Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
99     real             *vftab;
100     __m128i          ewitab;
101     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
103     real             *ewtab;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     vftab            = kernel_data->table_vdw->data;
126     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
127
128     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
129     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
130     beta2            = _mm_mul_ps(beta,beta);
131     beta3            = _mm_mul_ps(beta,beta2);
132     ewtab            = fr->ic->tabq_coul_FDV0;
133     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
134     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167
168         fix0             = _mm_setzero_ps();
169         fiy0             = _mm_setzero_ps();
170         fiz0             = _mm_setzero_ps();
171
172         /* Load parameters for i particles */
173         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
174         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_ps();
178         vvdwsum          = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               x+j_coord_offsetC,x+j_coord_offsetD,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_ps(ix0,jx0);
201             dy00             = _mm_sub_ps(iy0,jy0);
202             dz00             = _mm_sub_ps(iz0,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206
207             rinv00           = gmx_mm_invsqrt_ps(rsq00);
208
209             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
213                                                               charge+jnrC+0,charge+jnrD+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216             vdwjidx0C        = 2*vdwtype[jnrC+0];
217             vdwjidx0D        = 2*vdwtype[jnrD+0];
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             r00              = _mm_mul_ps(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_ps(iq0,jq0);
227             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
228                                          vdwparam+vdwioffset0+vdwjidx0B,
229                                          vdwparam+vdwioffset0+vdwjidx0C,
230                                          vdwparam+vdwioffset0+vdwjidx0D,
231                                          &c6_00,&c12_00);
232
233             /* Calculate table index by multiplying r with table scale and truncate to integer */
234             rt               = _mm_mul_ps(r00,vftabscale);
235             vfitab           = _mm_cvttps_epi32(rt);
236 #ifdef __XOP__
237             vfeps            = _mm_frcz_ps(rt);
238 #else
239             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
240 #endif
241             twovfeps         = _mm_add_ps(vfeps,vfeps);
242             vfitab           = _mm_slli_epi32(vfitab,3);
243
244             /* EWALD ELECTROSTATICS */
245
246             /* Analytical PME correction */
247             zeta2            = _mm_mul_ps(beta2,rsq00);
248             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
249             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
250             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
251             felec            = _mm_mul_ps(qq00,felec);
252             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
253             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
254             velec            = _mm_mul_ps(qq00,velec);
255
256             /* CUBIC SPLINE TABLE DISPERSION */
257             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
258             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
259             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
260             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
261             _MM_TRANSPOSE4_PS(Y,F,G,H);
262             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
263             VV               = _mm_macc_ps(vfeps,Fp,Y);
264             vvdw6            = _mm_mul_ps(c6_00,VV);
265             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
266             fvdw6            = _mm_mul_ps(c6_00,FF);
267
268             /* CUBIC SPLINE TABLE REPULSION */
269             vfitab           = _mm_add_epi32(vfitab,ifour);
270             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
271             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
272             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
273             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
274             _MM_TRANSPOSE4_PS(Y,F,G,H);
275             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
276             VV               = _mm_macc_ps(vfeps,Fp,Y);
277             vvdw12           = _mm_mul_ps(c12_00,VV);
278             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
279             fvdw12           = _mm_mul_ps(c12_00,FF);
280             vvdw             = _mm_add_ps(vvdw12,vvdw6);
281             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velecsum         = _mm_add_ps(velecsum,velec);
285             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
286
287             fscal            = _mm_add_ps(felec,fvdw);
288
289              /* Update vectorial force */
290             fix0             = _mm_macc_ps(dx00,fscal,fix0);
291             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
292             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
293
294             fjptrA             = f+j_coord_offsetA;
295             fjptrB             = f+j_coord_offsetB;
296             fjptrC             = f+j_coord_offsetC;
297             fjptrD             = f+j_coord_offsetD;
298             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
299                                                    _mm_mul_ps(dx00,fscal),
300                                                    _mm_mul_ps(dy00,fscal),
301                                                    _mm_mul_ps(dz00,fscal));
302
303             /* Inner loop uses 63 flops */
304         }
305
306         if(jidx<j_index_end)
307         {
308
309             /* Get j neighbor index, and coordinate index */
310             jnrlistA         = jjnr[jidx];
311             jnrlistB         = jjnr[jidx+1];
312             jnrlistC         = jjnr[jidx+2];
313             jnrlistD         = jjnr[jidx+3];
314             /* Sign of each element will be negative for non-real atoms.
315              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
316              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
317              */
318             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
319             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
320             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
321             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
322             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
323             j_coord_offsetA  = DIM*jnrA;
324             j_coord_offsetB  = DIM*jnrB;
325             j_coord_offsetC  = DIM*jnrC;
326             j_coord_offsetD  = DIM*jnrD;
327
328             /* load j atom coordinates */
329             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
330                                               x+j_coord_offsetC,x+j_coord_offsetD,
331                                               &jx0,&jy0,&jz0);
332
333             /* Calculate displacement vector */
334             dx00             = _mm_sub_ps(ix0,jx0);
335             dy00             = _mm_sub_ps(iy0,jy0);
336             dz00             = _mm_sub_ps(iz0,jz0);
337
338             /* Calculate squared distance and things based on it */
339             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
340
341             rinv00           = gmx_mm_invsqrt_ps(rsq00);
342
343             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
344
345             /* Load parameters for j particles */
346             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
347                                                               charge+jnrC+0,charge+jnrD+0);
348             vdwjidx0A        = 2*vdwtype[jnrA+0];
349             vdwjidx0B        = 2*vdwtype[jnrB+0];
350             vdwjidx0C        = 2*vdwtype[jnrC+0];
351             vdwjidx0D        = 2*vdwtype[jnrD+0];
352
353             /**************************
354              * CALCULATE INTERACTIONS *
355              **************************/
356
357             r00              = _mm_mul_ps(rsq00,rinv00);
358             r00              = _mm_andnot_ps(dummy_mask,r00);
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq00             = _mm_mul_ps(iq0,jq0);
362             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
363                                          vdwparam+vdwioffset0+vdwjidx0B,
364                                          vdwparam+vdwioffset0+vdwjidx0C,
365                                          vdwparam+vdwioffset0+vdwjidx0D,
366                                          &c6_00,&c12_00);
367
368             /* Calculate table index by multiplying r with table scale and truncate to integer */
369             rt               = _mm_mul_ps(r00,vftabscale);
370             vfitab           = _mm_cvttps_epi32(rt);
371 #ifdef __XOP__
372             vfeps            = _mm_frcz_ps(rt);
373 #else
374             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
375 #endif
376             twovfeps         = _mm_add_ps(vfeps,vfeps);
377             vfitab           = _mm_slli_epi32(vfitab,3);
378
379             /* EWALD ELECTROSTATICS */
380
381             /* Analytical PME correction */
382             zeta2            = _mm_mul_ps(beta2,rsq00);
383             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
384             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
385             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
386             felec            = _mm_mul_ps(qq00,felec);
387             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
388             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
389             velec            = _mm_mul_ps(qq00,velec);
390
391             /* CUBIC SPLINE TABLE DISPERSION */
392             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
393             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
394             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
395             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
396             _MM_TRANSPOSE4_PS(Y,F,G,H);
397             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
398             VV               = _mm_macc_ps(vfeps,Fp,Y);
399             vvdw6            = _mm_mul_ps(c6_00,VV);
400             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
401             fvdw6            = _mm_mul_ps(c6_00,FF);
402
403             /* CUBIC SPLINE TABLE REPULSION */
404             vfitab           = _mm_add_epi32(vfitab,ifour);
405             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
406             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
407             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
408             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
409             _MM_TRANSPOSE4_PS(Y,F,G,H);
410             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
411             VV               = _mm_macc_ps(vfeps,Fp,Y);
412             vvdw12           = _mm_mul_ps(c12_00,VV);
413             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
414             fvdw12           = _mm_mul_ps(c12_00,FF);
415             vvdw             = _mm_add_ps(vvdw12,vvdw6);
416             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
417
418             /* Update potential sum for this i atom from the interaction with this j atom. */
419             velec            = _mm_andnot_ps(dummy_mask,velec);
420             velecsum         = _mm_add_ps(velecsum,velec);
421             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
422             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
423
424             fscal            = _mm_add_ps(felec,fvdw);
425
426             fscal            = _mm_andnot_ps(dummy_mask,fscal);
427
428              /* Update vectorial force */
429             fix0             = _mm_macc_ps(dx00,fscal,fix0);
430             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
431             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
432
433             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
434             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
435             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
436             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
437             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
438                                                    _mm_mul_ps(dx00,fscal),
439                                                    _mm_mul_ps(dy00,fscal),
440                                                    _mm_mul_ps(dz00,fscal));
441
442             /* Inner loop uses 64 flops */
443         }
444
445         /* End of innermost loop */
446
447         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
448                                               f+i_coord_offset,fshift+i_shift_offset);
449
450         ggid                        = gid[iidx];
451         /* Update potential energies */
452         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
453         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
454
455         /* Increment number of inner iterations */
456         inneriter                  += j_index_end - j_index_start;
457
458         /* Outer loop uses 9 flops */
459     }
460
461     /* Increment number of outer iterations */
462     outeriter        += nri;
463
464     /* Update outer/inner flops */
465
466     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64);
467 }
468 /*
469  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_single
470  * Electrostatics interaction: Ewald
471  * VdW interaction:            CubicSplineTable
472  * Geometry:                   Particle-Particle
473  * Calculate force/pot:        Force
474  */
475 void
476 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_single
477                     (t_nblist                    * gmx_restrict       nlist,
478                      rvec                        * gmx_restrict          xx,
479                      rvec                        * gmx_restrict          ff,
480                      t_forcerec                  * gmx_restrict          fr,
481                      t_mdatoms                   * gmx_restrict     mdatoms,
482                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
483                      t_nrnb                      * gmx_restrict        nrnb)
484 {
485     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
486      * just 0 for non-waters.
487      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
488      * jnr indices corresponding to data put in the four positions in the SIMD register.
489      */
490     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
491     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
492     int              jnrA,jnrB,jnrC,jnrD;
493     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
494     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
495     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
496     real             rcutoff_scalar;
497     real             *shiftvec,*fshift,*x,*f;
498     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
499     real             scratch[4*DIM];
500     __m128           fscal,rcutoff,rcutoff2,jidxall;
501     int              vdwioffset0;
502     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
503     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
504     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
505     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
506     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
507     real             *charge;
508     int              nvdwtype;
509     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
510     int              *vdwtype;
511     real             *vdwparam;
512     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
513     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
514     __m128i          vfitab;
515     __m128i          ifour       = _mm_set1_epi32(4);
516     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
517     real             *vftab;
518     __m128i          ewitab;
519     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
520     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
521     real             *ewtab;
522     __m128           dummy_mask,cutoff_mask;
523     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
524     __m128           one     = _mm_set1_ps(1.0);
525     __m128           two     = _mm_set1_ps(2.0);
526     x                = xx[0];
527     f                = ff[0];
528
529     nri              = nlist->nri;
530     iinr             = nlist->iinr;
531     jindex           = nlist->jindex;
532     jjnr             = nlist->jjnr;
533     shiftidx         = nlist->shift;
534     gid              = nlist->gid;
535     shiftvec         = fr->shift_vec[0];
536     fshift           = fr->fshift[0];
537     facel            = _mm_set1_ps(fr->epsfac);
538     charge           = mdatoms->chargeA;
539     nvdwtype         = fr->ntype;
540     vdwparam         = fr->nbfp;
541     vdwtype          = mdatoms->typeA;
542
543     vftab            = kernel_data->table_vdw->data;
544     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
545
546     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
547     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
548     beta2            = _mm_mul_ps(beta,beta);
549     beta3            = _mm_mul_ps(beta,beta2);
550     ewtab            = fr->ic->tabq_coul_F;
551     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
552     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
553
554     /* Avoid stupid compiler warnings */
555     jnrA = jnrB = jnrC = jnrD = 0;
556     j_coord_offsetA = 0;
557     j_coord_offsetB = 0;
558     j_coord_offsetC = 0;
559     j_coord_offsetD = 0;
560
561     outeriter        = 0;
562     inneriter        = 0;
563
564     for(iidx=0;iidx<4*DIM;iidx++)
565     {
566         scratch[iidx] = 0.0;
567     }
568
569     /* Start outer loop over neighborlists */
570     for(iidx=0; iidx<nri; iidx++)
571     {
572         /* Load shift vector for this list */
573         i_shift_offset   = DIM*shiftidx[iidx];
574
575         /* Load limits for loop over neighbors */
576         j_index_start    = jindex[iidx];
577         j_index_end      = jindex[iidx+1];
578
579         /* Get outer coordinate index */
580         inr              = iinr[iidx];
581         i_coord_offset   = DIM*inr;
582
583         /* Load i particle coords and add shift vector */
584         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
585
586         fix0             = _mm_setzero_ps();
587         fiy0             = _mm_setzero_ps();
588         fiz0             = _mm_setzero_ps();
589
590         /* Load parameters for i particles */
591         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
592         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
593
594         /* Start inner kernel loop */
595         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
596         {
597
598             /* Get j neighbor index, and coordinate index */
599             jnrA             = jjnr[jidx];
600             jnrB             = jjnr[jidx+1];
601             jnrC             = jjnr[jidx+2];
602             jnrD             = jjnr[jidx+3];
603             j_coord_offsetA  = DIM*jnrA;
604             j_coord_offsetB  = DIM*jnrB;
605             j_coord_offsetC  = DIM*jnrC;
606             j_coord_offsetD  = DIM*jnrD;
607
608             /* load j atom coordinates */
609             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
610                                               x+j_coord_offsetC,x+j_coord_offsetD,
611                                               &jx0,&jy0,&jz0);
612
613             /* Calculate displacement vector */
614             dx00             = _mm_sub_ps(ix0,jx0);
615             dy00             = _mm_sub_ps(iy0,jy0);
616             dz00             = _mm_sub_ps(iz0,jz0);
617
618             /* Calculate squared distance and things based on it */
619             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
620
621             rinv00           = gmx_mm_invsqrt_ps(rsq00);
622
623             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
624
625             /* Load parameters for j particles */
626             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
627                                                               charge+jnrC+0,charge+jnrD+0);
628             vdwjidx0A        = 2*vdwtype[jnrA+0];
629             vdwjidx0B        = 2*vdwtype[jnrB+0];
630             vdwjidx0C        = 2*vdwtype[jnrC+0];
631             vdwjidx0D        = 2*vdwtype[jnrD+0];
632
633             /**************************
634              * CALCULATE INTERACTIONS *
635              **************************/
636
637             r00              = _mm_mul_ps(rsq00,rinv00);
638
639             /* Compute parameters for interactions between i and j atoms */
640             qq00             = _mm_mul_ps(iq0,jq0);
641             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
642                                          vdwparam+vdwioffset0+vdwjidx0B,
643                                          vdwparam+vdwioffset0+vdwjidx0C,
644                                          vdwparam+vdwioffset0+vdwjidx0D,
645                                          &c6_00,&c12_00);
646
647             /* Calculate table index by multiplying r with table scale and truncate to integer */
648             rt               = _mm_mul_ps(r00,vftabscale);
649             vfitab           = _mm_cvttps_epi32(rt);
650 #ifdef __XOP__
651             vfeps            = _mm_frcz_ps(rt);
652 #else
653             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
654 #endif
655             twovfeps         = _mm_add_ps(vfeps,vfeps);
656             vfitab           = _mm_slli_epi32(vfitab,3);
657
658             /* EWALD ELECTROSTATICS */
659
660             /* Analytical PME correction */
661             zeta2            = _mm_mul_ps(beta2,rsq00);
662             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
663             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
664             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
665             felec            = _mm_mul_ps(qq00,felec);
666
667             /* CUBIC SPLINE TABLE DISPERSION */
668             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
669             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
670             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
671             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
672             _MM_TRANSPOSE4_PS(Y,F,G,H);
673             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
674             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
675             fvdw6            = _mm_mul_ps(c6_00,FF);
676
677             /* CUBIC SPLINE TABLE REPULSION */
678             vfitab           = _mm_add_epi32(vfitab,ifour);
679             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
680             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
681             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
682             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
683             _MM_TRANSPOSE4_PS(Y,F,G,H);
684             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
685             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
686             fvdw12           = _mm_mul_ps(c12_00,FF);
687             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
688
689             fscal            = _mm_add_ps(felec,fvdw);
690
691              /* Update vectorial force */
692             fix0             = _mm_macc_ps(dx00,fscal,fix0);
693             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
694             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
695
696             fjptrA             = f+j_coord_offsetA;
697             fjptrB             = f+j_coord_offsetB;
698             fjptrC             = f+j_coord_offsetC;
699             fjptrD             = f+j_coord_offsetD;
700             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
701                                                    _mm_mul_ps(dx00,fscal),
702                                                    _mm_mul_ps(dy00,fscal),
703                                                    _mm_mul_ps(dz00,fscal));
704
705             /* Inner loop uses 54 flops */
706         }
707
708         if(jidx<j_index_end)
709         {
710
711             /* Get j neighbor index, and coordinate index */
712             jnrlistA         = jjnr[jidx];
713             jnrlistB         = jjnr[jidx+1];
714             jnrlistC         = jjnr[jidx+2];
715             jnrlistD         = jjnr[jidx+3];
716             /* Sign of each element will be negative for non-real atoms.
717              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
718              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
719              */
720             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
721             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
722             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
723             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
724             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
725             j_coord_offsetA  = DIM*jnrA;
726             j_coord_offsetB  = DIM*jnrB;
727             j_coord_offsetC  = DIM*jnrC;
728             j_coord_offsetD  = DIM*jnrD;
729
730             /* load j atom coordinates */
731             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
732                                               x+j_coord_offsetC,x+j_coord_offsetD,
733                                               &jx0,&jy0,&jz0);
734
735             /* Calculate displacement vector */
736             dx00             = _mm_sub_ps(ix0,jx0);
737             dy00             = _mm_sub_ps(iy0,jy0);
738             dz00             = _mm_sub_ps(iz0,jz0);
739
740             /* Calculate squared distance and things based on it */
741             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
742
743             rinv00           = gmx_mm_invsqrt_ps(rsq00);
744
745             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
746
747             /* Load parameters for j particles */
748             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
749                                                               charge+jnrC+0,charge+jnrD+0);
750             vdwjidx0A        = 2*vdwtype[jnrA+0];
751             vdwjidx0B        = 2*vdwtype[jnrB+0];
752             vdwjidx0C        = 2*vdwtype[jnrC+0];
753             vdwjidx0D        = 2*vdwtype[jnrD+0];
754
755             /**************************
756              * CALCULATE INTERACTIONS *
757              **************************/
758
759             r00              = _mm_mul_ps(rsq00,rinv00);
760             r00              = _mm_andnot_ps(dummy_mask,r00);
761
762             /* Compute parameters for interactions between i and j atoms */
763             qq00             = _mm_mul_ps(iq0,jq0);
764             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
765                                          vdwparam+vdwioffset0+vdwjidx0B,
766                                          vdwparam+vdwioffset0+vdwjidx0C,
767                                          vdwparam+vdwioffset0+vdwjidx0D,
768                                          &c6_00,&c12_00);
769
770             /* Calculate table index by multiplying r with table scale and truncate to integer */
771             rt               = _mm_mul_ps(r00,vftabscale);
772             vfitab           = _mm_cvttps_epi32(rt);
773 #ifdef __XOP__
774             vfeps            = _mm_frcz_ps(rt);
775 #else
776             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
777 #endif
778             twovfeps         = _mm_add_ps(vfeps,vfeps);
779             vfitab           = _mm_slli_epi32(vfitab,3);
780
781             /* EWALD ELECTROSTATICS */
782
783             /* Analytical PME correction */
784             zeta2            = _mm_mul_ps(beta2,rsq00);
785             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
786             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
787             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
788             felec            = _mm_mul_ps(qq00,felec);
789
790             /* CUBIC SPLINE TABLE DISPERSION */
791             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
792             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
793             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
794             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
795             _MM_TRANSPOSE4_PS(Y,F,G,H);
796             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
797             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
798             fvdw6            = _mm_mul_ps(c6_00,FF);
799
800             /* CUBIC SPLINE TABLE REPULSION */
801             vfitab           = _mm_add_epi32(vfitab,ifour);
802             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
803             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
804             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
805             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
806             _MM_TRANSPOSE4_PS(Y,F,G,H);
807             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
808             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
809             fvdw12           = _mm_mul_ps(c12_00,FF);
810             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
811
812             fscal            = _mm_add_ps(felec,fvdw);
813
814             fscal            = _mm_andnot_ps(dummy_mask,fscal);
815
816              /* Update vectorial force */
817             fix0             = _mm_macc_ps(dx00,fscal,fix0);
818             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
819             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
820
821             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
822             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
823             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
824             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
825             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
826                                                    _mm_mul_ps(dx00,fscal),
827                                                    _mm_mul_ps(dy00,fscal),
828                                                    _mm_mul_ps(dz00,fscal));
829
830             /* Inner loop uses 55 flops */
831         }
832
833         /* End of innermost loop */
834
835         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
836                                               f+i_coord_offset,fshift+i_shift_offset);
837
838         /* Increment number of inner iterations */
839         inneriter                  += j_index_end - j_index_start;
840
841         /* Outer loop uses 7 flops */
842     }
843
844     /* Increment number of outer iterations */
845     outeriter        += nri;
846
847     /* Update outer/inner flops */
848
849     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
850 }