Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
91     real             *vftab;
92     __m128i          ewitab;
93     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
95     real             *ewtab;
96     __m128           dummy_mask,cutoff_mask;
97     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
98     __m128           one     = _mm_set1_ps(1.0);
99     __m128           two     = _mm_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_ps(fr->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     vftab            = kernel_data->table_vdw->data;
118     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
119
120     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
121     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
122     beta2            = _mm_mul_ps(beta,beta);
123     beta3            = _mm_mul_ps(beta,beta2);
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
126     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
131     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
132     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
167
168         fix0             = _mm_setzero_ps();
169         fiy0             = _mm_setzero_ps();
170         fiz0             = _mm_setzero_ps();
171         fix1             = _mm_setzero_ps();
172         fiy1             = _mm_setzero_ps();
173         fiz1             = _mm_setzero_ps();
174         fix2             = _mm_setzero_ps();
175         fiy2             = _mm_setzero_ps();
176         fiz2             = _mm_setzero_ps();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_ps();
180         vvdwsum          = _mm_setzero_ps();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               x+j_coord_offsetC,x+j_coord_offsetD,
199                                               &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm_sub_ps(ix0,jx0);
203             dy00             = _mm_sub_ps(iy0,jy0);
204             dz00             = _mm_sub_ps(iz0,jz0);
205             dx10             = _mm_sub_ps(ix1,jx0);
206             dy10             = _mm_sub_ps(iy1,jy0);
207             dz10             = _mm_sub_ps(iz1,jz0);
208             dx20             = _mm_sub_ps(ix2,jx0);
209             dy20             = _mm_sub_ps(iy2,jy0);
210             dz20             = _mm_sub_ps(iz2,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
214             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
215             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
216
217             rinv00           = gmx_mm_invsqrt_ps(rsq00);
218             rinv10           = gmx_mm_invsqrt_ps(rsq10);
219             rinv20           = gmx_mm_invsqrt_ps(rsq20);
220
221             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
222             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
223             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                               charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             fjx0             = _mm_setzero_ps();
234             fjy0             = _mm_setzero_ps();
235             fjz0             = _mm_setzero_ps();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             r00              = _mm_mul_ps(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm_mul_ps(iq0,jq0);
245             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
246                                          vdwparam+vdwioffset0+vdwjidx0B,
247                                          vdwparam+vdwioffset0+vdwjidx0C,
248                                          vdwparam+vdwioffset0+vdwjidx0D,
249                                          &c6_00,&c12_00);
250
251             /* Calculate table index by multiplying r with table scale and truncate to integer */
252             rt               = _mm_mul_ps(r00,vftabscale);
253             vfitab           = _mm_cvttps_epi32(rt);
254 #ifdef __XOP__
255             vfeps            = _mm_frcz_ps(rt);
256 #else
257             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
258 #endif
259             twovfeps         = _mm_add_ps(vfeps,vfeps);
260             vfitab           = _mm_slli_epi32(vfitab,3);
261
262             /* EWALD ELECTROSTATICS */
263
264             /* Analytical PME correction */
265             zeta2            = _mm_mul_ps(beta2,rsq00);
266             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
267             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
268             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
269             felec            = _mm_mul_ps(qq00,felec);
270             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
271             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
272             velec            = _mm_mul_ps(qq00,velec);
273
274             /* CUBIC SPLINE TABLE DISPERSION */
275             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
276             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
277             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
278             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
279             _MM_TRANSPOSE4_PS(Y,F,G,H);
280             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
281             VV               = _mm_macc_ps(vfeps,Fp,Y);
282             vvdw6            = _mm_mul_ps(c6_00,VV);
283             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
284             fvdw6            = _mm_mul_ps(c6_00,FF);
285
286             /* CUBIC SPLINE TABLE REPULSION */
287             vfitab           = _mm_add_epi32(vfitab,ifour);
288             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
289             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
290             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
291             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
292             _MM_TRANSPOSE4_PS(Y,F,G,H);
293             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
294             VV               = _mm_macc_ps(vfeps,Fp,Y);
295             vvdw12           = _mm_mul_ps(c12_00,VV);
296             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
297             fvdw12           = _mm_mul_ps(c12_00,FF);
298             vvdw             = _mm_add_ps(vvdw12,vvdw6);
299             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
300
301             /* Update potential sum for this i atom from the interaction with this j atom. */
302             velecsum         = _mm_add_ps(velecsum,velec);
303             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
304
305             fscal            = _mm_add_ps(felec,fvdw);
306
307              /* Update vectorial force */
308             fix0             = _mm_macc_ps(dx00,fscal,fix0);
309             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
310             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
311
312             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
313             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
314             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             r10              = _mm_mul_ps(rsq10,rinv10);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq10             = _mm_mul_ps(iq1,jq0);
324
325             /* EWALD ELECTROSTATICS */
326
327             /* Analytical PME correction */
328             zeta2            = _mm_mul_ps(beta2,rsq10);
329             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
330             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
331             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
332             felec            = _mm_mul_ps(qq10,felec);
333             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
334             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
335             velec            = _mm_mul_ps(qq10,velec);
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velecsum         = _mm_add_ps(velecsum,velec);
339
340             fscal            = felec;
341
342              /* Update vectorial force */
343             fix1             = _mm_macc_ps(dx10,fscal,fix1);
344             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
345             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
346
347             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
348             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
349             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             r20              = _mm_mul_ps(rsq20,rinv20);
356
357             /* Compute parameters for interactions between i and j atoms */
358             qq20             = _mm_mul_ps(iq2,jq0);
359
360             /* EWALD ELECTROSTATICS */
361
362             /* Analytical PME correction */
363             zeta2            = _mm_mul_ps(beta2,rsq20);
364             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
365             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
366             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
367             felec            = _mm_mul_ps(qq20,felec);
368             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
369             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
370             velec            = _mm_mul_ps(qq20,velec);
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _mm_add_ps(velecsum,velec);
374
375             fscal            = felec;
376
377              /* Update vectorial force */
378             fix2             = _mm_macc_ps(dx20,fscal,fix2);
379             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
380             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
381
382             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
383             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
384             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
385
386             fjptrA             = f+j_coord_offsetA;
387             fjptrB             = f+j_coord_offsetB;
388             fjptrC             = f+j_coord_offsetC;
389             fjptrD             = f+j_coord_offsetD;
390
391             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
392
393             /* Inner loop uses 121 flops */
394         }
395
396         if(jidx<j_index_end)
397         {
398
399             /* Get j neighbor index, and coordinate index */
400             jnrlistA         = jjnr[jidx];
401             jnrlistB         = jjnr[jidx+1];
402             jnrlistC         = jjnr[jidx+2];
403             jnrlistD         = jjnr[jidx+3];
404             /* Sign of each element will be negative for non-real atoms.
405              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
406              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
407              */
408             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
409             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
410             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
411             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
412             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
413             j_coord_offsetA  = DIM*jnrA;
414             j_coord_offsetB  = DIM*jnrB;
415             j_coord_offsetC  = DIM*jnrC;
416             j_coord_offsetD  = DIM*jnrD;
417
418             /* load j atom coordinates */
419             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
420                                               x+j_coord_offsetC,x+j_coord_offsetD,
421                                               &jx0,&jy0,&jz0);
422
423             /* Calculate displacement vector */
424             dx00             = _mm_sub_ps(ix0,jx0);
425             dy00             = _mm_sub_ps(iy0,jy0);
426             dz00             = _mm_sub_ps(iz0,jz0);
427             dx10             = _mm_sub_ps(ix1,jx0);
428             dy10             = _mm_sub_ps(iy1,jy0);
429             dz10             = _mm_sub_ps(iz1,jz0);
430             dx20             = _mm_sub_ps(ix2,jx0);
431             dy20             = _mm_sub_ps(iy2,jy0);
432             dz20             = _mm_sub_ps(iz2,jz0);
433
434             /* Calculate squared distance and things based on it */
435             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
436             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
437             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
438
439             rinv00           = gmx_mm_invsqrt_ps(rsq00);
440             rinv10           = gmx_mm_invsqrt_ps(rsq10);
441             rinv20           = gmx_mm_invsqrt_ps(rsq20);
442
443             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
444             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
445             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
446
447             /* Load parameters for j particles */
448             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
449                                                               charge+jnrC+0,charge+jnrD+0);
450             vdwjidx0A        = 2*vdwtype[jnrA+0];
451             vdwjidx0B        = 2*vdwtype[jnrB+0];
452             vdwjidx0C        = 2*vdwtype[jnrC+0];
453             vdwjidx0D        = 2*vdwtype[jnrD+0];
454
455             fjx0             = _mm_setzero_ps();
456             fjy0             = _mm_setzero_ps();
457             fjz0             = _mm_setzero_ps();
458
459             /**************************
460              * CALCULATE INTERACTIONS *
461              **************************/
462
463             r00              = _mm_mul_ps(rsq00,rinv00);
464             r00              = _mm_andnot_ps(dummy_mask,r00);
465
466             /* Compute parameters for interactions between i and j atoms */
467             qq00             = _mm_mul_ps(iq0,jq0);
468             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
469                                          vdwparam+vdwioffset0+vdwjidx0B,
470                                          vdwparam+vdwioffset0+vdwjidx0C,
471                                          vdwparam+vdwioffset0+vdwjidx0D,
472                                          &c6_00,&c12_00);
473
474             /* Calculate table index by multiplying r with table scale and truncate to integer */
475             rt               = _mm_mul_ps(r00,vftabscale);
476             vfitab           = _mm_cvttps_epi32(rt);
477 #ifdef __XOP__
478             vfeps            = _mm_frcz_ps(rt);
479 #else
480             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
481 #endif
482             twovfeps         = _mm_add_ps(vfeps,vfeps);
483             vfitab           = _mm_slli_epi32(vfitab,3);
484
485             /* EWALD ELECTROSTATICS */
486
487             /* Analytical PME correction */
488             zeta2            = _mm_mul_ps(beta2,rsq00);
489             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
490             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
491             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
492             felec            = _mm_mul_ps(qq00,felec);
493             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
494             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
495             velec            = _mm_mul_ps(qq00,velec);
496
497             /* CUBIC SPLINE TABLE DISPERSION */
498             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
499             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
500             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
501             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
502             _MM_TRANSPOSE4_PS(Y,F,G,H);
503             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
504             VV               = _mm_macc_ps(vfeps,Fp,Y);
505             vvdw6            = _mm_mul_ps(c6_00,VV);
506             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
507             fvdw6            = _mm_mul_ps(c6_00,FF);
508
509             /* CUBIC SPLINE TABLE REPULSION */
510             vfitab           = _mm_add_epi32(vfitab,ifour);
511             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
512             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
513             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
514             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
515             _MM_TRANSPOSE4_PS(Y,F,G,H);
516             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
517             VV               = _mm_macc_ps(vfeps,Fp,Y);
518             vvdw12           = _mm_mul_ps(c12_00,VV);
519             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
520             fvdw12           = _mm_mul_ps(c12_00,FF);
521             vvdw             = _mm_add_ps(vvdw12,vvdw6);
522             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
523
524             /* Update potential sum for this i atom from the interaction with this j atom. */
525             velec            = _mm_andnot_ps(dummy_mask,velec);
526             velecsum         = _mm_add_ps(velecsum,velec);
527             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
528             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
529
530             fscal            = _mm_add_ps(felec,fvdw);
531
532             fscal            = _mm_andnot_ps(dummy_mask,fscal);
533
534              /* Update vectorial force */
535             fix0             = _mm_macc_ps(dx00,fscal,fix0);
536             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
537             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
538
539             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
540             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
541             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
542
543             /**************************
544              * CALCULATE INTERACTIONS *
545              **************************/
546
547             r10              = _mm_mul_ps(rsq10,rinv10);
548             r10              = _mm_andnot_ps(dummy_mask,r10);
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq10             = _mm_mul_ps(iq1,jq0);
552
553             /* EWALD ELECTROSTATICS */
554
555             /* Analytical PME correction */
556             zeta2            = _mm_mul_ps(beta2,rsq10);
557             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
558             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
559             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
560             felec            = _mm_mul_ps(qq10,felec);
561             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
562             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
563             velec            = _mm_mul_ps(qq10,velec);
564
565             /* Update potential sum for this i atom from the interaction with this j atom. */
566             velec            = _mm_andnot_ps(dummy_mask,velec);
567             velecsum         = _mm_add_ps(velecsum,velec);
568
569             fscal            = felec;
570
571             fscal            = _mm_andnot_ps(dummy_mask,fscal);
572
573              /* Update vectorial force */
574             fix1             = _mm_macc_ps(dx10,fscal,fix1);
575             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
576             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
577
578             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
579             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
580             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             r20              = _mm_mul_ps(rsq20,rinv20);
587             r20              = _mm_andnot_ps(dummy_mask,r20);
588
589             /* Compute parameters for interactions between i and j atoms */
590             qq20             = _mm_mul_ps(iq2,jq0);
591
592             /* EWALD ELECTROSTATICS */
593
594             /* Analytical PME correction */
595             zeta2            = _mm_mul_ps(beta2,rsq20);
596             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
597             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
598             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
599             felec            = _mm_mul_ps(qq20,felec);
600             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
601             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
602             velec            = _mm_mul_ps(qq20,velec);
603
604             /* Update potential sum for this i atom from the interaction with this j atom. */
605             velec            = _mm_andnot_ps(dummy_mask,velec);
606             velecsum         = _mm_add_ps(velecsum,velec);
607
608             fscal            = felec;
609
610             fscal            = _mm_andnot_ps(dummy_mask,fscal);
611
612              /* Update vectorial force */
613             fix2             = _mm_macc_ps(dx20,fscal,fix2);
614             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
615             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
616
617             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
618             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
619             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
620
621             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
622             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
623             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
624             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
625
626             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
627
628             /* Inner loop uses 124 flops */
629         }
630
631         /* End of innermost loop */
632
633         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
634                                               f+i_coord_offset,fshift+i_shift_offset);
635
636         ggid                        = gid[iidx];
637         /* Update potential energies */
638         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
639         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
640
641         /* Increment number of inner iterations */
642         inneriter                  += j_index_end - j_index_start;
643
644         /* Outer loop uses 20 flops */
645     }
646
647     /* Increment number of outer iterations */
648     outeriter        += nri;
649
650     /* Update outer/inner flops */
651
652     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*124);
653 }
654 /*
655  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_single
656  * Electrostatics interaction: Ewald
657  * VdW interaction:            CubicSplineTable
658  * Geometry:                   Water3-Particle
659  * Calculate force/pot:        Force
660  */
661 void
662 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_single
663                     (t_nblist * gmx_restrict                nlist,
664                      rvec * gmx_restrict                    xx,
665                      rvec * gmx_restrict                    ff,
666                      t_forcerec * gmx_restrict              fr,
667                      t_mdatoms * gmx_restrict               mdatoms,
668                      nb_kernel_data_t * gmx_restrict        kernel_data,
669                      t_nrnb * gmx_restrict                  nrnb)
670 {
671     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
672      * just 0 for non-waters.
673      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
674      * jnr indices corresponding to data put in the four positions in the SIMD register.
675      */
676     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
677     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
678     int              jnrA,jnrB,jnrC,jnrD;
679     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
680     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
681     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
682     real             rcutoff_scalar;
683     real             *shiftvec,*fshift,*x,*f;
684     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
685     real             scratch[4*DIM];
686     __m128           fscal,rcutoff,rcutoff2,jidxall;
687     int              vdwioffset0;
688     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
689     int              vdwioffset1;
690     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
691     int              vdwioffset2;
692     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
693     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
694     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
695     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
696     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
697     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
698     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
699     real             *charge;
700     int              nvdwtype;
701     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
702     int              *vdwtype;
703     real             *vdwparam;
704     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
705     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
706     __m128i          vfitab;
707     __m128i          ifour       = _mm_set1_epi32(4);
708     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
709     real             *vftab;
710     __m128i          ewitab;
711     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
712     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
713     real             *ewtab;
714     __m128           dummy_mask,cutoff_mask;
715     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
716     __m128           one     = _mm_set1_ps(1.0);
717     __m128           two     = _mm_set1_ps(2.0);
718     x                = xx[0];
719     f                = ff[0];
720
721     nri              = nlist->nri;
722     iinr             = nlist->iinr;
723     jindex           = nlist->jindex;
724     jjnr             = nlist->jjnr;
725     shiftidx         = nlist->shift;
726     gid              = nlist->gid;
727     shiftvec         = fr->shift_vec[0];
728     fshift           = fr->fshift[0];
729     facel            = _mm_set1_ps(fr->epsfac);
730     charge           = mdatoms->chargeA;
731     nvdwtype         = fr->ntype;
732     vdwparam         = fr->nbfp;
733     vdwtype          = mdatoms->typeA;
734
735     vftab            = kernel_data->table_vdw->data;
736     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
737
738     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
739     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
740     beta2            = _mm_mul_ps(beta,beta);
741     beta3            = _mm_mul_ps(beta,beta2);
742     ewtab            = fr->ic->tabq_coul_F;
743     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
744     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
745
746     /* Setup water-specific parameters */
747     inr              = nlist->iinr[0];
748     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
749     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
750     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
751     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
752
753     /* Avoid stupid compiler warnings */
754     jnrA = jnrB = jnrC = jnrD = 0;
755     j_coord_offsetA = 0;
756     j_coord_offsetB = 0;
757     j_coord_offsetC = 0;
758     j_coord_offsetD = 0;
759
760     outeriter        = 0;
761     inneriter        = 0;
762
763     for(iidx=0;iidx<4*DIM;iidx++)
764     {
765         scratch[iidx] = 0.0;
766     }
767
768     /* Start outer loop over neighborlists */
769     for(iidx=0; iidx<nri; iidx++)
770     {
771         /* Load shift vector for this list */
772         i_shift_offset   = DIM*shiftidx[iidx];
773
774         /* Load limits for loop over neighbors */
775         j_index_start    = jindex[iidx];
776         j_index_end      = jindex[iidx+1];
777
778         /* Get outer coordinate index */
779         inr              = iinr[iidx];
780         i_coord_offset   = DIM*inr;
781
782         /* Load i particle coords and add shift vector */
783         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
784                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
785
786         fix0             = _mm_setzero_ps();
787         fiy0             = _mm_setzero_ps();
788         fiz0             = _mm_setzero_ps();
789         fix1             = _mm_setzero_ps();
790         fiy1             = _mm_setzero_ps();
791         fiz1             = _mm_setzero_ps();
792         fix2             = _mm_setzero_ps();
793         fiy2             = _mm_setzero_ps();
794         fiz2             = _mm_setzero_ps();
795
796         /* Start inner kernel loop */
797         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
798         {
799
800             /* Get j neighbor index, and coordinate index */
801             jnrA             = jjnr[jidx];
802             jnrB             = jjnr[jidx+1];
803             jnrC             = jjnr[jidx+2];
804             jnrD             = jjnr[jidx+3];
805             j_coord_offsetA  = DIM*jnrA;
806             j_coord_offsetB  = DIM*jnrB;
807             j_coord_offsetC  = DIM*jnrC;
808             j_coord_offsetD  = DIM*jnrD;
809
810             /* load j atom coordinates */
811             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
812                                               x+j_coord_offsetC,x+j_coord_offsetD,
813                                               &jx0,&jy0,&jz0);
814
815             /* Calculate displacement vector */
816             dx00             = _mm_sub_ps(ix0,jx0);
817             dy00             = _mm_sub_ps(iy0,jy0);
818             dz00             = _mm_sub_ps(iz0,jz0);
819             dx10             = _mm_sub_ps(ix1,jx0);
820             dy10             = _mm_sub_ps(iy1,jy0);
821             dz10             = _mm_sub_ps(iz1,jz0);
822             dx20             = _mm_sub_ps(ix2,jx0);
823             dy20             = _mm_sub_ps(iy2,jy0);
824             dz20             = _mm_sub_ps(iz2,jz0);
825
826             /* Calculate squared distance and things based on it */
827             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
828             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
829             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
830
831             rinv00           = gmx_mm_invsqrt_ps(rsq00);
832             rinv10           = gmx_mm_invsqrt_ps(rsq10);
833             rinv20           = gmx_mm_invsqrt_ps(rsq20);
834
835             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
836             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
837             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
838
839             /* Load parameters for j particles */
840             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
841                                                               charge+jnrC+0,charge+jnrD+0);
842             vdwjidx0A        = 2*vdwtype[jnrA+0];
843             vdwjidx0B        = 2*vdwtype[jnrB+0];
844             vdwjidx0C        = 2*vdwtype[jnrC+0];
845             vdwjidx0D        = 2*vdwtype[jnrD+0];
846
847             fjx0             = _mm_setzero_ps();
848             fjy0             = _mm_setzero_ps();
849             fjz0             = _mm_setzero_ps();
850
851             /**************************
852              * CALCULATE INTERACTIONS *
853              **************************/
854
855             r00              = _mm_mul_ps(rsq00,rinv00);
856
857             /* Compute parameters for interactions between i and j atoms */
858             qq00             = _mm_mul_ps(iq0,jq0);
859             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
860                                          vdwparam+vdwioffset0+vdwjidx0B,
861                                          vdwparam+vdwioffset0+vdwjidx0C,
862                                          vdwparam+vdwioffset0+vdwjidx0D,
863                                          &c6_00,&c12_00);
864
865             /* Calculate table index by multiplying r with table scale and truncate to integer */
866             rt               = _mm_mul_ps(r00,vftabscale);
867             vfitab           = _mm_cvttps_epi32(rt);
868 #ifdef __XOP__
869             vfeps            = _mm_frcz_ps(rt);
870 #else
871             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
872 #endif
873             twovfeps         = _mm_add_ps(vfeps,vfeps);
874             vfitab           = _mm_slli_epi32(vfitab,3);
875
876             /* EWALD ELECTROSTATICS */
877
878             /* Analytical PME correction */
879             zeta2            = _mm_mul_ps(beta2,rsq00);
880             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
881             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
882             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
883             felec            = _mm_mul_ps(qq00,felec);
884
885             /* CUBIC SPLINE TABLE DISPERSION */
886             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
887             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
888             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
889             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
890             _MM_TRANSPOSE4_PS(Y,F,G,H);
891             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
892             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
893             fvdw6            = _mm_mul_ps(c6_00,FF);
894
895             /* CUBIC SPLINE TABLE REPULSION */
896             vfitab           = _mm_add_epi32(vfitab,ifour);
897             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
898             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
899             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
900             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
901             _MM_TRANSPOSE4_PS(Y,F,G,H);
902             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
903             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
904             fvdw12           = _mm_mul_ps(c12_00,FF);
905             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
906
907             fscal            = _mm_add_ps(felec,fvdw);
908
909              /* Update vectorial force */
910             fix0             = _mm_macc_ps(dx00,fscal,fix0);
911             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
912             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
913
914             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
915             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
916             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
917
918             /**************************
919              * CALCULATE INTERACTIONS *
920              **************************/
921
922             r10              = _mm_mul_ps(rsq10,rinv10);
923
924             /* Compute parameters for interactions between i and j atoms */
925             qq10             = _mm_mul_ps(iq1,jq0);
926
927             /* EWALD ELECTROSTATICS */
928
929             /* Analytical PME correction */
930             zeta2            = _mm_mul_ps(beta2,rsq10);
931             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
932             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
933             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
934             felec            = _mm_mul_ps(qq10,felec);
935
936             fscal            = felec;
937
938              /* Update vectorial force */
939             fix1             = _mm_macc_ps(dx10,fscal,fix1);
940             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
941             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
942
943             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
944             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
945             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             r20              = _mm_mul_ps(rsq20,rinv20);
952
953             /* Compute parameters for interactions between i and j atoms */
954             qq20             = _mm_mul_ps(iq2,jq0);
955
956             /* EWALD ELECTROSTATICS */
957
958             /* Analytical PME correction */
959             zeta2            = _mm_mul_ps(beta2,rsq20);
960             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
961             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
962             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
963             felec            = _mm_mul_ps(qq20,felec);
964
965             fscal            = felec;
966
967              /* Update vectorial force */
968             fix2             = _mm_macc_ps(dx20,fscal,fix2);
969             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
970             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
971
972             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
973             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
974             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
975
976             fjptrA             = f+j_coord_offsetA;
977             fjptrB             = f+j_coord_offsetB;
978             fjptrC             = f+j_coord_offsetC;
979             fjptrD             = f+j_coord_offsetD;
980
981             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
982
983             /* Inner loop uses 110 flops */
984         }
985
986         if(jidx<j_index_end)
987         {
988
989             /* Get j neighbor index, and coordinate index */
990             jnrlistA         = jjnr[jidx];
991             jnrlistB         = jjnr[jidx+1];
992             jnrlistC         = jjnr[jidx+2];
993             jnrlistD         = jjnr[jidx+3];
994             /* Sign of each element will be negative for non-real atoms.
995              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
996              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
997              */
998             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
999             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1000             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1001             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1002             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1003             j_coord_offsetA  = DIM*jnrA;
1004             j_coord_offsetB  = DIM*jnrB;
1005             j_coord_offsetC  = DIM*jnrC;
1006             j_coord_offsetD  = DIM*jnrD;
1007
1008             /* load j atom coordinates */
1009             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1010                                               x+j_coord_offsetC,x+j_coord_offsetD,
1011                                               &jx0,&jy0,&jz0);
1012
1013             /* Calculate displacement vector */
1014             dx00             = _mm_sub_ps(ix0,jx0);
1015             dy00             = _mm_sub_ps(iy0,jy0);
1016             dz00             = _mm_sub_ps(iz0,jz0);
1017             dx10             = _mm_sub_ps(ix1,jx0);
1018             dy10             = _mm_sub_ps(iy1,jy0);
1019             dz10             = _mm_sub_ps(iz1,jz0);
1020             dx20             = _mm_sub_ps(ix2,jx0);
1021             dy20             = _mm_sub_ps(iy2,jy0);
1022             dz20             = _mm_sub_ps(iz2,jz0);
1023
1024             /* Calculate squared distance and things based on it */
1025             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1026             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1027             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1028
1029             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1030             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1031             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1032
1033             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1034             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1035             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1036
1037             /* Load parameters for j particles */
1038             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1039                                                               charge+jnrC+0,charge+jnrD+0);
1040             vdwjidx0A        = 2*vdwtype[jnrA+0];
1041             vdwjidx0B        = 2*vdwtype[jnrB+0];
1042             vdwjidx0C        = 2*vdwtype[jnrC+0];
1043             vdwjidx0D        = 2*vdwtype[jnrD+0];
1044
1045             fjx0             = _mm_setzero_ps();
1046             fjy0             = _mm_setzero_ps();
1047             fjz0             = _mm_setzero_ps();
1048
1049             /**************************
1050              * CALCULATE INTERACTIONS *
1051              **************************/
1052
1053             r00              = _mm_mul_ps(rsq00,rinv00);
1054             r00              = _mm_andnot_ps(dummy_mask,r00);
1055
1056             /* Compute parameters for interactions between i and j atoms */
1057             qq00             = _mm_mul_ps(iq0,jq0);
1058             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1059                                          vdwparam+vdwioffset0+vdwjidx0B,
1060                                          vdwparam+vdwioffset0+vdwjidx0C,
1061                                          vdwparam+vdwioffset0+vdwjidx0D,
1062                                          &c6_00,&c12_00);
1063
1064             /* Calculate table index by multiplying r with table scale and truncate to integer */
1065             rt               = _mm_mul_ps(r00,vftabscale);
1066             vfitab           = _mm_cvttps_epi32(rt);
1067 #ifdef __XOP__
1068             vfeps            = _mm_frcz_ps(rt);
1069 #else
1070             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1071 #endif
1072             twovfeps         = _mm_add_ps(vfeps,vfeps);
1073             vfitab           = _mm_slli_epi32(vfitab,3);
1074
1075             /* EWALD ELECTROSTATICS */
1076
1077             /* Analytical PME correction */
1078             zeta2            = _mm_mul_ps(beta2,rsq00);
1079             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1080             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1081             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1082             felec            = _mm_mul_ps(qq00,felec);
1083
1084             /* CUBIC SPLINE TABLE DISPERSION */
1085             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1086             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1087             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1088             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1089             _MM_TRANSPOSE4_PS(Y,F,G,H);
1090             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1091             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1092             fvdw6            = _mm_mul_ps(c6_00,FF);
1093
1094             /* CUBIC SPLINE TABLE REPULSION */
1095             vfitab           = _mm_add_epi32(vfitab,ifour);
1096             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1097             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1098             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1099             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1100             _MM_TRANSPOSE4_PS(Y,F,G,H);
1101             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1102             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1103             fvdw12           = _mm_mul_ps(c12_00,FF);
1104             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1105
1106             fscal            = _mm_add_ps(felec,fvdw);
1107
1108             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1109
1110              /* Update vectorial force */
1111             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1112             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1113             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1114
1115             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1116             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1117             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1118
1119             /**************************
1120              * CALCULATE INTERACTIONS *
1121              **************************/
1122
1123             r10              = _mm_mul_ps(rsq10,rinv10);
1124             r10              = _mm_andnot_ps(dummy_mask,r10);
1125
1126             /* Compute parameters for interactions between i and j atoms */
1127             qq10             = _mm_mul_ps(iq1,jq0);
1128
1129             /* EWALD ELECTROSTATICS */
1130
1131             /* Analytical PME correction */
1132             zeta2            = _mm_mul_ps(beta2,rsq10);
1133             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1134             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1135             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1136             felec            = _mm_mul_ps(qq10,felec);
1137
1138             fscal            = felec;
1139
1140             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1141
1142              /* Update vectorial force */
1143             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1144             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1145             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1146
1147             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1148             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1149             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1150
1151             /**************************
1152              * CALCULATE INTERACTIONS *
1153              **************************/
1154
1155             r20              = _mm_mul_ps(rsq20,rinv20);
1156             r20              = _mm_andnot_ps(dummy_mask,r20);
1157
1158             /* Compute parameters for interactions between i and j atoms */
1159             qq20             = _mm_mul_ps(iq2,jq0);
1160
1161             /* EWALD ELECTROSTATICS */
1162
1163             /* Analytical PME correction */
1164             zeta2            = _mm_mul_ps(beta2,rsq20);
1165             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1166             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1167             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1168             felec            = _mm_mul_ps(qq20,felec);
1169
1170             fscal            = felec;
1171
1172             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1173
1174              /* Update vectorial force */
1175             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1176             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1177             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1178
1179             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1180             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1181             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1182
1183             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1184             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1185             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1186             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1187
1188             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1189
1190             /* Inner loop uses 113 flops */
1191         }
1192
1193         /* End of innermost loop */
1194
1195         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1196                                               f+i_coord_offset,fshift+i_shift_offset);
1197
1198         /* Increment number of inner iterations */
1199         inneriter                  += j_index_end - j_index_start;
1200
1201         /* Outer loop uses 18 flops */
1202     }
1203
1204     /* Increment number of outer iterations */
1205     outeriter        += nri;
1206
1207     /* Update outer/inner flops */
1208
1209     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*113);
1210 }