Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
107     real             *vftab;
108     __m128i          ewitab;
109     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
111     real             *ewtab;
112     __m128           dummy_mask,cutoff_mask;
113     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
114     __m128           one     = _mm_set1_ps(1.0);
115     __m128           two     = _mm_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_ps(fr->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     vftab            = kernel_data->table_vdw->data;
134     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
135
136     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
137     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
138     beta2            = _mm_mul_ps(beta,beta);
139     beta3            = _mm_mul_ps(beta,beta2);
140     ewtab            = fr->ic->tabq_coul_FDV0;
141     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
142     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
143
144     /* Setup water-specific parameters */
145     inr              = nlist->iinr[0];
146     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
147     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
148     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
149     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151     /* Avoid stupid compiler warnings */
152     jnrA = jnrB = jnrC = jnrD = 0;
153     j_coord_offsetA = 0;
154     j_coord_offsetB = 0;
155     j_coord_offsetC = 0;
156     j_coord_offsetD = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     for(iidx=0;iidx<4*DIM;iidx++)
162     {
163         scratch[iidx] = 0.0;
164     }
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
183
184         fix0             = _mm_setzero_ps();
185         fiy0             = _mm_setzero_ps();
186         fiz0             = _mm_setzero_ps();
187         fix1             = _mm_setzero_ps();
188         fiy1             = _mm_setzero_ps();
189         fiz1             = _mm_setzero_ps();
190         fix2             = _mm_setzero_ps();
191         fiy2             = _mm_setzero_ps();
192         fiz2             = _mm_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm_setzero_ps();
196         vvdwsum          = _mm_setzero_ps();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211
212             /* load j atom coordinates */
213             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                               x+j_coord_offsetC,x+j_coord_offsetD,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm_sub_ps(ix0,jx0);
219             dy00             = _mm_sub_ps(iy0,jy0);
220             dz00             = _mm_sub_ps(iz0,jz0);
221             dx10             = _mm_sub_ps(ix1,jx0);
222             dy10             = _mm_sub_ps(iy1,jy0);
223             dz10             = _mm_sub_ps(iz1,jz0);
224             dx20             = _mm_sub_ps(ix2,jx0);
225             dy20             = _mm_sub_ps(iy2,jy0);
226             dz20             = _mm_sub_ps(iz2,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
232
233             rinv00           = gmx_mm_invsqrt_ps(rsq00);
234             rinv10           = gmx_mm_invsqrt_ps(rsq10);
235             rinv20           = gmx_mm_invsqrt_ps(rsq20);
236
237             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
238             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
239             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
240
241             /* Load parameters for j particles */
242             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
243                                                               charge+jnrC+0,charge+jnrD+0);
244             vdwjidx0A        = 2*vdwtype[jnrA+0];
245             vdwjidx0B        = 2*vdwtype[jnrB+0];
246             vdwjidx0C        = 2*vdwtype[jnrC+0];
247             vdwjidx0D        = 2*vdwtype[jnrD+0];
248
249             fjx0             = _mm_setzero_ps();
250             fjy0             = _mm_setzero_ps();
251             fjz0             = _mm_setzero_ps();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             r00              = _mm_mul_ps(rsq00,rinv00);
258
259             /* Compute parameters for interactions between i and j atoms */
260             qq00             = _mm_mul_ps(iq0,jq0);
261             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
262                                          vdwparam+vdwioffset0+vdwjidx0B,
263                                          vdwparam+vdwioffset0+vdwjidx0C,
264                                          vdwparam+vdwioffset0+vdwjidx0D,
265                                          &c6_00,&c12_00);
266
267             /* Calculate table index by multiplying r with table scale and truncate to integer */
268             rt               = _mm_mul_ps(r00,vftabscale);
269             vfitab           = _mm_cvttps_epi32(rt);
270 #ifdef __XOP__
271             vfeps            = _mm_frcz_ps(rt);
272 #else
273             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
274 #endif
275             twovfeps         = _mm_add_ps(vfeps,vfeps);
276             vfitab           = _mm_slli_epi32(vfitab,3);
277
278             /* EWALD ELECTROSTATICS */
279
280             /* Analytical PME correction */
281             zeta2            = _mm_mul_ps(beta2,rsq00);
282             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
283             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
284             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
285             felec            = _mm_mul_ps(qq00,felec);
286             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
287             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
288             velec            = _mm_mul_ps(qq00,velec);
289
290             /* CUBIC SPLINE TABLE DISPERSION */
291             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
292             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
293             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
294             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
295             _MM_TRANSPOSE4_PS(Y,F,G,H);
296             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
297             VV               = _mm_macc_ps(vfeps,Fp,Y);
298             vvdw6            = _mm_mul_ps(c6_00,VV);
299             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
300             fvdw6            = _mm_mul_ps(c6_00,FF);
301
302             /* CUBIC SPLINE TABLE REPULSION */
303             vfitab           = _mm_add_epi32(vfitab,ifour);
304             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
305             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
306             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
307             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
308             _MM_TRANSPOSE4_PS(Y,F,G,H);
309             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
310             VV               = _mm_macc_ps(vfeps,Fp,Y);
311             vvdw12           = _mm_mul_ps(c12_00,VV);
312             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
313             fvdw12           = _mm_mul_ps(c12_00,FF);
314             vvdw             = _mm_add_ps(vvdw12,vvdw6);
315             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velecsum         = _mm_add_ps(velecsum,velec);
319             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
320
321             fscal            = _mm_add_ps(felec,fvdw);
322
323              /* Update vectorial force */
324             fix0             = _mm_macc_ps(dx00,fscal,fix0);
325             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
326             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
327
328             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
329             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
330             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             r10              = _mm_mul_ps(rsq10,rinv10);
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq10             = _mm_mul_ps(iq1,jq0);
340
341             /* EWALD ELECTROSTATICS */
342
343             /* Analytical PME correction */
344             zeta2            = _mm_mul_ps(beta2,rsq10);
345             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
346             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
347             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
348             felec            = _mm_mul_ps(qq10,felec);
349             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
350             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
351             velec            = _mm_mul_ps(qq10,velec);
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velecsum         = _mm_add_ps(velecsum,velec);
355
356             fscal            = felec;
357
358              /* Update vectorial force */
359             fix1             = _mm_macc_ps(dx10,fscal,fix1);
360             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
361             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
362
363             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
364             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
365             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             r20              = _mm_mul_ps(rsq20,rinv20);
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq20             = _mm_mul_ps(iq2,jq0);
375
376             /* EWALD ELECTROSTATICS */
377
378             /* Analytical PME correction */
379             zeta2            = _mm_mul_ps(beta2,rsq20);
380             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
381             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
382             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
383             felec            = _mm_mul_ps(qq20,felec);
384             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
385             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
386             velec            = _mm_mul_ps(qq20,velec);
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velecsum         = _mm_add_ps(velecsum,velec);
390
391             fscal            = felec;
392
393              /* Update vectorial force */
394             fix2             = _mm_macc_ps(dx20,fscal,fix2);
395             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
396             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
397
398             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
399             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
400             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
401
402             fjptrA             = f+j_coord_offsetA;
403             fjptrB             = f+j_coord_offsetB;
404             fjptrC             = f+j_coord_offsetC;
405             fjptrD             = f+j_coord_offsetD;
406
407             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
408
409             /* Inner loop uses 121 flops */
410         }
411
412         if(jidx<j_index_end)
413         {
414
415             /* Get j neighbor index, and coordinate index */
416             jnrlistA         = jjnr[jidx];
417             jnrlistB         = jjnr[jidx+1];
418             jnrlistC         = jjnr[jidx+2];
419             jnrlistD         = jjnr[jidx+3];
420             /* Sign of each element will be negative for non-real atoms.
421              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
422              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
423              */
424             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
425             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
426             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
427             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
428             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
429             j_coord_offsetA  = DIM*jnrA;
430             j_coord_offsetB  = DIM*jnrB;
431             j_coord_offsetC  = DIM*jnrC;
432             j_coord_offsetD  = DIM*jnrD;
433
434             /* load j atom coordinates */
435             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
436                                               x+j_coord_offsetC,x+j_coord_offsetD,
437                                               &jx0,&jy0,&jz0);
438
439             /* Calculate displacement vector */
440             dx00             = _mm_sub_ps(ix0,jx0);
441             dy00             = _mm_sub_ps(iy0,jy0);
442             dz00             = _mm_sub_ps(iz0,jz0);
443             dx10             = _mm_sub_ps(ix1,jx0);
444             dy10             = _mm_sub_ps(iy1,jy0);
445             dz10             = _mm_sub_ps(iz1,jz0);
446             dx20             = _mm_sub_ps(ix2,jx0);
447             dy20             = _mm_sub_ps(iy2,jy0);
448             dz20             = _mm_sub_ps(iz2,jz0);
449
450             /* Calculate squared distance and things based on it */
451             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
452             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
453             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
454
455             rinv00           = gmx_mm_invsqrt_ps(rsq00);
456             rinv10           = gmx_mm_invsqrt_ps(rsq10);
457             rinv20           = gmx_mm_invsqrt_ps(rsq20);
458
459             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
460             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
461             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
462
463             /* Load parameters for j particles */
464             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
465                                                               charge+jnrC+0,charge+jnrD+0);
466             vdwjidx0A        = 2*vdwtype[jnrA+0];
467             vdwjidx0B        = 2*vdwtype[jnrB+0];
468             vdwjidx0C        = 2*vdwtype[jnrC+0];
469             vdwjidx0D        = 2*vdwtype[jnrD+0];
470
471             fjx0             = _mm_setzero_ps();
472             fjy0             = _mm_setzero_ps();
473             fjz0             = _mm_setzero_ps();
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             r00              = _mm_mul_ps(rsq00,rinv00);
480             r00              = _mm_andnot_ps(dummy_mask,r00);
481
482             /* Compute parameters for interactions between i and j atoms */
483             qq00             = _mm_mul_ps(iq0,jq0);
484             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
485                                          vdwparam+vdwioffset0+vdwjidx0B,
486                                          vdwparam+vdwioffset0+vdwjidx0C,
487                                          vdwparam+vdwioffset0+vdwjidx0D,
488                                          &c6_00,&c12_00);
489
490             /* Calculate table index by multiplying r with table scale and truncate to integer */
491             rt               = _mm_mul_ps(r00,vftabscale);
492             vfitab           = _mm_cvttps_epi32(rt);
493 #ifdef __XOP__
494             vfeps            = _mm_frcz_ps(rt);
495 #else
496             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
497 #endif
498             twovfeps         = _mm_add_ps(vfeps,vfeps);
499             vfitab           = _mm_slli_epi32(vfitab,3);
500
501             /* EWALD ELECTROSTATICS */
502
503             /* Analytical PME correction */
504             zeta2            = _mm_mul_ps(beta2,rsq00);
505             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
506             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
507             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
508             felec            = _mm_mul_ps(qq00,felec);
509             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
510             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
511             velec            = _mm_mul_ps(qq00,velec);
512
513             /* CUBIC SPLINE TABLE DISPERSION */
514             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
515             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
516             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
517             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
518             _MM_TRANSPOSE4_PS(Y,F,G,H);
519             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
520             VV               = _mm_macc_ps(vfeps,Fp,Y);
521             vvdw6            = _mm_mul_ps(c6_00,VV);
522             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
523             fvdw6            = _mm_mul_ps(c6_00,FF);
524
525             /* CUBIC SPLINE TABLE REPULSION */
526             vfitab           = _mm_add_epi32(vfitab,ifour);
527             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
528             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
529             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
530             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
531             _MM_TRANSPOSE4_PS(Y,F,G,H);
532             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
533             VV               = _mm_macc_ps(vfeps,Fp,Y);
534             vvdw12           = _mm_mul_ps(c12_00,VV);
535             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
536             fvdw12           = _mm_mul_ps(c12_00,FF);
537             vvdw             = _mm_add_ps(vvdw12,vvdw6);
538             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
539
540             /* Update potential sum for this i atom from the interaction with this j atom. */
541             velec            = _mm_andnot_ps(dummy_mask,velec);
542             velecsum         = _mm_add_ps(velecsum,velec);
543             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
544             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
545
546             fscal            = _mm_add_ps(felec,fvdw);
547
548             fscal            = _mm_andnot_ps(dummy_mask,fscal);
549
550              /* Update vectorial force */
551             fix0             = _mm_macc_ps(dx00,fscal,fix0);
552             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
553             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
554
555             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
556             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
557             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             r10              = _mm_mul_ps(rsq10,rinv10);
564             r10              = _mm_andnot_ps(dummy_mask,r10);
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq10             = _mm_mul_ps(iq1,jq0);
568
569             /* EWALD ELECTROSTATICS */
570
571             /* Analytical PME correction */
572             zeta2            = _mm_mul_ps(beta2,rsq10);
573             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
574             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
575             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
576             felec            = _mm_mul_ps(qq10,felec);
577             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
578             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
579             velec            = _mm_mul_ps(qq10,velec);
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm_andnot_ps(dummy_mask,velec);
583             velecsum         = _mm_add_ps(velecsum,velec);
584
585             fscal            = felec;
586
587             fscal            = _mm_andnot_ps(dummy_mask,fscal);
588
589              /* Update vectorial force */
590             fix1             = _mm_macc_ps(dx10,fscal,fix1);
591             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
592             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
593
594             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
595             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
596             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             r20              = _mm_mul_ps(rsq20,rinv20);
603             r20              = _mm_andnot_ps(dummy_mask,r20);
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq20             = _mm_mul_ps(iq2,jq0);
607
608             /* EWALD ELECTROSTATICS */
609
610             /* Analytical PME correction */
611             zeta2            = _mm_mul_ps(beta2,rsq20);
612             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
613             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
614             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
615             felec            = _mm_mul_ps(qq20,felec);
616             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
617             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
618             velec            = _mm_mul_ps(qq20,velec);
619
620             /* Update potential sum for this i atom from the interaction with this j atom. */
621             velec            = _mm_andnot_ps(dummy_mask,velec);
622             velecsum         = _mm_add_ps(velecsum,velec);
623
624             fscal            = felec;
625
626             fscal            = _mm_andnot_ps(dummy_mask,fscal);
627
628              /* Update vectorial force */
629             fix2             = _mm_macc_ps(dx20,fscal,fix2);
630             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
631             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
632
633             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
634             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
635             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
636
637             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
638             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
639             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
640             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
641
642             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
643
644             /* Inner loop uses 124 flops */
645         }
646
647         /* End of innermost loop */
648
649         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
650                                               f+i_coord_offset,fshift+i_shift_offset);
651
652         ggid                        = gid[iidx];
653         /* Update potential energies */
654         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
655         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
656
657         /* Increment number of inner iterations */
658         inneriter                  += j_index_end - j_index_start;
659
660         /* Outer loop uses 20 flops */
661     }
662
663     /* Increment number of outer iterations */
664     outeriter        += nri;
665
666     /* Update outer/inner flops */
667
668     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*124);
669 }
670 /*
671  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_single
672  * Electrostatics interaction: Ewald
673  * VdW interaction:            CubicSplineTable
674  * Geometry:                   Water3-Particle
675  * Calculate force/pot:        Force
676  */
677 void
678 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_single
679                     (t_nblist                    * gmx_restrict       nlist,
680                      rvec                        * gmx_restrict          xx,
681                      rvec                        * gmx_restrict          ff,
682                      t_forcerec                  * gmx_restrict          fr,
683                      t_mdatoms                   * gmx_restrict     mdatoms,
684                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
685                      t_nrnb                      * gmx_restrict        nrnb)
686 {
687     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
688      * just 0 for non-waters.
689      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
690      * jnr indices corresponding to data put in the four positions in the SIMD register.
691      */
692     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
693     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
694     int              jnrA,jnrB,jnrC,jnrD;
695     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
696     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
697     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
698     real             rcutoff_scalar;
699     real             *shiftvec,*fshift,*x,*f;
700     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
701     real             scratch[4*DIM];
702     __m128           fscal,rcutoff,rcutoff2,jidxall;
703     int              vdwioffset0;
704     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
705     int              vdwioffset1;
706     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
707     int              vdwioffset2;
708     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
709     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
710     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
711     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
712     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
713     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
714     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
715     real             *charge;
716     int              nvdwtype;
717     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
718     int              *vdwtype;
719     real             *vdwparam;
720     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
721     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
722     __m128i          vfitab;
723     __m128i          ifour       = _mm_set1_epi32(4);
724     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
725     real             *vftab;
726     __m128i          ewitab;
727     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
728     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
729     real             *ewtab;
730     __m128           dummy_mask,cutoff_mask;
731     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
732     __m128           one     = _mm_set1_ps(1.0);
733     __m128           two     = _mm_set1_ps(2.0);
734     x                = xx[0];
735     f                = ff[0];
736
737     nri              = nlist->nri;
738     iinr             = nlist->iinr;
739     jindex           = nlist->jindex;
740     jjnr             = nlist->jjnr;
741     shiftidx         = nlist->shift;
742     gid              = nlist->gid;
743     shiftvec         = fr->shift_vec[0];
744     fshift           = fr->fshift[0];
745     facel            = _mm_set1_ps(fr->epsfac);
746     charge           = mdatoms->chargeA;
747     nvdwtype         = fr->ntype;
748     vdwparam         = fr->nbfp;
749     vdwtype          = mdatoms->typeA;
750
751     vftab            = kernel_data->table_vdw->data;
752     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
753
754     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
755     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
756     beta2            = _mm_mul_ps(beta,beta);
757     beta3            = _mm_mul_ps(beta,beta2);
758     ewtab            = fr->ic->tabq_coul_F;
759     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
760     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
761
762     /* Setup water-specific parameters */
763     inr              = nlist->iinr[0];
764     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
765     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
766     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
767     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
768
769     /* Avoid stupid compiler warnings */
770     jnrA = jnrB = jnrC = jnrD = 0;
771     j_coord_offsetA = 0;
772     j_coord_offsetB = 0;
773     j_coord_offsetC = 0;
774     j_coord_offsetD = 0;
775
776     outeriter        = 0;
777     inneriter        = 0;
778
779     for(iidx=0;iidx<4*DIM;iidx++)
780     {
781         scratch[iidx] = 0.0;
782     }
783
784     /* Start outer loop over neighborlists */
785     for(iidx=0; iidx<nri; iidx++)
786     {
787         /* Load shift vector for this list */
788         i_shift_offset   = DIM*shiftidx[iidx];
789
790         /* Load limits for loop over neighbors */
791         j_index_start    = jindex[iidx];
792         j_index_end      = jindex[iidx+1];
793
794         /* Get outer coordinate index */
795         inr              = iinr[iidx];
796         i_coord_offset   = DIM*inr;
797
798         /* Load i particle coords and add shift vector */
799         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
800                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
801
802         fix0             = _mm_setzero_ps();
803         fiy0             = _mm_setzero_ps();
804         fiz0             = _mm_setzero_ps();
805         fix1             = _mm_setzero_ps();
806         fiy1             = _mm_setzero_ps();
807         fiz1             = _mm_setzero_ps();
808         fix2             = _mm_setzero_ps();
809         fiy2             = _mm_setzero_ps();
810         fiz2             = _mm_setzero_ps();
811
812         /* Start inner kernel loop */
813         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
814         {
815
816             /* Get j neighbor index, and coordinate index */
817             jnrA             = jjnr[jidx];
818             jnrB             = jjnr[jidx+1];
819             jnrC             = jjnr[jidx+2];
820             jnrD             = jjnr[jidx+3];
821             j_coord_offsetA  = DIM*jnrA;
822             j_coord_offsetB  = DIM*jnrB;
823             j_coord_offsetC  = DIM*jnrC;
824             j_coord_offsetD  = DIM*jnrD;
825
826             /* load j atom coordinates */
827             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
828                                               x+j_coord_offsetC,x+j_coord_offsetD,
829                                               &jx0,&jy0,&jz0);
830
831             /* Calculate displacement vector */
832             dx00             = _mm_sub_ps(ix0,jx0);
833             dy00             = _mm_sub_ps(iy0,jy0);
834             dz00             = _mm_sub_ps(iz0,jz0);
835             dx10             = _mm_sub_ps(ix1,jx0);
836             dy10             = _mm_sub_ps(iy1,jy0);
837             dz10             = _mm_sub_ps(iz1,jz0);
838             dx20             = _mm_sub_ps(ix2,jx0);
839             dy20             = _mm_sub_ps(iy2,jy0);
840             dz20             = _mm_sub_ps(iz2,jz0);
841
842             /* Calculate squared distance and things based on it */
843             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
844             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
845             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
846
847             rinv00           = gmx_mm_invsqrt_ps(rsq00);
848             rinv10           = gmx_mm_invsqrt_ps(rsq10);
849             rinv20           = gmx_mm_invsqrt_ps(rsq20);
850
851             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
852             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
853             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
854
855             /* Load parameters for j particles */
856             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
857                                                               charge+jnrC+0,charge+jnrD+0);
858             vdwjidx0A        = 2*vdwtype[jnrA+0];
859             vdwjidx0B        = 2*vdwtype[jnrB+0];
860             vdwjidx0C        = 2*vdwtype[jnrC+0];
861             vdwjidx0D        = 2*vdwtype[jnrD+0];
862
863             fjx0             = _mm_setzero_ps();
864             fjy0             = _mm_setzero_ps();
865             fjz0             = _mm_setzero_ps();
866
867             /**************************
868              * CALCULATE INTERACTIONS *
869              **************************/
870
871             r00              = _mm_mul_ps(rsq00,rinv00);
872
873             /* Compute parameters for interactions between i and j atoms */
874             qq00             = _mm_mul_ps(iq0,jq0);
875             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
876                                          vdwparam+vdwioffset0+vdwjidx0B,
877                                          vdwparam+vdwioffset0+vdwjidx0C,
878                                          vdwparam+vdwioffset0+vdwjidx0D,
879                                          &c6_00,&c12_00);
880
881             /* Calculate table index by multiplying r with table scale and truncate to integer */
882             rt               = _mm_mul_ps(r00,vftabscale);
883             vfitab           = _mm_cvttps_epi32(rt);
884 #ifdef __XOP__
885             vfeps            = _mm_frcz_ps(rt);
886 #else
887             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
888 #endif
889             twovfeps         = _mm_add_ps(vfeps,vfeps);
890             vfitab           = _mm_slli_epi32(vfitab,3);
891
892             /* EWALD ELECTROSTATICS */
893
894             /* Analytical PME correction */
895             zeta2            = _mm_mul_ps(beta2,rsq00);
896             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
897             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
898             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
899             felec            = _mm_mul_ps(qq00,felec);
900
901             /* CUBIC SPLINE TABLE DISPERSION */
902             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
903             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
904             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
905             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
906             _MM_TRANSPOSE4_PS(Y,F,G,H);
907             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
908             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
909             fvdw6            = _mm_mul_ps(c6_00,FF);
910
911             /* CUBIC SPLINE TABLE REPULSION */
912             vfitab           = _mm_add_epi32(vfitab,ifour);
913             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
914             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
915             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
916             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
917             _MM_TRANSPOSE4_PS(Y,F,G,H);
918             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
919             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
920             fvdw12           = _mm_mul_ps(c12_00,FF);
921             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
922
923             fscal            = _mm_add_ps(felec,fvdw);
924
925              /* Update vectorial force */
926             fix0             = _mm_macc_ps(dx00,fscal,fix0);
927             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
928             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
929
930             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
931             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
932             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
933
934             /**************************
935              * CALCULATE INTERACTIONS *
936              **************************/
937
938             r10              = _mm_mul_ps(rsq10,rinv10);
939
940             /* Compute parameters for interactions between i and j atoms */
941             qq10             = _mm_mul_ps(iq1,jq0);
942
943             /* EWALD ELECTROSTATICS */
944
945             /* Analytical PME correction */
946             zeta2            = _mm_mul_ps(beta2,rsq10);
947             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
948             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
949             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
950             felec            = _mm_mul_ps(qq10,felec);
951
952             fscal            = felec;
953
954              /* Update vectorial force */
955             fix1             = _mm_macc_ps(dx10,fscal,fix1);
956             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
957             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
958
959             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
960             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
961             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
962
963             /**************************
964              * CALCULATE INTERACTIONS *
965              **************************/
966
967             r20              = _mm_mul_ps(rsq20,rinv20);
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq20             = _mm_mul_ps(iq2,jq0);
971
972             /* EWALD ELECTROSTATICS */
973
974             /* Analytical PME correction */
975             zeta2            = _mm_mul_ps(beta2,rsq20);
976             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
977             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
978             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
979             felec            = _mm_mul_ps(qq20,felec);
980
981             fscal            = felec;
982
983              /* Update vectorial force */
984             fix2             = _mm_macc_ps(dx20,fscal,fix2);
985             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
986             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
987
988             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
989             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
990             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
991
992             fjptrA             = f+j_coord_offsetA;
993             fjptrB             = f+j_coord_offsetB;
994             fjptrC             = f+j_coord_offsetC;
995             fjptrD             = f+j_coord_offsetD;
996
997             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
998
999             /* Inner loop uses 110 flops */
1000         }
1001
1002         if(jidx<j_index_end)
1003         {
1004
1005             /* Get j neighbor index, and coordinate index */
1006             jnrlistA         = jjnr[jidx];
1007             jnrlistB         = jjnr[jidx+1];
1008             jnrlistC         = jjnr[jidx+2];
1009             jnrlistD         = jjnr[jidx+3];
1010             /* Sign of each element will be negative for non-real atoms.
1011              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1012              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1013              */
1014             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1015             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1016             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1017             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1018             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1019             j_coord_offsetA  = DIM*jnrA;
1020             j_coord_offsetB  = DIM*jnrB;
1021             j_coord_offsetC  = DIM*jnrC;
1022             j_coord_offsetD  = DIM*jnrD;
1023
1024             /* load j atom coordinates */
1025             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1026                                               x+j_coord_offsetC,x+j_coord_offsetD,
1027                                               &jx0,&jy0,&jz0);
1028
1029             /* Calculate displacement vector */
1030             dx00             = _mm_sub_ps(ix0,jx0);
1031             dy00             = _mm_sub_ps(iy0,jy0);
1032             dz00             = _mm_sub_ps(iz0,jz0);
1033             dx10             = _mm_sub_ps(ix1,jx0);
1034             dy10             = _mm_sub_ps(iy1,jy0);
1035             dz10             = _mm_sub_ps(iz1,jz0);
1036             dx20             = _mm_sub_ps(ix2,jx0);
1037             dy20             = _mm_sub_ps(iy2,jy0);
1038             dz20             = _mm_sub_ps(iz2,jz0);
1039
1040             /* Calculate squared distance and things based on it */
1041             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1042             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1043             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1044
1045             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1046             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1047             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1048
1049             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1050             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1051             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1052
1053             /* Load parameters for j particles */
1054             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1055                                                               charge+jnrC+0,charge+jnrD+0);
1056             vdwjidx0A        = 2*vdwtype[jnrA+0];
1057             vdwjidx0B        = 2*vdwtype[jnrB+0];
1058             vdwjidx0C        = 2*vdwtype[jnrC+0];
1059             vdwjidx0D        = 2*vdwtype[jnrD+0];
1060
1061             fjx0             = _mm_setzero_ps();
1062             fjy0             = _mm_setzero_ps();
1063             fjz0             = _mm_setzero_ps();
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             r00              = _mm_mul_ps(rsq00,rinv00);
1070             r00              = _mm_andnot_ps(dummy_mask,r00);
1071
1072             /* Compute parameters for interactions between i and j atoms */
1073             qq00             = _mm_mul_ps(iq0,jq0);
1074             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1075                                          vdwparam+vdwioffset0+vdwjidx0B,
1076                                          vdwparam+vdwioffset0+vdwjidx0C,
1077                                          vdwparam+vdwioffset0+vdwjidx0D,
1078                                          &c6_00,&c12_00);
1079
1080             /* Calculate table index by multiplying r with table scale and truncate to integer */
1081             rt               = _mm_mul_ps(r00,vftabscale);
1082             vfitab           = _mm_cvttps_epi32(rt);
1083 #ifdef __XOP__
1084             vfeps            = _mm_frcz_ps(rt);
1085 #else
1086             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1087 #endif
1088             twovfeps         = _mm_add_ps(vfeps,vfeps);
1089             vfitab           = _mm_slli_epi32(vfitab,3);
1090
1091             /* EWALD ELECTROSTATICS */
1092
1093             /* Analytical PME correction */
1094             zeta2            = _mm_mul_ps(beta2,rsq00);
1095             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1096             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1097             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1098             felec            = _mm_mul_ps(qq00,felec);
1099
1100             /* CUBIC SPLINE TABLE DISPERSION */
1101             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1102             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1103             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1104             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1105             _MM_TRANSPOSE4_PS(Y,F,G,H);
1106             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1107             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1108             fvdw6            = _mm_mul_ps(c6_00,FF);
1109
1110             /* CUBIC SPLINE TABLE REPULSION */
1111             vfitab           = _mm_add_epi32(vfitab,ifour);
1112             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1113             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1114             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1115             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1116             _MM_TRANSPOSE4_PS(Y,F,G,H);
1117             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1118             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1119             fvdw12           = _mm_mul_ps(c12_00,FF);
1120             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1121
1122             fscal            = _mm_add_ps(felec,fvdw);
1123
1124             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1125
1126              /* Update vectorial force */
1127             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1128             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1129             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1130
1131             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1132             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1133             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1134
1135             /**************************
1136              * CALCULATE INTERACTIONS *
1137              **************************/
1138
1139             r10              = _mm_mul_ps(rsq10,rinv10);
1140             r10              = _mm_andnot_ps(dummy_mask,r10);
1141
1142             /* Compute parameters for interactions between i and j atoms */
1143             qq10             = _mm_mul_ps(iq1,jq0);
1144
1145             /* EWALD ELECTROSTATICS */
1146
1147             /* Analytical PME correction */
1148             zeta2            = _mm_mul_ps(beta2,rsq10);
1149             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1150             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1151             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1152             felec            = _mm_mul_ps(qq10,felec);
1153
1154             fscal            = felec;
1155
1156             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1157
1158              /* Update vectorial force */
1159             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1160             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1161             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1162
1163             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1164             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1165             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1166
1167             /**************************
1168              * CALCULATE INTERACTIONS *
1169              **************************/
1170
1171             r20              = _mm_mul_ps(rsq20,rinv20);
1172             r20              = _mm_andnot_ps(dummy_mask,r20);
1173
1174             /* Compute parameters for interactions between i and j atoms */
1175             qq20             = _mm_mul_ps(iq2,jq0);
1176
1177             /* EWALD ELECTROSTATICS */
1178
1179             /* Analytical PME correction */
1180             zeta2            = _mm_mul_ps(beta2,rsq20);
1181             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1182             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1183             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1184             felec            = _mm_mul_ps(qq20,felec);
1185
1186             fscal            = felec;
1187
1188             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1189
1190              /* Update vectorial force */
1191             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1192             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1193             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1194
1195             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1196             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1197             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1198
1199             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1200             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1201             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1202             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1203
1204             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1205
1206             /* Inner loop uses 113 flops */
1207         }
1208
1209         /* End of innermost loop */
1210
1211         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1212                                               f+i_coord_offset,fshift+i_shift_offset);
1213
1214         /* Increment number of inner iterations */
1215         inneriter                  += j_index_end - j_index_start;
1216
1217         /* Outer loop uses 18 flops */
1218     }
1219
1220     /* Increment number of outer iterations */
1221     outeriter        += nri;
1222
1223     /* Update outer/inner flops */
1224
1225     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*113);
1226 }