Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_128_fma_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
98     real             *vftab;
99     __m128i          ewitab;
100     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
102     real             *ewtab;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
126
127     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
128     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
129     beta2            = _mm_mul_ps(beta,beta);
130     beta3            = _mm_mul_ps(beta,beta2);
131     ewtab            = fr->ic->tabq_coul_FDV0;
132     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
133     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
166
167         fix0             = _mm_setzero_ps();
168         fiy0             = _mm_setzero_ps();
169         fiz0             = _mm_setzero_ps();
170
171         /* Load parameters for i particles */
172         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
173         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_ps();
177         vvdwsum          = _mm_setzero_ps();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               x+j_coord_offsetC,x+j_coord_offsetD,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_ps(ix0,jx0);
200             dy00             = _mm_sub_ps(iy0,jy0);
201             dz00             = _mm_sub_ps(iz0,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
205
206             rinv00           = avx128fma_invsqrt_f(rsq00);
207
208             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
209
210             /* Load parameters for j particles */
211             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
212                                                               charge+jnrC+0,charge+jnrD+0);
213             vdwjidx0A        = 2*vdwtype[jnrA+0];
214             vdwjidx0B        = 2*vdwtype[jnrB+0];
215             vdwjidx0C        = 2*vdwtype[jnrC+0];
216             vdwjidx0D        = 2*vdwtype[jnrD+0];
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             r00              = _mm_mul_ps(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm_mul_ps(iq0,jq0);
226             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
227                                          vdwparam+vdwioffset0+vdwjidx0B,
228                                          vdwparam+vdwioffset0+vdwjidx0C,
229                                          vdwparam+vdwioffset0+vdwjidx0D,
230                                          &c6_00,&c12_00);
231
232             /* Calculate table index by multiplying r with table scale and truncate to integer */
233             rt               = _mm_mul_ps(r00,vftabscale);
234             vfitab           = _mm_cvttps_epi32(rt);
235 #ifdef __XOP__
236             vfeps            = _mm_frcz_ps(rt);
237 #else
238             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
239 #endif
240             twovfeps         = _mm_add_ps(vfeps,vfeps);
241             vfitab           = _mm_slli_epi32(vfitab,3);
242
243             /* EWALD ELECTROSTATICS */
244
245             /* Analytical PME correction */
246             zeta2            = _mm_mul_ps(beta2,rsq00);
247             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
248             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
249             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
250             felec            = _mm_mul_ps(qq00,felec);
251             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
252             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
253             velec            = _mm_mul_ps(qq00,velec);
254
255             /* CUBIC SPLINE TABLE DISPERSION */
256             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
257             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
258             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
259             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
260             _MM_TRANSPOSE4_PS(Y,F,G,H);
261             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
262             VV               = _mm_macc_ps(vfeps,Fp,Y);
263             vvdw6            = _mm_mul_ps(c6_00,VV);
264             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
265             fvdw6            = _mm_mul_ps(c6_00,FF);
266
267             /* CUBIC SPLINE TABLE REPULSION */
268             vfitab           = _mm_add_epi32(vfitab,ifour);
269             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
270             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
271             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
272             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
273             _MM_TRANSPOSE4_PS(Y,F,G,H);
274             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
275             VV               = _mm_macc_ps(vfeps,Fp,Y);
276             vvdw12           = _mm_mul_ps(c12_00,VV);
277             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
278             fvdw12           = _mm_mul_ps(c12_00,FF);
279             vvdw             = _mm_add_ps(vvdw12,vvdw6);
280             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _mm_add_ps(velecsum,velec);
284             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
285
286             fscal            = _mm_add_ps(felec,fvdw);
287
288              /* Update vectorial force */
289             fix0             = _mm_macc_ps(dx00,fscal,fix0);
290             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
291             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
292
293             fjptrA             = f+j_coord_offsetA;
294             fjptrB             = f+j_coord_offsetB;
295             fjptrC             = f+j_coord_offsetC;
296             fjptrD             = f+j_coord_offsetD;
297             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
298                                                    _mm_mul_ps(dx00,fscal),
299                                                    _mm_mul_ps(dy00,fscal),
300                                                    _mm_mul_ps(dz00,fscal));
301
302             /* Inner loop uses 63 flops */
303         }
304
305         if(jidx<j_index_end)
306         {
307
308             /* Get j neighbor index, and coordinate index */
309             jnrlistA         = jjnr[jidx];
310             jnrlistB         = jjnr[jidx+1];
311             jnrlistC         = jjnr[jidx+2];
312             jnrlistD         = jjnr[jidx+3];
313             /* Sign of each element will be negative for non-real atoms.
314              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
315              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
316              */
317             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
318             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
319             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
320             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
321             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
322             j_coord_offsetA  = DIM*jnrA;
323             j_coord_offsetB  = DIM*jnrB;
324             j_coord_offsetC  = DIM*jnrC;
325             j_coord_offsetD  = DIM*jnrD;
326
327             /* load j atom coordinates */
328             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
329                                               x+j_coord_offsetC,x+j_coord_offsetD,
330                                               &jx0,&jy0,&jz0);
331
332             /* Calculate displacement vector */
333             dx00             = _mm_sub_ps(ix0,jx0);
334             dy00             = _mm_sub_ps(iy0,jy0);
335             dz00             = _mm_sub_ps(iz0,jz0);
336
337             /* Calculate squared distance and things based on it */
338             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
339
340             rinv00           = avx128fma_invsqrt_f(rsq00);
341
342             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
343
344             /* Load parameters for j particles */
345             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
346                                                               charge+jnrC+0,charge+jnrD+0);
347             vdwjidx0A        = 2*vdwtype[jnrA+0];
348             vdwjidx0B        = 2*vdwtype[jnrB+0];
349             vdwjidx0C        = 2*vdwtype[jnrC+0];
350             vdwjidx0D        = 2*vdwtype[jnrD+0];
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             r00              = _mm_mul_ps(rsq00,rinv00);
357             r00              = _mm_andnot_ps(dummy_mask,r00);
358
359             /* Compute parameters for interactions between i and j atoms */
360             qq00             = _mm_mul_ps(iq0,jq0);
361             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
362                                          vdwparam+vdwioffset0+vdwjidx0B,
363                                          vdwparam+vdwioffset0+vdwjidx0C,
364                                          vdwparam+vdwioffset0+vdwjidx0D,
365                                          &c6_00,&c12_00);
366
367             /* Calculate table index by multiplying r with table scale and truncate to integer */
368             rt               = _mm_mul_ps(r00,vftabscale);
369             vfitab           = _mm_cvttps_epi32(rt);
370 #ifdef __XOP__
371             vfeps            = _mm_frcz_ps(rt);
372 #else
373             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
374 #endif
375             twovfeps         = _mm_add_ps(vfeps,vfeps);
376             vfitab           = _mm_slli_epi32(vfitab,3);
377
378             /* EWALD ELECTROSTATICS */
379
380             /* Analytical PME correction */
381             zeta2            = _mm_mul_ps(beta2,rsq00);
382             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
383             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
384             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
385             felec            = _mm_mul_ps(qq00,felec);
386             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
387             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
388             velec            = _mm_mul_ps(qq00,velec);
389
390             /* CUBIC SPLINE TABLE DISPERSION */
391             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
392             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
393             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
394             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
395             _MM_TRANSPOSE4_PS(Y,F,G,H);
396             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
397             VV               = _mm_macc_ps(vfeps,Fp,Y);
398             vvdw6            = _mm_mul_ps(c6_00,VV);
399             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
400             fvdw6            = _mm_mul_ps(c6_00,FF);
401
402             /* CUBIC SPLINE TABLE REPULSION */
403             vfitab           = _mm_add_epi32(vfitab,ifour);
404             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
405             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
406             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
407             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
408             _MM_TRANSPOSE4_PS(Y,F,G,H);
409             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
410             VV               = _mm_macc_ps(vfeps,Fp,Y);
411             vvdw12           = _mm_mul_ps(c12_00,VV);
412             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
413             fvdw12           = _mm_mul_ps(c12_00,FF);
414             vvdw             = _mm_add_ps(vvdw12,vvdw6);
415             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             velec            = _mm_andnot_ps(dummy_mask,velec);
419             velecsum         = _mm_add_ps(velecsum,velec);
420             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
421             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
422
423             fscal            = _mm_add_ps(felec,fvdw);
424
425             fscal            = _mm_andnot_ps(dummy_mask,fscal);
426
427              /* Update vectorial force */
428             fix0             = _mm_macc_ps(dx00,fscal,fix0);
429             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
430             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
431
432             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
433             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
434             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
435             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
436             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
437                                                    _mm_mul_ps(dx00,fscal),
438                                                    _mm_mul_ps(dy00,fscal),
439                                                    _mm_mul_ps(dz00,fscal));
440
441             /* Inner loop uses 64 flops */
442         }
443
444         /* End of innermost loop */
445
446         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
447                                               f+i_coord_offset,fshift+i_shift_offset);
448
449         ggid                        = gid[iidx];
450         /* Update potential energies */
451         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
452         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
453
454         /* Increment number of inner iterations */
455         inneriter                  += j_index_end - j_index_start;
456
457         /* Outer loop uses 9 flops */
458     }
459
460     /* Increment number of outer iterations */
461     outeriter        += nri;
462
463     /* Update outer/inner flops */
464
465     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64);
466 }
467 /*
468  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_single
469  * Electrostatics interaction: Ewald
470  * VdW interaction:            CubicSplineTable
471  * Geometry:                   Particle-Particle
472  * Calculate force/pot:        Force
473  */
474 void
475 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_single
476                     (t_nblist                    * gmx_restrict       nlist,
477                      rvec                        * gmx_restrict          xx,
478                      rvec                        * gmx_restrict          ff,
479                      struct t_forcerec           * gmx_restrict          fr,
480                      t_mdatoms                   * gmx_restrict     mdatoms,
481                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
482                      t_nrnb                      * gmx_restrict        nrnb)
483 {
484     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
485      * just 0 for non-waters.
486      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
487      * jnr indices corresponding to data put in the four positions in the SIMD register.
488      */
489     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
490     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
491     int              jnrA,jnrB,jnrC,jnrD;
492     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
493     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
494     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
495     real             rcutoff_scalar;
496     real             *shiftvec,*fshift,*x,*f;
497     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
498     real             scratch[4*DIM];
499     __m128           fscal,rcutoff,rcutoff2,jidxall;
500     int              vdwioffset0;
501     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
502     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
503     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
504     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
505     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
506     real             *charge;
507     int              nvdwtype;
508     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
509     int              *vdwtype;
510     real             *vdwparam;
511     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
512     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
513     __m128i          vfitab;
514     __m128i          ifour       = _mm_set1_epi32(4);
515     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
516     real             *vftab;
517     __m128i          ewitab;
518     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
519     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
520     real             *ewtab;
521     __m128           dummy_mask,cutoff_mask;
522     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
523     __m128           one     = _mm_set1_ps(1.0);
524     __m128           two     = _mm_set1_ps(2.0);
525     x                = xx[0];
526     f                = ff[0];
527
528     nri              = nlist->nri;
529     iinr             = nlist->iinr;
530     jindex           = nlist->jindex;
531     jjnr             = nlist->jjnr;
532     shiftidx         = nlist->shift;
533     gid              = nlist->gid;
534     shiftvec         = fr->shift_vec[0];
535     fshift           = fr->fshift[0];
536     facel            = _mm_set1_ps(fr->ic->epsfac);
537     charge           = mdatoms->chargeA;
538     nvdwtype         = fr->ntype;
539     vdwparam         = fr->nbfp;
540     vdwtype          = mdatoms->typeA;
541
542     vftab            = kernel_data->table_vdw->data;
543     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
544
545     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
546     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
547     beta2            = _mm_mul_ps(beta,beta);
548     beta3            = _mm_mul_ps(beta,beta2);
549     ewtab            = fr->ic->tabq_coul_F;
550     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
551     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
552
553     /* Avoid stupid compiler warnings */
554     jnrA = jnrB = jnrC = jnrD = 0;
555     j_coord_offsetA = 0;
556     j_coord_offsetB = 0;
557     j_coord_offsetC = 0;
558     j_coord_offsetD = 0;
559
560     outeriter        = 0;
561     inneriter        = 0;
562
563     for(iidx=0;iidx<4*DIM;iidx++)
564     {
565         scratch[iidx] = 0.0;
566     }
567
568     /* Start outer loop over neighborlists */
569     for(iidx=0; iidx<nri; iidx++)
570     {
571         /* Load shift vector for this list */
572         i_shift_offset   = DIM*shiftidx[iidx];
573
574         /* Load limits for loop over neighbors */
575         j_index_start    = jindex[iidx];
576         j_index_end      = jindex[iidx+1];
577
578         /* Get outer coordinate index */
579         inr              = iinr[iidx];
580         i_coord_offset   = DIM*inr;
581
582         /* Load i particle coords and add shift vector */
583         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
584
585         fix0             = _mm_setzero_ps();
586         fiy0             = _mm_setzero_ps();
587         fiz0             = _mm_setzero_ps();
588
589         /* Load parameters for i particles */
590         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
591         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
592
593         /* Start inner kernel loop */
594         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
595         {
596
597             /* Get j neighbor index, and coordinate index */
598             jnrA             = jjnr[jidx];
599             jnrB             = jjnr[jidx+1];
600             jnrC             = jjnr[jidx+2];
601             jnrD             = jjnr[jidx+3];
602             j_coord_offsetA  = DIM*jnrA;
603             j_coord_offsetB  = DIM*jnrB;
604             j_coord_offsetC  = DIM*jnrC;
605             j_coord_offsetD  = DIM*jnrD;
606
607             /* load j atom coordinates */
608             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
609                                               x+j_coord_offsetC,x+j_coord_offsetD,
610                                               &jx0,&jy0,&jz0);
611
612             /* Calculate displacement vector */
613             dx00             = _mm_sub_ps(ix0,jx0);
614             dy00             = _mm_sub_ps(iy0,jy0);
615             dz00             = _mm_sub_ps(iz0,jz0);
616
617             /* Calculate squared distance and things based on it */
618             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
619
620             rinv00           = avx128fma_invsqrt_f(rsq00);
621
622             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
623
624             /* Load parameters for j particles */
625             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
626                                                               charge+jnrC+0,charge+jnrD+0);
627             vdwjidx0A        = 2*vdwtype[jnrA+0];
628             vdwjidx0B        = 2*vdwtype[jnrB+0];
629             vdwjidx0C        = 2*vdwtype[jnrC+0];
630             vdwjidx0D        = 2*vdwtype[jnrD+0];
631
632             /**************************
633              * CALCULATE INTERACTIONS *
634              **************************/
635
636             r00              = _mm_mul_ps(rsq00,rinv00);
637
638             /* Compute parameters for interactions between i and j atoms */
639             qq00             = _mm_mul_ps(iq0,jq0);
640             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
641                                          vdwparam+vdwioffset0+vdwjidx0B,
642                                          vdwparam+vdwioffset0+vdwjidx0C,
643                                          vdwparam+vdwioffset0+vdwjidx0D,
644                                          &c6_00,&c12_00);
645
646             /* Calculate table index by multiplying r with table scale and truncate to integer */
647             rt               = _mm_mul_ps(r00,vftabscale);
648             vfitab           = _mm_cvttps_epi32(rt);
649 #ifdef __XOP__
650             vfeps            = _mm_frcz_ps(rt);
651 #else
652             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
653 #endif
654             twovfeps         = _mm_add_ps(vfeps,vfeps);
655             vfitab           = _mm_slli_epi32(vfitab,3);
656
657             /* EWALD ELECTROSTATICS */
658
659             /* Analytical PME correction */
660             zeta2            = _mm_mul_ps(beta2,rsq00);
661             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
662             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
663             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
664             felec            = _mm_mul_ps(qq00,felec);
665
666             /* CUBIC SPLINE TABLE DISPERSION */
667             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
668             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
669             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
670             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
671             _MM_TRANSPOSE4_PS(Y,F,G,H);
672             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
673             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
674             fvdw6            = _mm_mul_ps(c6_00,FF);
675
676             /* CUBIC SPLINE TABLE REPULSION */
677             vfitab           = _mm_add_epi32(vfitab,ifour);
678             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
679             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
680             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
681             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
682             _MM_TRANSPOSE4_PS(Y,F,G,H);
683             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
684             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
685             fvdw12           = _mm_mul_ps(c12_00,FF);
686             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
687
688             fscal            = _mm_add_ps(felec,fvdw);
689
690              /* Update vectorial force */
691             fix0             = _mm_macc_ps(dx00,fscal,fix0);
692             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
693             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
694
695             fjptrA             = f+j_coord_offsetA;
696             fjptrB             = f+j_coord_offsetB;
697             fjptrC             = f+j_coord_offsetC;
698             fjptrD             = f+j_coord_offsetD;
699             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
700                                                    _mm_mul_ps(dx00,fscal),
701                                                    _mm_mul_ps(dy00,fscal),
702                                                    _mm_mul_ps(dz00,fscal));
703
704             /* Inner loop uses 54 flops */
705         }
706
707         if(jidx<j_index_end)
708         {
709
710             /* Get j neighbor index, and coordinate index */
711             jnrlistA         = jjnr[jidx];
712             jnrlistB         = jjnr[jidx+1];
713             jnrlistC         = jjnr[jidx+2];
714             jnrlistD         = jjnr[jidx+3];
715             /* Sign of each element will be negative for non-real atoms.
716              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
717              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
718              */
719             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
720             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
721             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
722             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
723             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
724             j_coord_offsetA  = DIM*jnrA;
725             j_coord_offsetB  = DIM*jnrB;
726             j_coord_offsetC  = DIM*jnrC;
727             j_coord_offsetD  = DIM*jnrD;
728
729             /* load j atom coordinates */
730             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
731                                               x+j_coord_offsetC,x+j_coord_offsetD,
732                                               &jx0,&jy0,&jz0);
733
734             /* Calculate displacement vector */
735             dx00             = _mm_sub_ps(ix0,jx0);
736             dy00             = _mm_sub_ps(iy0,jy0);
737             dz00             = _mm_sub_ps(iz0,jz0);
738
739             /* Calculate squared distance and things based on it */
740             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
741
742             rinv00           = avx128fma_invsqrt_f(rsq00);
743
744             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
745
746             /* Load parameters for j particles */
747             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
748                                                               charge+jnrC+0,charge+jnrD+0);
749             vdwjidx0A        = 2*vdwtype[jnrA+0];
750             vdwjidx0B        = 2*vdwtype[jnrB+0];
751             vdwjidx0C        = 2*vdwtype[jnrC+0];
752             vdwjidx0D        = 2*vdwtype[jnrD+0];
753
754             /**************************
755              * CALCULATE INTERACTIONS *
756              **************************/
757
758             r00              = _mm_mul_ps(rsq00,rinv00);
759             r00              = _mm_andnot_ps(dummy_mask,r00);
760
761             /* Compute parameters for interactions between i and j atoms */
762             qq00             = _mm_mul_ps(iq0,jq0);
763             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
764                                          vdwparam+vdwioffset0+vdwjidx0B,
765                                          vdwparam+vdwioffset0+vdwjidx0C,
766                                          vdwparam+vdwioffset0+vdwjidx0D,
767                                          &c6_00,&c12_00);
768
769             /* Calculate table index by multiplying r with table scale and truncate to integer */
770             rt               = _mm_mul_ps(r00,vftabscale);
771             vfitab           = _mm_cvttps_epi32(rt);
772 #ifdef __XOP__
773             vfeps            = _mm_frcz_ps(rt);
774 #else
775             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
776 #endif
777             twovfeps         = _mm_add_ps(vfeps,vfeps);
778             vfitab           = _mm_slli_epi32(vfitab,3);
779
780             /* EWALD ELECTROSTATICS */
781
782             /* Analytical PME correction */
783             zeta2            = _mm_mul_ps(beta2,rsq00);
784             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
785             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
786             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
787             felec            = _mm_mul_ps(qq00,felec);
788
789             /* CUBIC SPLINE TABLE DISPERSION */
790             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
791             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
792             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
793             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
794             _MM_TRANSPOSE4_PS(Y,F,G,H);
795             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
796             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
797             fvdw6            = _mm_mul_ps(c6_00,FF);
798
799             /* CUBIC SPLINE TABLE REPULSION */
800             vfitab           = _mm_add_epi32(vfitab,ifour);
801             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
802             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
803             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
804             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
805             _MM_TRANSPOSE4_PS(Y,F,G,H);
806             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
807             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
808             fvdw12           = _mm_mul_ps(c12_00,FF);
809             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
810
811             fscal            = _mm_add_ps(felec,fvdw);
812
813             fscal            = _mm_andnot_ps(dummy_mask,fscal);
814
815              /* Update vectorial force */
816             fix0             = _mm_macc_ps(dx00,fscal,fix0);
817             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
818             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
819
820             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
821             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
822             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
823             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
824             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
825                                                    _mm_mul_ps(dx00,fscal),
826                                                    _mm_mul_ps(dy00,fscal),
827                                                    _mm_mul_ps(dz00,fscal));
828
829             /* Inner loop uses 55 flops */
830         }
831
832         /* End of innermost loop */
833
834         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
835                                               f+i_coord_offset,fshift+i_shift_offset);
836
837         /* Increment number of inner iterations */
838         inneriter                  += j_index_end - j_index_start;
839
840         /* Outer loop uses 7 flops */
841     }
842
843     /* Increment number of outer iterations */
844     outeriter        += nri;
845
846     /* Update outer/inner flops */
847
848     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
849 }