Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwNone_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     __m128i          ewitab;
97     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
99     real             *ewtab;
100     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
101     real             rswitch_scalar,d_scalar;
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119
120     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
121     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
122     beta2            = _mm_mul_ps(beta,beta);
123     beta3            = _mm_mul_ps(beta,beta2);
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
126     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
131     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
132     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
133
134     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
135     rcutoff_scalar   = fr->rcoulomb;
136     rcutoff          = _mm_set1_ps(rcutoff_scalar);
137     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
138
139     rswitch_scalar   = fr->rcoulomb_switch;
140     rswitch          = _mm_set1_ps(rswitch_scalar);
141     /* Setup switch parameters */
142     d_scalar         = rcutoff_scalar-rswitch_scalar;
143     d                = _mm_set1_ps(d_scalar);
144     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
145     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
146     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
147     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
148     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
149     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
150
151     /* Avoid stupid compiler warnings */
152     jnrA = jnrB = jnrC = jnrD = 0;
153     j_coord_offsetA = 0;
154     j_coord_offsetB = 0;
155     j_coord_offsetC = 0;
156     j_coord_offsetD = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     for(iidx=0;iidx<4*DIM;iidx++)
162     {
163         scratch[iidx] = 0.0;
164     }
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
183
184         fix0             = _mm_setzero_ps();
185         fiy0             = _mm_setzero_ps();
186         fiz0             = _mm_setzero_ps();
187         fix1             = _mm_setzero_ps();
188         fiy1             = _mm_setzero_ps();
189         fiz1             = _mm_setzero_ps();
190         fix2             = _mm_setzero_ps();
191         fiy2             = _mm_setzero_ps();
192         fiz2             = _mm_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm_setzero_ps();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             jnrC             = jjnr[jidx+2];
205             jnrD             = jjnr[jidx+3];
206             j_coord_offsetA  = DIM*jnrA;
207             j_coord_offsetB  = DIM*jnrB;
208             j_coord_offsetC  = DIM*jnrC;
209             j_coord_offsetD  = DIM*jnrD;
210
211             /* load j atom coordinates */
212             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
213                                               x+j_coord_offsetC,x+j_coord_offsetD,
214                                               &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm_sub_ps(ix0,jx0);
218             dy00             = _mm_sub_ps(iy0,jy0);
219             dz00             = _mm_sub_ps(iz0,jz0);
220             dx10             = _mm_sub_ps(ix1,jx0);
221             dy10             = _mm_sub_ps(iy1,jy0);
222             dz10             = _mm_sub_ps(iz1,jz0);
223             dx20             = _mm_sub_ps(ix2,jx0);
224             dy20             = _mm_sub_ps(iy2,jy0);
225             dz20             = _mm_sub_ps(iz2,jz0);
226
227             /* Calculate squared distance and things based on it */
228             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
229             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
230             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
231
232             rinv00           = gmx_mm_invsqrt_ps(rsq00);
233             rinv10           = gmx_mm_invsqrt_ps(rsq10);
234             rinv20           = gmx_mm_invsqrt_ps(rsq20);
235
236             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
237             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
238             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
239
240             /* Load parameters for j particles */
241             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
242                                                               charge+jnrC+0,charge+jnrD+0);
243
244             fjx0             = _mm_setzero_ps();
245             fjy0             = _mm_setzero_ps();
246             fjz0             = _mm_setzero_ps();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             if (gmx_mm_any_lt(rsq00,rcutoff2))
253             {
254
255             r00              = _mm_mul_ps(rsq00,rinv00);
256
257             /* Compute parameters for interactions between i and j atoms */
258             qq00             = _mm_mul_ps(iq0,jq0);
259
260             /* EWALD ELECTROSTATICS */
261
262             /* Analytical PME correction */
263             zeta2            = _mm_mul_ps(beta2,rsq00);
264             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
265             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
266             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
267             felec            = _mm_mul_ps(qq00,felec);
268             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
269             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
270             velec            = _mm_mul_ps(qq00,velec);
271
272             d                = _mm_sub_ps(r00,rswitch);
273             d                = _mm_max_ps(d,_mm_setzero_ps());
274             d2               = _mm_mul_ps(d,d);
275             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
276
277             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
278
279             /* Evaluate switch function */
280             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
281             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
282             velec            = _mm_mul_ps(velec,sw);
283             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             velec            = _mm_and_ps(velec,cutoff_mask);
287             velecsum         = _mm_add_ps(velecsum,velec);
288
289             fscal            = felec;
290
291             fscal            = _mm_and_ps(fscal,cutoff_mask);
292
293              /* Update vectorial force */
294             fix0             = _mm_macc_ps(dx00,fscal,fix0);
295             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
296             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
297
298             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
299             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
300             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
301
302             }
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             if (gmx_mm_any_lt(rsq10,rcutoff2))
309             {
310
311             r10              = _mm_mul_ps(rsq10,rinv10);
312
313             /* Compute parameters for interactions between i and j atoms */
314             qq10             = _mm_mul_ps(iq1,jq0);
315
316             /* EWALD ELECTROSTATICS */
317
318             /* Analytical PME correction */
319             zeta2            = _mm_mul_ps(beta2,rsq10);
320             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
321             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
322             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
323             felec            = _mm_mul_ps(qq10,felec);
324             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
325             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
326             velec            = _mm_mul_ps(qq10,velec);
327
328             d                = _mm_sub_ps(r10,rswitch);
329             d                = _mm_max_ps(d,_mm_setzero_ps());
330             d2               = _mm_mul_ps(d,d);
331             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
332
333             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
334
335             /* Evaluate switch function */
336             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
337             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
338             velec            = _mm_mul_ps(velec,sw);
339             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velec            = _mm_and_ps(velec,cutoff_mask);
343             velecsum         = _mm_add_ps(velecsum,velec);
344
345             fscal            = felec;
346
347             fscal            = _mm_and_ps(fscal,cutoff_mask);
348
349              /* Update vectorial force */
350             fix1             = _mm_macc_ps(dx10,fscal,fix1);
351             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
352             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
353
354             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
355             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
356             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
357
358             }
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             if (gmx_mm_any_lt(rsq20,rcutoff2))
365             {
366
367             r20              = _mm_mul_ps(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _mm_mul_ps(iq2,jq0);
371
372             /* EWALD ELECTROSTATICS */
373
374             /* Analytical PME correction */
375             zeta2            = _mm_mul_ps(beta2,rsq20);
376             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
377             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
378             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
379             felec            = _mm_mul_ps(qq20,felec);
380             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
381             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
382             velec            = _mm_mul_ps(qq20,velec);
383
384             d                = _mm_sub_ps(r20,rswitch);
385             d                = _mm_max_ps(d,_mm_setzero_ps());
386             d2               = _mm_mul_ps(d,d);
387             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
388
389             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
390
391             /* Evaluate switch function */
392             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
393             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
394             velec            = _mm_mul_ps(velec,sw);
395             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
396
397             /* Update potential sum for this i atom from the interaction with this j atom. */
398             velec            = _mm_and_ps(velec,cutoff_mask);
399             velecsum         = _mm_add_ps(velecsum,velec);
400
401             fscal            = felec;
402
403             fscal            = _mm_and_ps(fscal,cutoff_mask);
404
405              /* Update vectorial force */
406             fix2             = _mm_macc_ps(dx20,fscal,fix2);
407             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
408             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
409
410             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
411             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
412             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
413
414             }
415
416             fjptrA             = f+j_coord_offsetA;
417             fjptrB             = f+j_coord_offsetB;
418             fjptrC             = f+j_coord_offsetC;
419             fjptrD             = f+j_coord_offsetD;
420
421             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
422
423             /* Inner loop uses 159 flops */
424         }
425
426         if(jidx<j_index_end)
427         {
428
429             /* Get j neighbor index, and coordinate index */
430             jnrlistA         = jjnr[jidx];
431             jnrlistB         = jjnr[jidx+1];
432             jnrlistC         = jjnr[jidx+2];
433             jnrlistD         = jjnr[jidx+3];
434             /* Sign of each element will be negative for non-real atoms.
435              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
436              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
437              */
438             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
439             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
440             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
441             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
442             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
443             j_coord_offsetA  = DIM*jnrA;
444             j_coord_offsetB  = DIM*jnrB;
445             j_coord_offsetC  = DIM*jnrC;
446             j_coord_offsetD  = DIM*jnrD;
447
448             /* load j atom coordinates */
449             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
450                                               x+j_coord_offsetC,x+j_coord_offsetD,
451                                               &jx0,&jy0,&jz0);
452
453             /* Calculate displacement vector */
454             dx00             = _mm_sub_ps(ix0,jx0);
455             dy00             = _mm_sub_ps(iy0,jy0);
456             dz00             = _mm_sub_ps(iz0,jz0);
457             dx10             = _mm_sub_ps(ix1,jx0);
458             dy10             = _mm_sub_ps(iy1,jy0);
459             dz10             = _mm_sub_ps(iz1,jz0);
460             dx20             = _mm_sub_ps(ix2,jx0);
461             dy20             = _mm_sub_ps(iy2,jy0);
462             dz20             = _mm_sub_ps(iz2,jz0);
463
464             /* Calculate squared distance and things based on it */
465             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
466             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
467             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
468
469             rinv00           = gmx_mm_invsqrt_ps(rsq00);
470             rinv10           = gmx_mm_invsqrt_ps(rsq10);
471             rinv20           = gmx_mm_invsqrt_ps(rsq20);
472
473             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
474             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
475             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
476
477             /* Load parameters for j particles */
478             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
479                                                               charge+jnrC+0,charge+jnrD+0);
480
481             fjx0             = _mm_setzero_ps();
482             fjy0             = _mm_setzero_ps();
483             fjz0             = _mm_setzero_ps();
484
485             /**************************
486              * CALCULATE INTERACTIONS *
487              **************************/
488
489             if (gmx_mm_any_lt(rsq00,rcutoff2))
490             {
491
492             r00              = _mm_mul_ps(rsq00,rinv00);
493             r00              = _mm_andnot_ps(dummy_mask,r00);
494
495             /* Compute parameters for interactions between i and j atoms */
496             qq00             = _mm_mul_ps(iq0,jq0);
497
498             /* EWALD ELECTROSTATICS */
499
500             /* Analytical PME correction */
501             zeta2            = _mm_mul_ps(beta2,rsq00);
502             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
503             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
504             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
505             felec            = _mm_mul_ps(qq00,felec);
506             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
507             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
508             velec            = _mm_mul_ps(qq00,velec);
509
510             d                = _mm_sub_ps(r00,rswitch);
511             d                = _mm_max_ps(d,_mm_setzero_ps());
512             d2               = _mm_mul_ps(d,d);
513             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
514
515             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
516
517             /* Evaluate switch function */
518             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
519             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
520             velec            = _mm_mul_ps(velec,sw);
521             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
522
523             /* Update potential sum for this i atom from the interaction with this j atom. */
524             velec            = _mm_and_ps(velec,cutoff_mask);
525             velec            = _mm_andnot_ps(dummy_mask,velec);
526             velecsum         = _mm_add_ps(velecsum,velec);
527
528             fscal            = felec;
529
530             fscal            = _mm_and_ps(fscal,cutoff_mask);
531
532             fscal            = _mm_andnot_ps(dummy_mask,fscal);
533
534              /* Update vectorial force */
535             fix0             = _mm_macc_ps(dx00,fscal,fix0);
536             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
537             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
538
539             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
540             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
541             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
542
543             }
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             if (gmx_mm_any_lt(rsq10,rcutoff2))
550             {
551
552             r10              = _mm_mul_ps(rsq10,rinv10);
553             r10              = _mm_andnot_ps(dummy_mask,r10);
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq10             = _mm_mul_ps(iq1,jq0);
557
558             /* EWALD ELECTROSTATICS */
559
560             /* Analytical PME correction */
561             zeta2            = _mm_mul_ps(beta2,rsq10);
562             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
563             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
564             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
565             felec            = _mm_mul_ps(qq10,felec);
566             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
567             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
568             velec            = _mm_mul_ps(qq10,velec);
569
570             d                = _mm_sub_ps(r10,rswitch);
571             d                = _mm_max_ps(d,_mm_setzero_ps());
572             d2               = _mm_mul_ps(d,d);
573             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
574
575             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
576
577             /* Evaluate switch function */
578             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
579             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
580             velec            = _mm_mul_ps(velec,sw);
581             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velec            = _mm_and_ps(velec,cutoff_mask);
585             velec            = _mm_andnot_ps(dummy_mask,velec);
586             velecsum         = _mm_add_ps(velecsum,velec);
587
588             fscal            = felec;
589
590             fscal            = _mm_and_ps(fscal,cutoff_mask);
591
592             fscal            = _mm_andnot_ps(dummy_mask,fscal);
593
594              /* Update vectorial force */
595             fix1             = _mm_macc_ps(dx10,fscal,fix1);
596             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
597             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
598
599             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
600             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
601             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
602
603             }
604
605             /**************************
606              * CALCULATE INTERACTIONS *
607              **************************/
608
609             if (gmx_mm_any_lt(rsq20,rcutoff2))
610             {
611
612             r20              = _mm_mul_ps(rsq20,rinv20);
613             r20              = _mm_andnot_ps(dummy_mask,r20);
614
615             /* Compute parameters for interactions between i and j atoms */
616             qq20             = _mm_mul_ps(iq2,jq0);
617
618             /* EWALD ELECTROSTATICS */
619
620             /* Analytical PME correction */
621             zeta2            = _mm_mul_ps(beta2,rsq20);
622             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
623             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
624             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
625             felec            = _mm_mul_ps(qq20,felec);
626             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
627             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
628             velec            = _mm_mul_ps(qq20,velec);
629
630             d                = _mm_sub_ps(r20,rswitch);
631             d                = _mm_max_ps(d,_mm_setzero_ps());
632             d2               = _mm_mul_ps(d,d);
633             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
634
635             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
636
637             /* Evaluate switch function */
638             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
639             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
640             velec            = _mm_mul_ps(velec,sw);
641             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
642
643             /* Update potential sum for this i atom from the interaction with this j atom. */
644             velec            = _mm_and_ps(velec,cutoff_mask);
645             velec            = _mm_andnot_ps(dummy_mask,velec);
646             velecsum         = _mm_add_ps(velecsum,velec);
647
648             fscal            = felec;
649
650             fscal            = _mm_and_ps(fscal,cutoff_mask);
651
652             fscal            = _mm_andnot_ps(dummy_mask,fscal);
653
654              /* Update vectorial force */
655             fix2             = _mm_macc_ps(dx20,fscal,fix2);
656             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
657             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
658
659             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
660             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
661             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
662
663             }
664
665             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
666             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
667             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
668             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
669
670             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
671
672             /* Inner loop uses 162 flops */
673         }
674
675         /* End of innermost loop */
676
677         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
678                                               f+i_coord_offset,fshift+i_shift_offset);
679
680         ggid                        = gid[iidx];
681         /* Update potential energies */
682         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
683
684         /* Increment number of inner iterations */
685         inneriter                  += j_index_end - j_index_start;
686
687         /* Outer loop uses 19 flops */
688     }
689
690     /* Increment number of outer iterations */
691     outeriter        += nri;
692
693     /* Update outer/inner flops */
694
695     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*162);
696 }
697 /*
698  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_avx_128_fma_single
699  * Electrostatics interaction: Ewald
700  * VdW interaction:            None
701  * Geometry:                   Water3-Particle
702  * Calculate force/pot:        Force
703  */
704 void
705 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_avx_128_fma_single
706                     (t_nblist                    * gmx_restrict       nlist,
707                      rvec                        * gmx_restrict          xx,
708                      rvec                        * gmx_restrict          ff,
709                      t_forcerec                  * gmx_restrict          fr,
710                      t_mdatoms                   * gmx_restrict     mdatoms,
711                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
712                      t_nrnb                      * gmx_restrict        nrnb)
713 {
714     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
715      * just 0 for non-waters.
716      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
717      * jnr indices corresponding to data put in the four positions in the SIMD register.
718      */
719     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
720     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
721     int              jnrA,jnrB,jnrC,jnrD;
722     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
723     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
724     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
725     real             rcutoff_scalar;
726     real             *shiftvec,*fshift,*x,*f;
727     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
728     real             scratch[4*DIM];
729     __m128           fscal,rcutoff,rcutoff2,jidxall;
730     int              vdwioffset0;
731     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
732     int              vdwioffset1;
733     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
734     int              vdwioffset2;
735     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
736     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
737     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
738     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
739     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
740     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
741     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
742     real             *charge;
743     __m128i          ewitab;
744     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
745     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
746     real             *ewtab;
747     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
748     real             rswitch_scalar,d_scalar;
749     __m128           dummy_mask,cutoff_mask;
750     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
751     __m128           one     = _mm_set1_ps(1.0);
752     __m128           two     = _mm_set1_ps(2.0);
753     x                = xx[0];
754     f                = ff[0];
755
756     nri              = nlist->nri;
757     iinr             = nlist->iinr;
758     jindex           = nlist->jindex;
759     jjnr             = nlist->jjnr;
760     shiftidx         = nlist->shift;
761     gid              = nlist->gid;
762     shiftvec         = fr->shift_vec[0];
763     fshift           = fr->fshift[0];
764     facel            = _mm_set1_ps(fr->epsfac);
765     charge           = mdatoms->chargeA;
766
767     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
768     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
769     beta2            = _mm_mul_ps(beta,beta);
770     beta3            = _mm_mul_ps(beta,beta2);
771     ewtab            = fr->ic->tabq_coul_FDV0;
772     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
773     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
774
775     /* Setup water-specific parameters */
776     inr              = nlist->iinr[0];
777     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
778     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
779     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
780
781     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
782     rcutoff_scalar   = fr->rcoulomb;
783     rcutoff          = _mm_set1_ps(rcutoff_scalar);
784     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
785
786     rswitch_scalar   = fr->rcoulomb_switch;
787     rswitch          = _mm_set1_ps(rswitch_scalar);
788     /* Setup switch parameters */
789     d_scalar         = rcutoff_scalar-rswitch_scalar;
790     d                = _mm_set1_ps(d_scalar);
791     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
792     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
793     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
794     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
795     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
796     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
797
798     /* Avoid stupid compiler warnings */
799     jnrA = jnrB = jnrC = jnrD = 0;
800     j_coord_offsetA = 0;
801     j_coord_offsetB = 0;
802     j_coord_offsetC = 0;
803     j_coord_offsetD = 0;
804
805     outeriter        = 0;
806     inneriter        = 0;
807
808     for(iidx=0;iidx<4*DIM;iidx++)
809     {
810         scratch[iidx] = 0.0;
811     }
812
813     /* Start outer loop over neighborlists */
814     for(iidx=0; iidx<nri; iidx++)
815     {
816         /* Load shift vector for this list */
817         i_shift_offset   = DIM*shiftidx[iidx];
818
819         /* Load limits for loop over neighbors */
820         j_index_start    = jindex[iidx];
821         j_index_end      = jindex[iidx+1];
822
823         /* Get outer coordinate index */
824         inr              = iinr[iidx];
825         i_coord_offset   = DIM*inr;
826
827         /* Load i particle coords and add shift vector */
828         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
829                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
830
831         fix0             = _mm_setzero_ps();
832         fiy0             = _mm_setzero_ps();
833         fiz0             = _mm_setzero_ps();
834         fix1             = _mm_setzero_ps();
835         fiy1             = _mm_setzero_ps();
836         fiz1             = _mm_setzero_ps();
837         fix2             = _mm_setzero_ps();
838         fiy2             = _mm_setzero_ps();
839         fiz2             = _mm_setzero_ps();
840
841         /* Start inner kernel loop */
842         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
843         {
844
845             /* Get j neighbor index, and coordinate index */
846             jnrA             = jjnr[jidx];
847             jnrB             = jjnr[jidx+1];
848             jnrC             = jjnr[jidx+2];
849             jnrD             = jjnr[jidx+3];
850             j_coord_offsetA  = DIM*jnrA;
851             j_coord_offsetB  = DIM*jnrB;
852             j_coord_offsetC  = DIM*jnrC;
853             j_coord_offsetD  = DIM*jnrD;
854
855             /* load j atom coordinates */
856             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
857                                               x+j_coord_offsetC,x+j_coord_offsetD,
858                                               &jx0,&jy0,&jz0);
859
860             /* Calculate displacement vector */
861             dx00             = _mm_sub_ps(ix0,jx0);
862             dy00             = _mm_sub_ps(iy0,jy0);
863             dz00             = _mm_sub_ps(iz0,jz0);
864             dx10             = _mm_sub_ps(ix1,jx0);
865             dy10             = _mm_sub_ps(iy1,jy0);
866             dz10             = _mm_sub_ps(iz1,jz0);
867             dx20             = _mm_sub_ps(ix2,jx0);
868             dy20             = _mm_sub_ps(iy2,jy0);
869             dz20             = _mm_sub_ps(iz2,jz0);
870
871             /* Calculate squared distance and things based on it */
872             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
873             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
874             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
875
876             rinv00           = gmx_mm_invsqrt_ps(rsq00);
877             rinv10           = gmx_mm_invsqrt_ps(rsq10);
878             rinv20           = gmx_mm_invsqrt_ps(rsq20);
879
880             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
881             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
882             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
883
884             /* Load parameters for j particles */
885             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
886                                                               charge+jnrC+0,charge+jnrD+0);
887
888             fjx0             = _mm_setzero_ps();
889             fjy0             = _mm_setzero_ps();
890             fjz0             = _mm_setzero_ps();
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             if (gmx_mm_any_lt(rsq00,rcutoff2))
897             {
898
899             r00              = _mm_mul_ps(rsq00,rinv00);
900
901             /* Compute parameters for interactions between i and j atoms */
902             qq00             = _mm_mul_ps(iq0,jq0);
903
904             /* EWALD ELECTROSTATICS */
905
906             /* Analytical PME correction */
907             zeta2            = _mm_mul_ps(beta2,rsq00);
908             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
909             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
910             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
911             felec            = _mm_mul_ps(qq00,felec);
912             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
913             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
914             velec            = _mm_mul_ps(qq00,velec);
915
916             d                = _mm_sub_ps(r00,rswitch);
917             d                = _mm_max_ps(d,_mm_setzero_ps());
918             d2               = _mm_mul_ps(d,d);
919             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
920
921             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
922
923             /* Evaluate switch function */
924             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
925             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
926             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
927
928             fscal            = felec;
929
930             fscal            = _mm_and_ps(fscal,cutoff_mask);
931
932              /* Update vectorial force */
933             fix0             = _mm_macc_ps(dx00,fscal,fix0);
934             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
935             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
936
937             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
938             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
939             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
940
941             }
942
943             /**************************
944              * CALCULATE INTERACTIONS *
945              **************************/
946
947             if (gmx_mm_any_lt(rsq10,rcutoff2))
948             {
949
950             r10              = _mm_mul_ps(rsq10,rinv10);
951
952             /* Compute parameters for interactions between i and j atoms */
953             qq10             = _mm_mul_ps(iq1,jq0);
954
955             /* EWALD ELECTROSTATICS */
956
957             /* Analytical PME correction */
958             zeta2            = _mm_mul_ps(beta2,rsq10);
959             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
960             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
961             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
962             felec            = _mm_mul_ps(qq10,felec);
963             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
964             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
965             velec            = _mm_mul_ps(qq10,velec);
966
967             d                = _mm_sub_ps(r10,rswitch);
968             d                = _mm_max_ps(d,_mm_setzero_ps());
969             d2               = _mm_mul_ps(d,d);
970             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
971
972             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
973
974             /* Evaluate switch function */
975             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
976             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
977             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
978
979             fscal            = felec;
980
981             fscal            = _mm_and_ps(fscal,cutoff_mask);
982
983              /* Update vectorial force */
984             fix1             = _mm_macc_ps(dx10,fscal,fix1);
985             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
986             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
987
988             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
989             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
990             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
991
992             }
993
994             /**************************
995              * CALCULATE INTERACTIONS *
996              **************************/
997
998             if (gmx_mm_any_lt(rsq20,rcutoff2))
999             {
1000
1001             r20              = _mm_mul_ps(rsq20,rinv20);
1002
1003             /* Compute parameters for interactions between i and j atoms */
1004             qq20             = _mm_mul_ps(iq2,jq0);
1005
1006             /* EWALD ELECTROSTATICS */
1007
1008             /* Analytical PME correction */
1009             zeta2            = _mm_mul_ps(beta2,rsq20);
1010             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1011             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1012             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1013             felec            = _mm_mul_ps(qq20,felec);
1014             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1015             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
1016             velec            = _mm_mul_ps(qq20,velec);
1017
1018             d                = _mm_sub_ps(r20,rswitch);
1019             d                = _mm_max_ps(d,_mm_setzero_ps());
1020             d2               = _mm_mul_ps(d,d);
1021             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1022
1023             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1024
1025             /* Evaluate switch function */
1026             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1027             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1028             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1029
1030             fscal            = felec;
1031
1032             fscal            = _mm_and_ps(fscal,cutoff_mask);
1033
1034              /* Update vectorial force */
1035             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1036             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1037             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1038
1039             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1040             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1041             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1042
1043             }
1044
1045             fjptrA             = f+j_coord_offsetA;
1046             fjptrB             = f+j_coord_offsetB;
1047             fjptrC             = f+j_coord_offsetC;
1048             fjptrD             = f+j_coord_offsetD;
1049
1050             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1051
1052             /* Inner loop uses 150 flops */
1053         }
1054
1055         if(jidx<j_index_end)
1056         {
1057
1058             /* Get j neighbor index, and coordinate index */
1059             jnrlistA         = jjnr[jidx];
1060             jnrlistB         = jjnr[jidx+1];
1061             jnrlistC         = jjnr[jidx+2];
1062             jnrlistD         = jjnr[jidx+3];
1063             /* Sign of each element will be negative for non-real atoms.
1064              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1065              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1066              */
1067             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1068             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1069             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1070             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1071             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1072             j_coord_offsetA  = DIM*jnrA;
1073             j_coord_offsetB  = DIM*jnrB;
1074             j_coord_offsetC  = DIM*jnrC;
1075             j_coord_offsetD  = DIM*jnrD;
1076
1077             /* load j atom coordinates */
1078             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1079                                               x+j_coord_offsetC,x+j_coord_offsetD,
1080                                               &jx0,&jy0,&jz0);
1081
1082             /* Calculate displacement vector */
1083             dx00             = _mm_sub_ps(ix0,jx0);
1084             dy00             = _mm_sub_ps(iy0,jy0);
1085             dz00             = _mm_sub_ps(iz0,jz0);
1086             dx10             = _mm_sub_ps(ix1,jx0);
1087             dy10             = _mm_sub_ps(iy1,jy0);
1088             dz10             = _mm_sub_ps(iz1,jz0);
1089             dx20             = _mm_sub_ps(ix2,jx0);
1090             dy20             = _mm_sub_ps(iy2,jy0);
1091             dz20             = _mm_sub_ps(iz2,jz0);
1092
1093             /* Calculate squared distance and things based on it */
1094             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1095             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1096             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1097
1098             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1099             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1100             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1101
1102             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1103             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1104             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1105
1106             /* Load parameters for j particles */
1107             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1108                                                               charge+jnrC+0,charge+jnrD+0);
1109
1110             fjx0             = _mm_setzero_ps();
1111             fjy0             = _mm_setzero_ps();
1112             fjz0             = _mm_setzero_ps();
1113
1114             /**************************
1115              * CALCULATE INTERACTIONS *
1116              **************************/
1117
1118             if (gmx_mm_any_lt(rsq00,rcutoff2))
1119             {
1120
1121             r00              = _mm_mul_ps(rsq00,rinv00);
1122             r00              = _mm_andnot_ps(dummy_mask,r00);
1123
1124             /* Compute parameters for interactions between i and j atoms */
1125             qq00             = _mm_mul_ps(iq0,jq0);
1126
1127             /* EWALD ELECTROSTATICS */
1128
1129             /* Analytical PME correction */
1130             zeta2            = _mm_mul_ps(beta2,rsq00);
1131             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1132             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1133             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1134             felec            = _mm_mul_ps(qq00,felec);
1135             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1136             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
1137             velec            = _mm_mul_ps(qq00,velec);
1138
1139             d                = _mm_sub_ps(r00,rswitch);
1140             d                = _mm_max_ps(d,_mm_setzero_ps());
1141             d2               = _mm_mul_ps(d,d);
1142             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1143
1144             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1145
1146             /* Evaluate switch function */
1147             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1148             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1149             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1150
1151             fscal            = felec;
1152
1153             fscal            = _mm_and_ps(fscal,cutoff_mask);
1154
1155             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1156
1157              /* Update vectorial force */
1158             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1159             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1160             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1161
1162             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1163             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1164             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1165
1166             }
1167
1168             /**************************
1169              * CALCULATE INTERACTIONS *
1170              **************************/
1171
1172             if (gmx_mm_any_lt(rsq10,rcutoff2))
1173             {
1174
1175             r10              = _mm_mul_ps(rsq10,rinv10);
1176             r10              = _mm_andnot_ps(dummy_mask,r10);
1177
1178             /* Compute parameters for interactions between i and j atoms */
1179             qq10             = _mm_mul_ps(iq1,jq0);
1180
1181             /* EWALD ELECTROSTATICS */
1182
1183             /* Analytical PME correction */
1184             zeta2            = _mm_mul_ps(beta2,rsq10);
1185             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1186             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1187             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1188             felec            = _mm_mul_ps(qq10,felec);
1189             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1190             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
1191             velec            = _mm_mul_ps(qq10,velec);
1192
1193             d                = _mm_sub_ps(r10,rswitch);
1194             d                = _mm_max_ps(d,_mm_setzero_ps());
1195             d2               = _mm_mul_ps(d,d);
1196             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1197
1198             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1199
1200             /* Evaluate switch function */
1201             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1202             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1203             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1204
1205             fscal            = felec;
1206
1207             fscal            = _mm_and_ps(fscal,cutoff_mask);
1208
1209             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1210
1211              /* Update vectorial force */
1212             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1213             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1214             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1215
1216             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1217             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1218             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1219
1220             }
1221
1222             /**************************
1223              * CALCULATE INTERACTIONS *
1224              **************************/
1225
1226             if (gmx_mm_any_lt(rsq20,rcutoff2))
1227             {
1228
1229             r20              = _mm_mul_ps(rsq20,rinv20);
1230             r20              = _mm_andnot_ps(dummy_mask,r20);
1231
1232             /* Compute parameters for interactions between i and j atoms */
1233             qq20             = _mm_mul_ps(iq2,jq0);
1234
1235             /* EWALD ELECTROSTATICS */
1236
1237             /* Analytical PME correction */
1238             zeta2            = _mm_mul_ps(beta2,rsq20);
1239             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1240             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1241             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1242             felec            = _mm_mul_ps(qq20,felec);
1243             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1244             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
1245             velec            = _mm_mul_ps(qq20,velec);
1246
1247             d                = _mm_sub_ps(r20,rswitch);
1248             d                = _mm_max_ps(d,_mm_setzero_ps());
1249             d2               = _mm_mul_ps(d,d);
1250             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1251
1252             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1253
1254             /* Evaluate switch function */
1255             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1256             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1257             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1258
1259             fscal            = felec;
1260
1261             fscal            = _mm_and_ps(fscal,cutoff_mask);
1262
1263             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1264
1265              /* Update vectorial force */
1266             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1267             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1268             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1269
1270             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1271             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1272             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1273
1274             }
1275
1276             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1277             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1278             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1279             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1280
1281             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1282
1283             /* Inner loop uses 153 flops */
1284         }
1285
1286         /* End of innermost loop */
1287
1288         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1289                                               f+i_coord_offset,fshift+i_shift_offset);
1290
1291         /* Increment number of inner iterations */
1292         inneriter                  += j_index_end - j_index_start;
1293
1294         /* Outer loop uses 18 flops */
1295     }
1296
1297     /* Increment number of outer iterations */
1298     outeriter        += nri;
1299
1300     /* Update outer/inner flops */
1301
1302     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*153);
1303 }