm_mul_ps(c12_00,VV);
532             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
533             fvdw12           = _mm_mul_ps(c12_00,FF);
534             vvdw             = _mm_add_ps(vvdw12,vvdw6);
535             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
536
537             /* Update potential sum for this i atom from the interaction with this j atom. */
538             velec            = _mm_andnot_ps(dummy_mask,velec);
539             velecsum         = _mm_add_ps(velecsum,velec);
540             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
541             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
542
543             fscal            = _mm_add_ps(felec,fvdw);
544
545             fscal            = _mm_andnot_ps(dummy_mask,fscal);
546
547              /* Update vectorial force */
548             fix0             = _mm_macc_ps(dx00,fscal,fix0);
549             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
550             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
551
552             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
553             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
554             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             r10              = _mm_mul_ps(rsq10,rinv10);
561             r10              = _mm_andnot_ps(dummy_mask,r10);
562
563             /* Compute parameters for interactions between i and j atoms */
564             qq10             = _mm_mul_ps(iq1,jq0);
565
566             /* EWALD ELECTROSTATICS */
567
568             /* Analytical PME correction */
569             zeta2            = _mm_mul_ps(beta2,rsq10);
570             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
571             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
572             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
573             felec            = _mm_mul_ps(qq10,felec);
574             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
575             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
576             velec            = _mm_mul_ps(qq10,velec);
577
578             /* Update potential sum for this i atom from the interaction with this j atom. */
579             velec            = _mm_andnot_ps(dummy_mask,velec);
580             velecsum         = _mm_add_ps(velecsum,velec);
581
582             fscal            = felec;
583
584             fscal            = _mm_andnot_ps(dummy_mask,fscal);
585
586              /* Update vectorial force */
587             fix1             = _mm_macc_ps(dx10,fscal,fix1);
588             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
589             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
590
591             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
592             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
593             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             r20              = _mm_mul_ps(rsq20,rinv20);
600             r20              = _mm_andnot_ps(dummy_mask,r20);
601
602             /* Compute parameters for interactions between i and j atoms */
603             qq20             = _mm_mul_ps(iq2,jq0);
604
605             /* EWALD ELECTROSTATICS */
606
607             /* Analytical PME correction */
608             zeta2            = _mm_mul_ps(beta2,rsq20);
609             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
610             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
611             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
612             felec            = _mm_mul_ps(qq20,felec);
613             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
614             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
615             velec            = _mm_mul_ps(qq20,velec);
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             velec            = _mm_andnot_ps(dummy_mask,velec);
619             velecsum         = _mm_add_ps(velecsum,velec);
620
621             fscal            = felec;
622
623             fscal            = _mm_andnot_ps(dummy_mask,fscal);
624
625              /* Update vectorial force */
626             fix2             = _mm_macc_ps(dx20,fscal,fix2);
627             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
628             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
629
630             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
631             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
632             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
633
634             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
635             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
636             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
637             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
638
639             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
640
641             /* Inner loop uses 124 flops */
642         }
643
644         /* End of innermost loop */
645
646         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
647                                               f+i_coord_offset,fshift+i_shift_offset);
648
649         ggid                        = gid[iidx];
650         /* Update potential energies */
651         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
652         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
653
654         /* Increment number of inner iterations */
655         inneriter                  += j_index_end - j_index_start;
656
657         /* Outer loop uses 20 flops */
658     }
659
660     /* Increment number of outer iterations */
661     outeriter        += nri;
662
663     /* Update outer/inner flops */
664
665     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*124);
666 }
667 /*
668  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_single
669  * Electrostatics interaction: Ewald
670  * VdW interaction:            CubicSplineTable
671  * Geometry:                   Water3-Particle
672  * Calculate force/pot:        Force
673  */
674 void
675 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_single
676                     (t_nblist                    * gmx_restrict       nlist,
677                      rvec                        * gmx_restrict          xx,
678                      rvec                        * gmx_restrict          ff,
679                      struct t_forcerec           * gmx_restrict          fr,
680                      t_mdatoms                   * gmx_restrict     mdatoms,
681                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
682                      t_nrnb                      * gmx_restrict        nrnb)
683 {
684     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
685      * just 0 for non-waters.
686      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
687      * jnr indices corresponding to data put in the four positions in the SIMD register.
688      */
689     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
690     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
691     int              jnrA,jnrB,jnrC,jnrD;
692     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
693     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
694     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
695     real             rcutoff_scalar;
696     real             *shiftvec,*fshift,*x,*f;
697     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
698     real             scratch[4*DIM];
699     __m128           fscal,rcutoff,rcutoff2,jidxall;
700     int              vdwioffset0;
701     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
702     int              vdwioffset1;
703     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
704     int              vdwioffset2;
705     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
706     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
707     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
708     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
709     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
710     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
711     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
712     real             *charge;
713     int              nvdwtype;
714     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
715     int              *vdwtype;
716     real             *vdwparam;
717     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
718     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
719     __m128i          vfitab;
720     __m128i          ifour       = _mm_set1_epi32(4);
721     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
722     real             *vftab;
723     __m128i          ewitab;
724     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
725     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
726     real             *ewtab;
727     __m128           dummy_mask,cutoff_mask;
728     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
729     __m128           one     = _mm_set1_ps(1.0);
730     __m128           two     = _mm_set1_ps(2.0);
731     x                = xx[0];
732     f                = ff[0];
733
734     nri              = nlist->nri;
735     iinr             = nlist->iinr;
736     jindex           = nlist->jindex;
737     jjnr             = nlist->jjnr;
738     shiftidx         = nlist->shift;
739     gid              = nlist->gid;
740     shiftvec         = fr->shift_vec[0];
741     fshift           = fr->fshift[0];
742     facel            = _mm_set1_ps(fr->ic->epsfac);
743     charge           = mdatoms->chargeA;
744     nvdwtype         = fr->ntype;
745     vdwparam         = fr->nbfp;
746     vdwtype          = mdatoms->typeA;
747
748     vftab            = kernel_data->table_vdw->data;
749     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
750
751     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
752     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
753     beta2            = _mm_mul_ps(beta,beta);
754     beta3            = _mm_mul_ps(beta,beta2);
755     ewtab            = fr->ic->tabq_coul_F;
756     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
757     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
758
759     /* Setup water-specific parameters */
760     inr              = nlist->iinr[0];
761     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
762     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
763     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
764     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
765
766     /* Avoid stupid compiler warnings */
767     jnrA = jnrB = jnrC = jnrD = 0;
768     j_coord_offsetA = 0;
769     j_coord_offsetB = 0;
770     j_coord_offsetC = 0;
771     j_coord_offsetD = 0;
772
773     outeriter        = 0;
774     inneriter        = 0;
775
776     for(iidx=0;iidx<4*DIM;iidx++)
777     {
778         scratch[iidx] = 0.0;
779     }
780
781     /* Start outer loop over neighborlists */
782     for(iidx=0; iidx<nri; iidx++)
783     {
784         /* Load shift vector for this list */
785         i_shift_offset   = DIM*shiftidx[iidx];
786
787         /* Load limits for loop over neighbors */
788         j_index_start    = jindex[iidx];
789         j_index_end      = jindex[iidx+1];
790
791         /* Get outer coordinate index */
792         inr              = iinr[iidx];
793         i_coord_offset   = DIM*inr;
794
795         /* Load i particle coords and add shift vector */
796         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
797                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
798
799         fix0             = _mm_setzero_ps();
800         fiy0             = _mm_setzero_ps();
801         fiz0             = _mm_setzero_ps();
802         fix1             = _mm_setzero_ps();
803         fiy1             = _mm_setzero_ps();
804         fiz1             = _mm_setzero_ps();
805         fix2             = _mm_setzero_ps();
806         fiy2             = _mm_setzero_ps();
807         fiz2             = _mm_setzero_ps();
808
809         /* Start inner kernel loop */
810         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
811         {
812
813             /* Get j neighbor index, and coordinate index */
814             jnrA             = jjnr[jidx];
815             jnrB             = jjnr[jidx+1];
816             jnrC             = jjnr[jidx+2];
817             jnrD             = jjnr[jidx+3];
818             j_coord_offsetA  = DIM*jnrA;
819             j_coord_offsetB  = DIM*jnrB;
820             j_coord_offsetC  = DIM*jnrC;
821             j_coord_offsetD  = DIM*jnrD;
822
823             /* load j atom coordinates */
824             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
825                                               x+j_coord_offsetC,x+j_coord_offsetD,
826                                               &jx0,&jy0,&jz0);
827
828             /* Calculate displacement vector */
829             dx00             = _mm_sub_ps(ix0,jx0);
830             dy00             = _mm_sub_ps(iy0,jy0);
831             dz00             = _mm_sub_ps(iz0,jz0);
832             dx10             = _mm_sub_ps(ix1,jx0);
833             dy10             = _mm_sub_ps(iy1,jy0);
834             dz10             = _mm_sub_ps(iz1,jz0);
835             dx20             = _mm_sub_ps(ix2,jx0);
836             dy20             = _mm_sub_ps(iy2,jy0);
837             dz20             = _mm_sub_ps(iz2,jz0);
838
839             /* Calculate squared distance and things based on it */
840             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
841             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
842             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
843
844             rinv00           = avx128fma_invsqrt_f(rsq00);
845             rinv10           = avx128fma_invsqrt_f(rsq10);
846             rinv20           = avx128fma_invsqrt_f(rsq20);
847
848             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
849             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
850             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
851
852             /* Load parameters for j particles */
853             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
854                                                               charge+jnrC+0,charge+jnrD+0);
855             vdwjidx0A        = 2*vdwtype[jnrA+0];
856             vdwjidx0B        = 2*vdwtype[jnrB+0];
857             vdwjidx0C        = 2*vdwtype[jnrC+0];
858             vdwjidx0D        = 2*vdwtype[jnrD+0];
859
860             fjx0             = _mm_setzero_ps();
861             fjy0             = _mm_setzero_ps();
862             fjz0             = _mm_setzero_ps();
863
864             /**************************
865              * CALCULATE INTERACTIONS *
866              **************************/
867
868             r00              = _mm_mul_ps(rsq00,rinv00);
869
870             /* Compute parameters for interactions between i and j atoms */
871             qq00             = _mm_mul_ps(iq0,jq0);
872             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
873                                          vdwparam+vdwioffset0+vdwjidx0B,
874                                          vdwparam+vdwioffset0+vdwjidx0C,
875                                          vdwparam+vdwioffset0+vdwjidx0D,
876                                          &c6_00,&c12_00);
877
878             /* Calculate table index by multiplying r with table scale and truncate to integer */
879             rt               = _mm_mul_ps(r00,vftabscale);
880             vfitab           = _mm_cvttps_epi32(rt);
881 #ifdef __XOP__
882             vfeps            = _mm_frcz_ps(rt);
883 #else
884             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
885 #endif
886             twovfeps         = _mm_add_ps(vfeps,vfeps);
887             vfitab           = _mm_slli_epi32(vfitab,3);
888
889             /* EWALD ELECTROSTATICS */
890
891             /* Analytical PME correction */
892             zeta2            = _mm_mul_ps(beta2,rsq00);
893             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
894             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
895             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
896             felec            = _mm_mul_ps(qq00,felec);
897
898             /* CUBIC SPLINE TABLE DISPERSION */
899             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
900             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
901             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
902             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
903             _MM_TRANSPOSE4_PS(Y,F,G,H);
904             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
905             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
906             fvdw6            = _mm_mul_ps(c6_00,FF);
907
908             /* CUBIC SPLINE TABLE REPULSION */
909             vfitab           = _mm_add_epi32(vfitab,ifour);
910             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
911             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
912             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
913             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
914             _MM_TRANSPOSE4_PS(Y,F,G,H);
915             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
916             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
917             fvdw12           = _mm_mul_ps(c12_00,FF);
918             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
919
920             fscal            = _mm_add_ps(felec,fvdw);
921
922              /* Update vectorial force */
923             fix0             = _mm_macc_ps(dx00,fscal,fix0);
924             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
925             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
926
927             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
928             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
929             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
930
931             /**************************
932              * CALCULATE INTERACTIONS *
933              **************************/
934
935             r10              = _mm_mul_ps(rsq10,rinv10);
936
937             /* Compute parameters for interactions between i and j atoms */
938             qq10             = _mm_mul_ps(iq1,jq0);
939
940             /* EWALD ELECTROSTATICS */
941
942             /* Analytical PME correction */
943             zeta2            = _mm_mul_ps(beta2,rsq10);
944             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
945             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
946             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
947             felec            = _mm_mul_ps(qq10,felec);
948
949             fscal            = felec;
950
951              /* Update vectorial force */
952             fix1             = _mm_macc_ps(dx10,fscal,fix1);
953             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
954             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
955
956             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
957             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
958             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             r20              = _mm_mul_ps(rsq20,rinv20);
965
966             /* Compute parameters for interactions between i and j atoms */
967             qq20             = _mm_mul_ps(iq2,jq0);
968
969             /* EWALD ELECTROSTATICS */
970
971             /* Analytical PME correction */
972             zeta2            = _mm_mul_ps(beta2,rsq20);
973             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
974             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
975             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
976             felec            = _mm_mul_ps(qq20,felec);
977
978             fscal            = felec;
979
980              /* Update vectorial force */
981             fix2             = _mm_macc_ps(dx20,fscal,fix2);
982             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
983             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
984
985             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
986             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
987             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
988
989             fjptrA             = f+j_coord_offsetA;
990             fjptrB             = f+j_coord_offsetB;
991             fjptrC             = f+j_coord_offsetC;
992             fjptrD             = f+j_coord_offsetD;
993
994             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
995
996             /* Inner loop uses 110 flops */
997         }
998
999         if(jidx<j_index_end)
1000         {
1001
1002             /* Get j neighbor index, and coordinate index */
1003             jnrlistA         = jjnr[jidx];
1004             jnrlistB         = jjnr[jidx+1];
1005             jnrlistC         = jjnr[jidx+2];
1006             jnrlistD         = jjnr[jidx+3];
1007             /* Sign of each element will be negative for non-real atoms.
1008              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1009              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1010              */
1011             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1012             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1013             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1014             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1015             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1016             j_coord_offsetA  = DIM*jnrA;
1017             j_coord_offsetB  = DIM*jnrB;
1018             j_coord_offsetC  = DIM*jnrC;
1019             j_coord_offsetD  = DIM*jnrD;
1020
1021             /* load j atom coordinates */
1022             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1023                                               x+j_coord_offsetC,x+j_coord_offsetD,
1024                                               &jx0,&jy0,&jz0);
1025
1026             /* Calculate displacement vector */
1027             dx00             = _mm_sub_ps(ix0,jx0);
1028             dy00             = _mm_sub_ps(iy0,jy0);
1029             dz00             = _mm_sub_ps(iz0,jz0);
1030             dx10             = _mm_sub_ps(ix1,jx0);
1031             dy10             = _mm_sub_ps(iy1,jy0);
1032             dz10             = _mm_sub_ps(iz1,jz0);
1033             dx20             = _mm_sub_ps(ix2,jx0);
1034             dy20             = _mm_sub_ps(iy2,jy0);
1035             dz20             = _mm_sub_ps(iz2,jz0);
1036
1037             /* Calculate squared distance and things based on it */
1038             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1039             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1040             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1041
1042             rinv00           = avx128fma_invsqrt_f(rsq00);
1043             rinv10           = avx128fma_invsqrt_f(rsq10);
1044             rinv20           = avx128fma_invsqrt_f(rsq20);
1045
1046             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1047             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1048             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1049
1050             /* Load parameters for j particles */
1051             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1052                                                               charge+jnrC+0,charge+jnrD+0);
1053             vdwjidx0A        = 2*vdwtype[jnrA+0];
1054             vdwjidx0B        = 2*vdwtype[jnrB+0];
1055             vdwjidx0C        = 2*vdwtype[jnrC+0];
1056             vdwjidx0D        = 2*vdwtype[jnrD+0];
1057
1058             fjx0             = _mm_setzero_ps();
1059             fjy0             = _mm_setzero_ps();
1060             fjz0             = _mm_setzero_ps();
1061
1062             /**************************
1063              * CALCULATE INTERACTIONS *
1064              **************************/
1065
1066             r00              = _mm_mul_ps(rsq00,rinv00);
1067             r00              = _mm_andnot_ps(dummy_mask,r00);
1068
1069             /* Compute parameters for interactions between i and j atoms */
1070             qq00             = _mm_mul_ps(iq0,jq0);
1071             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1072                                          vdwparam+vdwioffset0+vdwjidx0B,
1073                                          vdwparam+vdwioffset0+vdwjidx0C,
1074                                          vdwparam+vdwioffset0+vdwjidx0D,
1075                                          &c6_00,&c12_00);
1076
1077             /* Calculate table index by multiplying r with table scale and truncate to integer */
1078             rt               = _mm_mul_ps(r00,vftabscale);
1079             vfitab           = _mm_cvttps_epi32(rt);
1080 #ifdef __XOP__
1081             vfeps            = _mm_frcz_ps(rt);
1082 #else
1083             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1084 #endif
1085             twovfeps         = _mm_add_ps(vfeps,vfeps);
1086             vfitab           = _mm_slli_epi32(vfitab,3);
1087
1088             /* EWALD ELECTROSTATICS */
1089
1090             /* Analytical PME correction */
1091             zeta2            = _mm_mul_ps(beta2,rsq00);
1092             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1093             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1094             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1095             felec            = _mm_mul_ps(qq00,felec);
1096
1097             /* CUBIC SPLINE TABLE DISPERSION */
1098             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1099             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1100             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1101             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1102             _MM_TRANSPOSE4_PS(Y,F,G,H);
1103             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1104             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1105             fvdw6            = _mm_mul_ps(c6_00,FF);
1106
1107             /* CUBIC SPLINE TABLE REPULSION */
1108             vfitab           = _mm_add_epi32(vfitab,ifour);
1109             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1110             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1111             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1112             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1113             _MM_TRANSPOSE4_PS(Y,F,G,H);
1114             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1115             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1116             fvdw12           = _mm_mul_ps(c12_00,FF);
1117             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1118
1119             fscal            = _mm_add_ps(felec,fvdw);
1120
1121             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1122
1123              /* Update vectorial force */
1124             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1125             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1126             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1127
1128             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1129             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1130             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1131
1132             /**************************
1133              * CALCULATE INTERACTIONS *
1134              **************************/
1135
1136             r10              = _mm_mul_ps(rsq10,rinv10);
1137             r10              = _mm_andnot_ps(dummy_mask,r10);
1138
1139             /* Compute parameters for interactions between i and j atoms */
1140             qq10             = _mm_mul_ps(iq1,jq0);
1141
1142             /* EWALD ELECTROSTATICS */
1143
1144             /* Analytical PME correction */
1145             zeta2            = _mm_mul_ps(beta2,rsq10);
1146             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1147             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1148             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1149             felec            = _mm_mul_ps(qq10,felec);
1150
1151             fscal            = felec;
1152
1153             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1154
1155              /* Update vectorial force */
1156             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1157             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1158             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1159
1160             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1161             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1162             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1163
1164             /**************************
1165              * CALCULATE INTERACTIONS *
1166              **************************/
1167
1168             r20              = _mm_mul_ps(rsq20,rinv20);
1169             r20              = _mm_andnot_ps(dummy_mask,r20);
1170
1171             /* Compute parameters for interactions between i and j atoms */
1172             qq20             = _mm_mul_ps(iq2,jq0);
1173
1174             /* EWALD ELECTROSTATICS */
1175
1176             /* Analytical PME correction */
1177             zeta2            = _mm_mul_ps(beta2,rsq20);
1178             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1179             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
1180             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1181             felec            = _mm_mul_ps(qq20,felec);
1182
1183             fscal            = felec;
1184
1185             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1186
1187              /* Update vectorial force */
1188             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1189             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1190             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1191
1192             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1193             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1194             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1195
1196             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1197             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1198             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1199             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1200
1201             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1202
1203             /* Inner loop uses 113 flops */
1204         }
1205
1206         /* End of innermost loop */
1207
1208         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1209                                               f+i_coord_offset,fshift+i_shift_offset);
1210
1211         /* Increment number of inner iterations */
1212         inneriter                  += j_index_end - j_index_start;
1213
1214         /* Outer loop uses 18 flops */
1215     }
1216
1217     /* Increment number of outer iterations */
1218     outeriter        += nri;
1219
1220     /* Update outer/inner flops */
1221
1222     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*113);
1223 }