Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
101     real             *vftab;
102     __m128i          ewitab;
103     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
105     real             *ewtab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
129
130     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
131     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
132     beta2            = _mm_mul_ps(beta,beta);
133     beta3            = _mm_mul_ps(beta,beta2);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
169
170         fix0             = _mm_setzero_ps();
171         fiy0             = _mm_setzero_ps();
172         fiz0             = _mm_setzero_ps();
173
174         /* Load parameters for i particles */
175         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
176         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_ps();
180         vvdwsum          = _mm_setzero_ps();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               x+j_coord_offsetC,x+j_coord_offsetD,
199                                               &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm_sub_ps(ix0,jx0);
203             dy00             = _mm_sub_ps(iy0,jy0);
204             dz00             = _mm_sub_ps(iz0,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
208
209             rinv00           = gmx_mm_invsqrt_ps(rsq00);
210
211             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
215                                                               charge+jnrC+0,charge+jnrD+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218             vdwjidx0C        = 2*vdwtype[jnrC+0];
219             vdwjidx0D        = 2*vdwtype[jnrD+0];
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm_mul_ps(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm_mul_ps(iq0,jq0);
229             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
230                                          vdwparam+vdwioffset0+vdwjidx0B,
231                                          vdwparam+vdwioffset0+vdwjidx0C,
232                                          vdwparam+vdwioffset0+vdwjidx0D,
233                                          &c6_00,&c12_00);
234
235             /* Calculate table index by multiplying r with table scale and truncate to integer */
236             rt               = _mm_mul_ps(r00,vftabscale);
237             vfitab           = _mm_cvttps_epi32(rt);
238 #ifdef __XOP__
239             vfeps            = _mm_frcz_ps(rt);
240 #else
241             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
242 #endif
243             twovfeps         = _mm_add_ps(vfeps,vfeps);
244             vfitab           = _mm_slli_epi32(vfitab,3);
245
246             /* EWALD ELECTROSTATICS */
247
248             /* Analytical PME correction */
249             zeta2            = _mm_mul_ps(beta2,rsq00);
250             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
251             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
252             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
253             felec            = _mm_mul_ps(qq00,felec);
254             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
255             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
256             velec            = _mm_mul_ps(qq00,velec);
257
258             /* CUBIC SPLINE TABLE DISPERSION */
259             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
260             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
261             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
262             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
263             _MM_TRANSPOSE4_PS(Y,F,G,H);
264             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
265             VV               = _mm_macc_ps(vfeps,Fp,Y);
266             vvdw6            = _mm_mul_ps(c6_00,VV);
267             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
268             fvdw6            = _mm_mul_ps(c6_00,FF);
269
270             /* CUBIC SPLINE TABLE REPULSION */
271             vfitab           = _mm_add_epi32(vfitab,ifour);
272             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
273             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
274             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
275             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
276             _MM_TRANSPOSE4_PS(Y,F,G,H);
277             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
278             VV               = _mm_macc_ps(vfeps,Fp,Y);
279             vvdw12           = _mm_mul_ps(c12_00,VV);
280             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
281             fvdw12           = _mm_mul_ps(c12_00,FF);
282             vvdw             = _mm_add_ps(vvdw12,vvdw6);
283             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             velecsum         = _mm_add_ps(velecsum,velec);
287             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
288
289             fscal            = _mm_add_ps(felec,fvdw);
290
291              /* Update vectorial force */
292             fix0             = _mm_macc_ps(dx00,fscal,fix0);
293             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
294             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
295
296             fjptrA             = f+j_coord_offsetA;
297             fjptrB             = f+j_coord_offsetB;
298             fjptrC             = f+j_coord_offsetC;
299             fjptrD             = f+j_coord_offsetD;
300             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
301                                                    _mm_mul_ps(dx00,fscal),
302                                                    _mm_mul_ps(dy00,fscal),
303                                                    _mm_mul_ps(dz00,fscal));
304
305             /* Inner loop uses 63 flops */
306         }
307
308         if(jidx<j_index_end)
309         {
310
311             /* Get j neighbor index, and coordinate index */
312             jnrlistA         = jjnr[jidx];
313             jnrlistB         = jjnr[jidx+1];
314             jnrlistC         = jjnr[jidx+2];
315             jnrlistD         = jjnr[jidx+3];
316             /* Sign of each element will be negative for non-real atoms.
317              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
318              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
319              */
320             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
321             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
322             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
323             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
324             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
325             j_coord_offsetA  = DIM*jnrA;
326             j_coord_offsetB  = DIM*jnrB;
327             j_coord_offsetC  = DIM*jnrC;
328             j_coord_offsetD  = DIM*jnrD;
329
330             /* load j atom coordinates */
331             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
332                                               x+j_coord_offsetC,x+j_coord_offsetD,
333                                               &jx0,&jy0,&jz0);
334
335             /* Calculate displacement vector */
336             dx00             = _mm_sub_ps(ix0,jx0);
337             dy00             = _mm_sub_ps(iy0,jy0);
338             dz00             = _mm_sub_ps(iz0,jz0);
339
340             /* Calculate squared distance and things based on it */
341             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
342
343             rinv00           = gmx_mm_invsqrt_ps(rsq00);
344
345             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
346
347             /* Load parameters for j particles */
348             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
349                                                               charge+jnrC+0,charge+jnrD+0);
350             vdwjidx0A        = 2*vdwtype[jnrA+0];
351             vdwjidx0B        = 2*vdwtype[jnrB+0];
352             vdwjidx0C        = 2*vdwtype[jnrC+0];
353             vdwjidx0D        = 2*vdwtype[jnrD+0];
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             r00              = _mm_mul_ps(rsq00,rinv00);
360             r00              = _mm_andnot_ps(dummy_mask,r00);
361
362             /* Compute parameters for interactions between i and j atoms */
363             qq00             = _mm_mul_ps(iq0,jq0);
364             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
365                                          vdwparam+vdwioffset0+vdwjidx0B,
366                                          vdwparam+vdwioffset0+vdwjidx0C,
367                                          vdwparam+vdwioffset0+vdwjidx0D,
368                                          &c6_00,&c12_00);
369
370             /* Calculate table index by multiplying r with table scale and truncate to integer */
371             rt               = _mm_mul_ps(r00,vftabscale);
372             vfitab           = _mm_cvttps_epi32(rt);
373 #ifdef __XOP__
374             vfeps            = _mm_frcz_ps(rt);
375 #else
376             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
377 #endif
378             twovfeps         = _mm_add_ps(vfeps,vfeps);
379             vfitab           = _mm_slli_epi32(vfitab,3);
380
381             /* EWALD ELECTROSTATICS */
382
383             /* Analytical PME correction */
384             zeta2            = _mm_mul_ps(beta2,rsq00);
385             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
386             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
387             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
388             felec            = _mm_mul_ps(qq00,felec);
389             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
390             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
391             velec            = _mm_mul_ps(qq00,velec);
392
393             /* CUBIC SPLINE TABLE DISPERSION */
394             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
395             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
396             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
397             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
398             _MM_TRANSPOSE4_PS(Y,F,G,H);
399             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
400             VV               = _mm_macc_ps(vfeps,Fp,Y);
401             vvdw6            = _mm_mul_ps(c6_00,VV);
402             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
403             fvdw6            = _mm_mul_ps(c6_00,FF);
404
405             /* CUBIC SPLINE TABLE REPULSION */
406             vfitab           = _mm_add_epi32(vfitab,ifour);
407             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
408             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
409             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
410             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
411             _MM_TRANSPOSE4_PS(Y,F,G,H);
412             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
413             VV               = _mm_macc_ps(vfeps,Fp,Y);
414             vvdw12           = _mm_mul_ps(c12_00,VV);
415             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
416             fvdw12           = _mm_mul_ps(c12_00,FF);
417             vvdw             = _mm_add_ps(vvdw12,vvdw6);
418             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velec            = _mm_andnot_ps(dummy_mask,velec);
422             velecsum         = _mm_add_ps(velecsum,velec);
423             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
424             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
425
426             fscal            = _mm_add_ps(felec,fvdw);
427
428             fscal            = _mm_andnot_ps(dummy_mask,fscal);
429
430              /* Update vectorial force */
431             fix0             = _mm_macc_ps(dx00,fscal,fix0);
432             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
433             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
434
435             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
436             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
437             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
438             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
439             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
440                                                    _mm_mul_ps(dx00,fscal),
441                                                    _mm_mul_ps(dy00,fscal),
442                                                    _mm_mul_ps(dz00,fscal));
443
444             /* Inner loop uses 64 flops */
445         }
446
447         /* End of innermost loop */
448
449         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
450                                               f+i_coord_offset,fshift+i_shift_offset);
451
452         ggid                        = gid[iidx];
453         /* Update potential energies */
454         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
455         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
456
457         /* Increment number of inner iterations */
458         inneriter                  += j_index_end - j_index_start;
459
460         /* Outer loop uses 9 flops */
461     }
462
463     /* Increment number of outer iterations */
464     outeriter        += nri;
465
466     /* Update outer/inner flops */
467
468     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64);
469 }
470 /*
471  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_single
472  * Electrostatics interaction: Ewald
473  * VdW interaction:            CubicSplineTable
474  * Geometry:                   Particle-Particle
475  * Calculate force/pot:        Force
476  */
477 void
478 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_single
479                     (t_nblist                    * gmx_restrict       nlist,
480                      rvec                        * gmx_restrict          xx,
481                      rvec                        * gmx_restrict          ff,
482                      t_forcerec                  * gmx_restrict          fr,
483                      t_mdatoms                   * gmx_restrict     mdatoms,
484                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
485                      t_nrnb                      * gmx_restrict        nrnb)
486 {
487     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
488      * just 0 for non-waters.
489      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
490      * jnr indices corresponding to data put in the four positions in the SIMD register.
491      */
492     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
493     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
494     int              jnrA,jnrB,jnrC,jnrD;
495     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
496     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
497     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
498     real             rcutoff_scalar;
499     real             *shiftvec,*fshift,*x,*f;
500     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
501     real             scratch[4*DIM];
502     __m128           fscal,rcutoff,rcutoff2,jidxall;
503     int              vdwioffset0;
504     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
505     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
506     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
507     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
508     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
509     real             *charge;
510     int              nvdwtype;
511     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
512     int              *vdwtype;
513     real             *vdwparam;
514     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
515     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
516     __m128i          vfitab;
517     __m128i          ifour       = _mm_set1_epi32(4);
518     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
519     real             *vftab;
520     __m128i          ewitab;
521     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
522     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
523     real             *ewtab;
524     __m128           dummy_mask,cutoff_mask;
525     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
526     __m128           one     = _mm_set1_ps(1.0);
527     __m128           two     = _mm_set1_ps(2.0);
528     x                = xx[0];
529     f                = ff[0];
530
531     nri              = nlist->nri;
532     iinr             = nlist->iinr;
533     jindex           = nlist->jindex;
534     jjnr             = nlist->jjnr;
535     shiftidx         = nlist->shift;
536     gid              = nlist->gid;
537     shiftvec         = fr->shift_vec[0];
538     fshift           = fr->fshift[0];
539     facel            = _mm_set1_ps(fr->epsfac);
540     charge           = mdatoms->chargeA;
541     nvdwtype         = fr->ntype;
542     vdwparam         = fr->nbfp;
543     vdwtype          = mdatoms->typeA;
544
545     vftab            = kernel_data->table_vdw->data;
546     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
547
548     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
549     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
550     beta2            = _mm_mul_ps(beta,beta);
551     beta3            = _mm_mul_ps(beta,beta2);
552     ewtab            = fr->ic->tabq_coul_F;
553     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
554     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
555
556     /* Avoid stupid compiler warnings */
557     jnrA = jnrB = jnrC = jnrD = 0;
558     j_coord_offsetA = 0;
559     j_coord_offsetB = 0;
560     j_coord_offsetC = 0;
561     j_coord_offsetD = 0;
562
563     outeriter        = 0;
564     inneriter        = 0;
565
566     for(iidx=0;iidx<4*DIM;iidx++)
567     {
568         scratch[iidx] = 0.0;
569     }
570
571     /* Start outer loop over neighborlists */
572     for(iidx=0; iidx<nri; iidx++)
573     {
574         /* Load shift vector for this list */
575         i_shift_offset   = DIM*shiftidx[iidx];
576
577         /* Load limits for loop over neighbors */
578         j_index_start    = jindex[iidx];
579         j_index_end      = jindex[iidx+1];
580
581         /* Get outer coordinate index */
582         inr              = iinr[iidx];
583         i_coord_offset   = DIM*inr;
584
585         /* Load i particle coords and add shift vector */
586         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
587
588         fix0             = _mm_setzero_ps();
589         fiy0             = _mm_setzero_ps();
590         fiz0             = _mm_setzero_ps();
591
592         /* Load parameters for i particles */
593         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
594         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
595
596         /* Start inner kernel loop */
597         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
598         {
599
600             /* Get j neighbor index, and coordinate index */
601             jnrA             = jjnr[jidx];
602             jnrB             = jjnr[jidx+1];
603             jnrC             = jjnr[jidx+2];
604             jnrD             = jjnr[jidx+3];
605             j_coord_offsetA  = DIM*jnrA;
606             j_coord_offsetB  = DIM*jnrB;
607             j_coord_offsetC  = DIM*jnrC;
608             j_coord_offsetD  = DIM*jnrD;
609
610             /* load j atom coordinates */
611             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
612                                               x+j_coord_offsetC,x+j_coord_offsetD,
613                                               &jx0,&jy0,&jz0);
614
615             /* Calculate displacement vector */
616             dx00             = _mm_sub_ps(ix0,jx0);
617             dy00             = _mm_sub_ps(iy0,jy0);
618             dz00             = _mm_sub_ps(iz0,jz0);
619
620             /* Calculate squared distance and things based on it */
621             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
622
623             rinv00           = gmx_mm_invsqrt_ps(rsq00);
624
625             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
626
627             /* Load parameters for j particles */
628             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
629                                                               charge+jnrC+0,charge+jnrD+0);
630             vdwjidx0A        = 2*vdwtype[jnrA+0];
631             vdwjidx0B        = 2*vdwtype[jnrB+0];
632             vdwjidx0C        = 2*vdwtype[jnrC+0];
633             vdwjidx0D        = 2*vdwtype[jnrD+0];
634
635             /**************************
636              * CALCULATE INTERACTIONS *
637              **************************/
638
639             r00              = _mm_mul_ps(rsq00,rinv00);
640
641             /* Compute parameters for interactions between i and j atoms */
642             qq00             = _mm_mul_ps(iq0,jq0);
643             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
644                                          vdwparam+vdwioffset0+vdwjidx0B,
645                                          vdwparam+vdwioffset0+vdwjidx0C,
646                                          vdwparam+vdwioffset0+vdwjidx0D,
647                                          &c6_00,&c12_00);
648
649             /* Calculate table index by multiplying r with table scale and truncate to integer */
650             rt               = _mm_mul_ps(r00,vftabscale);
651             vfitab           = _mm_cvttps_epi32(rt);
652 #ifdef __XOP__
653             vfeps            = _mm_frcz_ps(rt);
654 #else
655             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
656 #endif
657             twovfeps         = _mm_add_ps(vfeps,vfeps);
658             vfitab           = _mm_slli_epi32(vfitab,3);
659
660             /* EWALD ELECTROSTATICS */
661
662             /* Analytical PME correction */
663             zeta2            = _mm_mul_ps(beta2,rsq00);
664             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
665             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
666             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
667             felec            = _mm_mul_ps(qq00,felec);
668
669             /* CUBIC SPLINE TABLE DISPERSION */
670             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
671             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
672             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
673             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
674             _MM_TRANSPOSE4_PS(Y,F,G,H);
675             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
676             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
677             fvdw6            = _mm_mul_ps(c6_00,FF);
678
679             /* CUBIC SPLINE TABLE REPULSION */
680             vfitab           = _mm_add_epi32(vfitab,ifour);
681             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
682             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
683             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
684             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
685             _MM_TRANSPOSE4_PS(Y,F,G,H);
686             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
687             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
688             fvdw12           = _mm_mul_ps(c12_00,FF);
689             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
690
691             fscal            = _mm_add_ps(felec,fvdw);
692
693              /* Update vectorial force */
694             fix0             = _mm_macc_ps(dx00,fscal,fix0);
695             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
696             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
697
698             fjptrA             = f+j_coord_offsetA;
699             fjptrB             = f+j_coord_offsetB;
700             fjptrC             = f+j_coord_offsetC;
701             fjptrD             = f+j_coord_offsetD;
702             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
703                                                    _mm_mul_ps(dx00,fscal),
704                                                    _mm_mul_ps(dy00,fscal),
705                                                    _mm_mul_ps(dz00,fscal));
706
707             /* Inner loop uses 54 flops */
708         }
709
710         if(jidx<j_index_end)
711         {
712
713             /* Get j neighbor index, and coordinate index */
714             jnrlistA         = jjnr[jidx];
715             jnrlistB         = jjnr[jidx+1];
716             jnrlistC         = jjnr[jidx+2];
717             jnrlistD         = jjnr[jidx+3];
718             /* Sign of each element will be negative for non-real atoms.
719              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
720              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
721              */
722             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
723             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
724             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
725             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
726             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
727             j_coord_offsetA  = DIM*jnrA;
728             j_coord_offsetB  = DIM*jnrB;
729             j_coord_offsetC  = DIM*jnrC;
730             j_coord_offsetD  = DIM*jnrD;
731
732             /* load j atom coordinates */
733             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
734                                               x+j_coord_offsetC,x+j_coord_offsetD,
735                                               &jx0,&jy0,&jz0);
736
737             /* Calculate displacement vector */
738             dx00             = _mm_sub_ps(ix0,jx0);
739             dy00             = _mm_sub_ps(iy0,jy0);
740             dz00             = _mm_sub_ps(iz0,jz0);
741
742             /* Calculate squared distance and things based on it */
743             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
744
745             rinv00           = gmx_mm_invsqrt_ps(rsq00);
746
747             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
748
749             /* Load parameters for j particles */
750             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
751                                                               charge+jnrC+0,charge+jnrD+0);
752             vdwjidx0A        = 2*vdwtype[jnrA+0];
753             vdwjidx0B        = 2*vdwtype[jnrB+0];
754             vdwjidx0C        = 2*vdwtype[jnrC+0];
755             vdwjidx0D        = 2*vdwtype[jnrD+0];
756
757             /**************************
758              * CALCULATE INTERACTIONS *
759              **************************/
760
761             r00              = _mm_mul_ps(rsq00,rinv00);
762             r00              = _mm_andnot_ps(dummy_mask,r00);
763
764             /* Compute parameters for interactions between i and j atoms */
765             qq00             = _mm_mul_ps(iq0,jq0);
766             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
767                                          vdwparam+vdwioffset0+vdwjidx0B,
768                                          vdwparam+vdwioffset0+vdwjidx0C,
769                                          vdwparam+vdwioffset0+vdwjidx0D,
770                                          &c6_00,&c12_00);
771
772             /* Calculate table index by multiplying r with table scale and truncate to integer */
773             rt               = _mm_mul_ps(r00,vftabscale);
774             vfitab           = _mm_cvttps_epi32(rt);
775 #ifdef __XOP__
776             vfeps            = _mm_frcz_ps(rt);
777 #else
778             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
779 #endif
780             twovfeps         = _mm_add_ps(vfeps,vfeps);
781             vfitab           = _mm_slli_epi32(vfitab,3);
782
783             /* EWALD ELECTROSTATICS */
784
785             /* Analytical PME correction */
786             zeta2            = _mm_mul_ps(beta2,rsq00);
787             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
788             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
789             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
790             felec            = _mm_mul_ps(qq00,felec);
791
792             /* CUBIC SPLINE TABLE DISPERSION */
793             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
794             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
795             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
796             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
797             _MM_TRANSPOSE4_PS(Y,F,G,H);
798             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
799             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
800             fvdw6            = _mm_mul_ps(c6_00,FF);
801
802             /* CUBIC SPLINE TABLE REPULSION */
803             vfitab           = _mm_add_epi32(vfitab,ifour);
804             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
805             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
806             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
807             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
808             _MM_TRANSPOSE4_PS(Y,F,G,H);
809             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
810             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
811             fvdw12           = _mm_mul_ps(c12_00,FF);
812             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
813
814             fscal            = _mm_add_ps(felec,fvdw);
815
816             fscal            = _mm_andnot_ps(dummy_mask,fscal);
817
818              /* Update vectorial force */
819             fix0             = _mm_macc_ps(dx00,fscal,fix0);
820             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
821             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
822
823             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
824             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
825             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
826             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
827             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
828                                                    _mm_mul_ps(dx00,fscal),
829                                                    _mm_mul_ps(dy00,fscal),
830                                                    _mm_mul_ps(dz00,fscal));
831
832             /* Inner loop uses 55 flops */
833         }
834
835         /* End of innermost loop */
836
837         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
838                                               f+i_coord_offset,fshift+i_shift_offset);
839
840         /* Increment number of inner iterations */
841         inneriter                  += j_index_end - j_index_start;
842
843         /* Outer loop uses 7 flops */
844     }
845
846     /* Increment number of outer iterations */
847     outeriter        += nri;
848
849     /* Update outer/inner flops */
850
851     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
852 }