b83c8901fb393ad43d580a3e50ab66b60bce9236
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          ewitab;
91     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
92     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
93     real             *ewtab;
94     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
95     real             rswitch_scalar,d_scalar;
96     __m128           dummy_mask,cutoff_mask;
97     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
98     __m128           one     = _mm_set1_ps(1.0);
99     __m128           two     = _mm_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_ps(fr->epsfac);
112     charge           = mdatoms->chargeA;
113
114     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
115     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
116     beta2            = _mm_mul_ps(beta,beta);
117     beta3            = _mm_mul_ps(beta,beta2);
118     ewtab            = fr->ic->tabq_coul_FDV0;
119     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
120     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->rcoulomb;
124     rcutoff          = _mm_set1_ps(rcutoff_scalar);
125     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
126
127     rswitch_scalar   = fr->rcoulomb_switch;
128     rswitch          = _mm_set1_ps(rswitch_scalar);
129     /* Setup switch parameters */
130     d_scalar         = rcutoff_scalar-rswitch_scalar;
131     d                = _mm_set1_ps(d_scalar);
132     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
133     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
134     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
135     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
136     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
137     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
170
171         fix0             = _mm_setzero_ps();
172         fiy0             = _mm_setzero_ps();
173         fiz0             = _mm_setzero_ps();
174
175         /* Load parameters for i particles */
176         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_ps();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192             j_coord_offsetC  = DIM*jnrC;
193             j_coord_offsetD  = DIM*jnrD;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               x+j_coord_offsetC,x+j_coord_offsetD,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_ps(ix0,jx0);
202             dy00             = _mm_sub_ps(iy0,jy0);
203             dz00             = _mm_sub_ps(iz0,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
207
208             rinv00           = gmx_mm_invsqrt_ps(rsq00);
209
210             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
214                                                               charge+jnrC+0,charge+jnrD+0);
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             if (gmx_mm_any_lt(rsq00,rcutoff2))
221             {
222
223             r00              = _mm_mul_ps(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_ps(iq0,jq0);
227
228             /* EWALD ELECTROSTATICS */
229
230             /* Analytical PME correction */
231             zeta2            = _mm_mul_ps(beta2,rsq00);
232             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
233             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
234             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
235             felec            = _mm_mul_ps(qq00,felec);
236             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
237             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
238             velec            = _mm_mul_ps(qq00,velec);
239
240             d                = _mm_sub_ps(r00,rswitch);
241             d                = _mm_max_ps(d,_mm_setzero_ps());
242             d2               = _mm_mul_ps(d,d);
243             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
244
245             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
246
247             /* Evaluate switch function */
248             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
249             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
250             velec            = _mm_mul_ps(velec,sw);
251             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
252
253             /* Update potential sum for this i atom from the interaction with this j atom. */
254             velec            = _mm_and_ps(velec,cutoff_mask);
255             velecsum         = _mm_add_ps(velecsum,velec);
256
257             fscal            = felec;
258
259             fscal            = _mm_and_ps(fscal,cutoff_mask);
260
261              /* Update vectorial force */
262             fix0             = _mm_macc_ps(dx00,fscal,fix0);
263             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
264             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
265
266             fjptrA             = f+j_coord_offsetA;
267             fjptrB             = f+j_coord_offsetB;
268             fjptrC             = f+j_coord_offsetC;
269             fjptrD             = f+j_coord_offsetD;
270             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
271                                                    _mm_mul_ps(dx00,fscal),
272                                                    _mm_mul_ps(dy00,fscal),
273                                                    _mm_mul_ps(dz00,fscal));
274
275             }
276
277             /* Inner loop uses 53 flops */
278         }
279
280         if(jidx<j_index_end)
281         {
282
283             /* Get j neighbor index, and coordinate index */
284             jnrlistA         = jjnr[jidx];
285             jnrlistB         = jjnr[jidx+1];
286             jnrlistC         = jjnr[jidx+2];
287             jnrlistD         = jjnr[jidx+3];
288             /* Sign of each element will be negative for non-real atoms.
289              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
290              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
291              */
292             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
293             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
294             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
295             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
296             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
297             j_coord_offsetA  = DIM*jnrA;
298             j_coord_offsetB  = DIM*jnrB;
299             j_coord_offsetC  = DIM*jnrC;
300             j_coord_offsetD  = DIM*jnrD;
301
302             /* load j atom coordinates */
303             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
304                                               x+j_coord_offsetC,x+j_coord_offsetD,
305                                               &jx0,&jy0,&jz0);
306
307             /* Calculate displacement vector */
308             dx00             = _mm_sub_ps(ix0,jx0);
309             dy00             = _mm_sub_ps(iy0,jy0);
310             dz00             = _mm_sub_ps(iz0,jz0);
311
312             /* Calculate squared distance and things based on it */
313             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
314
315             rinv00           = gmx_mm_invsqrt_ps(rsq00);
316
317             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
318
319             /* Load parameters for j particles */
320             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
321                                                               charge+jnrC+0,charge+jnrD+0);
322
323             /**************************
324              * CALCULATE INTERACTIONS *
325              **************************/
326
327             if (gmx_mm_any_lt(rsq00,rcutoff2))
328             {
329
330             r00              = _mm_mul_ps(rsq00,rinv00);
331             r00              = _mm_andnot_ps(dummy_mask,r00);
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq00             = _mm_mul_ps(iq0,jq0);
335
336             /* EWALD ELECTROSTATICS */
337
338             /* Analytical PME correction */
339             zeta2            = _mm_mul_ps(beta2,rsq00);
340             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
341             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
342             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
343             felec            = _mm_mul_ps(qq00,felec);
344             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
345             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
346             velec            = _mm_mul_ps(qq00,velec);
347
348             d                = _mm_sub_ps(r00,rswitch);
349             d                = _mm_max_ps(d,_mm_setzero_ps());
350             d2               = _mm_mul_ps(d,d);
351             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
352
353             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
354
355             /* Evaluate switch function */
356             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
357             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
358             velec            = _mm_mul_ps(velec,sw);
359             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _mm_and_ps(velec,cutoff_mask);
363             velec            = _mm_andnot_ps(dummy_mask,velec);
364             velecsum         = _mm_add_ps(velecsum,velec);
365
366             fscal            = felec;
367
368             fscal            = _mm_and_ps(fscal,cutoff_mask);
369
370             fscal            = _mm_andnot_ps(dummy_mask,fscal);
371
372              /* Update vectorial force */
373             fix0             = _mm_macc_ps(dx00,fscal,fix0);
374             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
375             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
376
377             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
378             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
379             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
380             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
381             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
382                                                    _mm_mul_ps(dx00,fscal),
383                                                    _mm_mul_ps(dy00,fscal),
384                                                    _mm_mul_ps(dz00,fscal));
385
386             }
387
388             /* Inner loop uses 54 flops */
389         }
390
391         /* End of innermost loop */
392
393         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
394                                               f+i_coord_offset,fshift+i_shift_offset);
395
396         ggid                        = gid[iidx];
397         /* Update potential energies */
398         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
399
400         /* Increment number of inner iterations */
401         inneriter                  += j_index_end - j_index_start;
402
403         /* Outer loop uses 8 flops */
404     }
405
406     /* Increment number of outer iterations */
407     outeriter        += nri;
408
409     /* Update outer/inner flops */
410
411     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*54);
412 }
413 /*
414  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_single
415  * Electrostatics interaction: Ewald
416  * VdW interaction:            None
417  * Geometry:                   Particle-Particle
418  * Calculate force/pot:        Force
419  */
420 void
421 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_single
422                     (t_nblist                    * gmx_restrict       nlist,
423                      rvec                        * gmx_restrict          xx,
424                      rvec                        * gmx_restrict          ff,
425                      t_forcerec                  * gmx_restrict          fr,
426                      t_mdatoms                   * gmx_restrict     mdatoms,
427                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
428                      t_nrnb                      * gmx_restrict        nrnb)
429 {
430     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
431      * just 0 for non-waters.
432      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
433      * jnr indices corresponding to data put in the four positions in the SIMD register.
434      */
435     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
436     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
437     int              jnrA,jnrB,jnrC,jnrD;
438     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
439     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
440     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
441     real             rcutoff_scalar;
442     real             *shiftvec,*fshift,*x,*f;
443     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
444     real             scratch[4*DIM];
445     __m128           fscal,rcutoff,rcutoff2,jidxall;
446     int              vdwioffset0;
447     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
448     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
449     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
450     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
451     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
452     real             *charge;
453     __m128i          ewitab;
454     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
455     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
456     real             *ewtab;
457     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
458     real             rswitch_scalar,d_scalar;
459     __m128           dummy_mask,cutoff_mask;
460     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
461     __m128           one     = _mm_set1_ps(1.0);
462     __m128           two     = _mm_set1_ps(2.0);
463     x                = xx[0];
464     f                = ff[0];
465
466     nri              = nlist->nri;
467     iinr             = nlist->iinr;
468     jindex           = nlist->jindex;
469     jjnr             = nlist->jjnr;
470     shiftidx         = nlist->shift;
471     gid              = nlist->gid;
472     shiftvec         = fr->shift_vec[0];
473     fshift           = fr->fshift[0];
474     facel            = _mm_set1_ps(fr->epsfac);
475     charge           = mdatoms->chargeA;
476
477     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
478     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
479     beta2            = _mm_mul_ps(beta,beta);
480     beta3            = _mm_mul_ps(beta,beta2);
481     ewtab            = fr->ic->tabq_coul_FDV0;
482     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
483     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
484
485     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
486     rcutoff_scalar   = fr->rcoulomb;
487     rcutoff          = _mm_set1_ps(rcutoff_scalar);
488     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
489
490     rswitch_scalar   = fr->rcoulomb_switch;
491     rswitch          = _mm_set1_ps(rswitch_scalar);
492     /* Setup switch parameters */
493     d_scalar         = rcutoff_scalar-rswitch_scalar;
494     d                = _mm_set1_ps(d_scalar);
495     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
496     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
497     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
498     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
499     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
500     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
501
502     /* Avoid stupid compiler warnings */
503     jnrA = jnrB = jnrC = jnrD = 0;
504     j_coord_offsetA = 0;
505     j_coord_offsetB = 0;
506     j_coord_offsetC = 0;
507     j_coord_offsetD = 0;
508
509     outeriter        = 0;
510     inneriter        = 0;
511
512     for(iidx=0;iidx<4*DIM;iidx++)
513     {
514         scratch[iidx] = 0.0;
515     }
516
517     /* Start outer loop over neighborlists */
518     for(iidx=0; iidx<nri; iidx++)
519     {
520         /* Load shift vector for this list */
521         i_shift_offset   = DIM*shiftidx[iidx];
522
523         /* Load limits for loop over neighbors */
524         j_index_start    = jindex[iidx];
525         j_index_end      = jindex[iidx+1];
526
527         /* Get outer coordinate index */
528         inr              = iinr[iidx];
529         i_coord_offset   = DIM*inr;
530
531         /* Load i particle coords and add shift vector */
532         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
533
534         fix0             = _mm_setzero_ps();
535         fiy0             = _mm_setzero_ps();
536         fiz0             = _mm_setzero_ps();
537
538         /* Load parameters for i particles */
539         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
540
541         /* Start inner kernel loop */
542         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
543         {
544
545             /* Get j neighbor index, and coordinate index */
546             jnrA             = jjnr[jidx];
547             jnrB             = jjnr[jidx+1];
548             jnrC             = jjnr[jidx+2];
549             jnrD             = jjnr[jidx+3];
550             j_coord_offsetA  = DIM*jnrA;
551             j_coord_offsetB  = DIM*jnrB;
552             j_coord_offsetC  = DIM*jnrC;
553             j_coord_offsetD  = DIM*jnrD;
554
555             /* load j atom coordinates */
556             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
557                                               x+j_coord_offsetC,x+j_coord_offsetD,
558                                               &jx0,&jy0,&jz0);
559
560             /* Calculate displacement vector */
561             dx00             = _mm_sub_ps(ix0,jx0);
562             dy00             = _mm_sub_ps(iy0,jy0);
563             dz00             = _mm_sub_ps(iz0,jz0);
564
565             /* Calculate squared distance and things based on it */
566             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
567
568             rinv00           = gmx_mm_invsqrt_ps(rsq00);
569
570             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
571
572             /* Load parameters for j particles */
573             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
574                                                               charge+jnrC+0,charge+jnrD+0);
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             if (gmx_mm_any_lt(rsq00,rcutoff2))
581             {
582
583             r00              = _mm_mul_ps(rsq00,rinv00);
584
585             /* Compute parameters for interactions between i and j atoms */
586             qq00             = _mm_mul_ps(iq0,jq0);
587
588             /* EWALD ELECTROSTATICS */
589
590             /* Analytical PME correction */
591             zeta2            = _mm_mul_ps(beta2,rsq00);
592             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
593             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
594             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
595             felec            = _mm_mul_ps(qq00,felec);
596             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
597             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
598             velec            = _mm_mul_ps(qq00,velec);
599
600             d                = _mm_sub_ps(r00,rswitch);
601             d                = _mm_max_ps(d,_mm_setzero_ps());
602             d2               = _mm_mul_ps(d,d);
603             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
604
605             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
606
607             /* Evaluate switch function */
608             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
609             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
610             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
611
612             fscal            = felec;
613
614             fscal            = _mm_and_ps(fscal,cutoff_mask);
615
616              /* Update vectorial force */
617             fix0             = _mm_macc_ps(dx00,fscal,fix0);
618             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
619             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
620
621             fjptrA             = f+j_coord_offsetA;
622             fjptrB             = f+j_coord_offsetB;
623             fjptrC             = f+j_coord_offsetC;
624             fjptrD             = f+j_coord_offsetD;
625             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
626                                                    _mm_mul_ps(dx00,fscal),
627                                                    _mm_mul_ps(dy00,fscal),
628                                                    _mm_mul_ps(dz00,fscal));
629
630             }
631
632             /* Inner loop uses 50 flops */
633         }
634
635         if(jidx<j_index_end)
636         {
637
638             /* Get j neighbor index, and coordinate index */
639             jnrlistA         = jjnr[jidx];
640             jnrlistB         = jjnr[jidx+1];
641             jnrlistC         = jjnr[jidx+2];
642             jnrlistD         = jjnr[jidx+3];
643             /* Sign of each element will be negative for non-real atoms.
644              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
645              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
646              */
647             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
648             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
649             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
650             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
651             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
652             j_coord_offsetA  = DIM*jnrA;
653             j_coord_offsetB  = DIM*jnrB;
654             j_coord_offsetC  = DIM*jnrC;
655             j_coord_offsetD  = DIM*jnrD;
656
657             /* load j atom coordinates */
658             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
659                                               x+j_coord_offsetC,x+j_coord_offsetD,
660                                               &jx0,&jy0,&jz0);
661
662             /* Calculate displacement vector */
663             dx00             = _mm_sub_ps(ix0,jx0);
664             dy00             = _mm_sub_ps(iy0,jy0);
665             dz00             = _mm_sub_ps(iz0,jz0);
666
667             /* Calculate squared distance and things based on it */
668             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
669
670             rinv00           = gmx_mm_invsqrt_ps(rsq00);
671
672             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
673
674             /* Load parameters for j particles */
675             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
676                                                               charge+jnrC+0,charge+jnrD+0);
677
678             /**************************
679              * CALCULATE INTERACTIONS *
680              **************************/
681
682             if (gmx_mm_any_lt(rsq00,rcutoff2))
683             {
684
685             r00              = _mm_mul_ps(rsq00,rinv00);
686             r00              = _mm_andnot_ps(dummy_mask,r00);
687
688             /* Compute parameters for interactions between i and j atoms */
689             qq00             = _mm_mul_ps(iq0,jq0);
690
691             /* EWALD ELECTROSTATICS */
692
693             /* Analytical PME correction */
694             zeta2            = _mm_mul_ps(beta2,rsq00);
695             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
696             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
697             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
698             felec            = _mm_mul_ps(qq00,felec);
699             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
700             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
701             velec            = _mm_mul_ps(qq00,velec);
702
703             d                = _mm_sub_ps(r00,rswitch);
704             d                = _mm_max_ps(d,_mm_setzero_ps());
705             d2               = _mm_mul_ps(d,d);
706             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
707
708             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
709
710             /* Evaluate switch function */
711             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
712             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
713             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
714
715             fscal            = felec;
716
717             fscal            = _mm_and_ps(fscal,cutoff_mask);
718
719             fscal            = _mm_andnot_ps(dummy_mask,fscal);
720
721              /* Update vectorial force */
722             fix0             = _mm_macc_ps(dx00,fscal,fix0);
723             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
724             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
725
726             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
727             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
728             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
729             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
730             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
731                                                    _mm_mul_ps(dx00,fscal),
732                                                    _mm_mul_ps(dy00,fscal),
733                                                    _mm_mul_ps(dz00,fscal));
734
735             }
736
737             /* Inner loop uses 51 flops */
738         }
739
740         /* End of innermost loop */
741
742         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
743                                               f+i_coord_offset,fshift+i_shift_offset);
744
745         /* Increment number of inner iterations */
746         inneriter                  += j_index_end - j_index_start;
747
748         /* Outer loop uses 7 flops */
749     }
750
751     /* Increment number of outer iterations */
752     outeriter        += nri;
753
754     /* Update outer/inner flops */
755
756     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*51);
757 }