Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          ewitab;
90     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
92     real             *ewtab;
93     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
94     real             rswitch_scalar,d_scalar;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->ic->epsfac);
111     charge           = mdatoms->chargeA;
112
113     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
114     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
115     beta2            = _mm_mul_ps(beta,beta);
116     beta3            = _mm_mul_ps(beta,beta2);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->ic->rcoulomb;
123     rcutoff          = _mm_set1_ps(rcutoff_scalar);
124     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
125
126     rswitch_scalar   = fr->ic->rcoulomb_switch;
127     rswitch          = _mm_set1_ps(rswitch_scalar);
128     /* Setup switch parameters */
129     d_scalar         = rcutoff_scalar-rswitch_scalar;
130     d                = _mm_set1_ps(d_scalar);
131     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
132     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
135     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
169
170         fix0             = _mm_setzero_ps();
171         fiy0             = _mm_setzero_ps();
172         fiz0             = _mm_setzero_ps();
173
174         /* Load parameters for i particles */
175         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
176
177         /* Reset potential sums */
178         velecsum         = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               x+j_coord_offsetC,x+j_coord_offsetD,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_ps(ix0,jx0);
201             dy00             = _mm_sub_ps(iy0,jy0);
202             dz00             = _mm_sub_ps(iz0,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206
207             rinv00           = avx128fma_invsqrt_f(rsq00);
208
209             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
213                                                               charge+jnrC+0,charge+jnrD+0);
214
215             /**************************
216              * CALCULATE INTERACTIONS *
217              **************************/
218
219             if (gmx_mm_any_lt(rsq00,rcutoff2))
220             {
221
222             r00              = _mm_mul_ps(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm_mul_ps(iq0,jq0);
226
227             /* EWALD ELECTROSTATICS */
228
229             /* Analytical PME correction */
230             zeta2            = _mm_mul_ps(beta2,rsq00);
231             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
232             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
233             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
234             felec            = _mm_mul_ps(qq00,felec);
235             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
236             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
237             velec            = _mm_mul_ps(qq00,velec);
238
239             d                = _mm_sub_ps(r00,rswitch);
240             d                = _mm_max_ps(d,_mm_setzero_ps());
241             d2               = _mm_mul_ps(d,d);
242             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
243
244             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
245
246             /* Evaluate switch function */
247             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
248             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
249             velec            = _mm_mul_ps(velec,sw);
250             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             velec            = _mm_and_ps(velec,cutoff_mask);
254             velecsum         = _mm_add_ps(velecsum,velec);
255
256             fscal            = felec;
257
258             fscal            = _mm_and_ps(fscal,cutoff_mask);
259
260              /* Update vectorial force */
261             fix0             = _mm_macc_ps(dx00,fscal,fix0);
262             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
263             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
264
265             fjptrA             = f+j_coord_offsetA;
266             fjptrB             = f+j_coord_offsetB;
267             fjptrC             = f+j_coord_offsetC;
268             fjptrD             = f+j_coord_offsetD;
269             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
270                                                    _mm_mul_ps(dx00,fscal),
271                                                    _mm_mul_ps(dy00,fscal),
272                                                    _mm_mul_ps(dz00,fscal));
273
274             }
275
276             /* Inner loop uses 53 flops */
277         }
278
279         if(jidx<j_index_end)
280         {
281
282             /* Get j neighbor index, and coordinate index */
283             jnrlistA         = jjnr[jidx];
284             jnrlistB         = jjnr[jidx+1];
285             jnrlistC         = jjnr[jidx+2];
286             jnrlistD         = jjnr[jidx+3];
287             /* Sign of each element will be negative for non-real atoms.
288              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
289              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
290              */
291             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
292             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
293             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
294             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
295             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
296             j_coord_offsetA  = DIM*jnrA;
297             j_coord_offsetB  = DIM*jnrB;
298             j_coord_offsetC  = DIM*jnrC;
299             j_coord_offsetD  = DIM*jnrD;
300
301             /* load j atom coordinates */
302             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
303                                               x+j_coord_offsetC,x+j_coord_offsetD,
304                                               &jx0,&jy0,&jz0);
305
306             /* Calculate displacement vector */
307             dx00             = _mm_sub_ps(ix0,jx0);
308             dy00             = _mm_sub_ps(iy0,jy0);
309             dz00             = _mm_sub_ps(iz0,jz0);
310
311             /* Calculate squared distance and things based on it */
312             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
313
314             rinv00           = avx128fma_invsqrt_f(rsq00);
315
316             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
317
318             /* Load parameters for j particles */
319             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
320                                                               charge+jnrC+0,charge+jnrD+0);
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             if (gmx_mm_any_lt(rsq00,rcutoff2))
327             {
328
329             r00              = _mm_mul_ps(rsq00,rinv00);
330             r00              = _mm_andnot_ps(dummy_mask,r00);
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq00             = _mm_mul_ps(iq0,jq0);
334
335             /* EWALD ELECTROSTATICS */
336
337             /* Analytical PME correction */
338             zeta2            = _mm_mul_ps(beta2,rsq00);
339             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
340             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
341             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
342             felec            = _mm_mul_ps(qq00,felec);
343             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
344             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
345             velec            = _mm_mul_ps(qq00,velec);
346
347             d                = _mm_sub_ps(r00,rswitch);
348             d                = _mm_max_ps(d,_mm_setzero_ps());
349             d2               = _mm_mul_ps(d,d);
350             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
351
352             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
353
354             /* Evaluate switch function */
355             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
356             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
357             velec            = _mm_mul_ps(velec,sw);
358             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velec            = _mm_and_ps(velec,cutoff_mask);
362             velec            = _mm_andnot_ps(dummy_mask,velec);
363             velecsum         = _mm_add_ps(velecsum,velec);
364
365             fscal            = felec;
366
367             fscal            = _mm_and_ps(fscal,cutoff_mask);
368
369             fscal            = _mm_andnot_ps(dummy_mask,fscal);
370
371              /* Update vectorial force */
372             fix0             = _mm_macc_ps(dx00,fscal,fix0);
373             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
374             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
375
376             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
377             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
378             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
379             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
380             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
381                                                    _mm_mul_ps(dx00,fscal),
382                                                    _mm_mul_ps(dy00,fscal),
383                                                    _mm_mul_ps(dz00,fscal));
384
385             }
386
387             /* Inner loop uses 54 flops */
388         }
389
390         /* End of innermost loop */
391
392         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
393                                               f+i_coord_offset,fshift+i_shift_offset);
394
395         ggid                        = gid[iidx];
396         /* Update potential energies */
397         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
398
399         /* Increment number of inner iterations */
400         inneriter                  += j_index_end - j_index_start;
401
402         /* Outer loop uses 8 flops */
403     }
404
405     /* Increment number of outer iterations */
406     outeriter        += nri;
407
408     /* Update outer/inner flops */
409
410     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*54);
411 }
412 /*
413  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_single
414  * Electrostatics interaction: Ewald
415  * VdW interaction:            None
416  * Geometry:                   Particle-Particle
417  * Calculate force/pot:        Force
418  */
419 void
420 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_single
421                     (t_nblist                    * gmx_restrict       nlist,
422                      rvec                        * gmx_restrict          xx,
423                      rvec                        * gmx_restrict          ff,
424                      struct t_forcerec           * gmx_restrict          fr,
425                      t_mdatoms                   * gmx_restrict     mdatoms,
426                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
427                      t_nrnb                      * gmx_restrict        nrnb)
428 {
429     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
430      * just 0 for non-waters.
431      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
432      * jnr indices corresponding to data put in the four positions in the SIMD register.
433      */
434     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
435     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
436     int              jnrA,jnrB,jnrC,jnrD;
437     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
438     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
439     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
440     real             rcutoff_scalar;
441     real             *shiftvec,*fshift,*x,*f;
442     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
443     real             scratch[4*DIM];
444     __m128           fscal,rcutoff,rcutoff2,jidxall;
445     int              vdwioffset0;
446     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
447     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
448     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
449     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
450     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
451     real             *charge;
452     __m128i          ewitab;
453     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
454     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
455     real             *ewtab;
456     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
457     real             rswitch_scalar,d_scalar;
458     __m128           dummy_mask,cutoff_mask;
459     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
460     __m128           one     = _mm_set1_ps(1.0);
461     __m128           two     = _mm_set1_ps(2.0);
462     x                = xx[0];
463     f                = ff[0];
464
465     nri              = nlist->nri;
466     iinr             = nlist->iinr;
467     jindex           = nlist->jindex;
468     jjnr             = nlist->jjnr;
469     shiftidx         = nlist->shift;
470     gid              = nlist->gid;
471     shiftvec         = fr->shift_vec[0];
472     fshift           = fr->fshift[0];
473     facel            = _mm_set1_ps(fr->ic->epsfac);
474     charge           = mdatoms->chargeA;
475
476     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
477     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
478     beta2            = _mm_mul_ps(beta,beta);
479     beta3            = _mm_mul_ps(beta,beta2);
480     ewtab            = fr->ic->tabq_coul_FDV0;
481     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
482     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
483
484     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
485     rcutoff_scalar   = fr->ic->rcoulomb;
486     rcutoff          = _mm_set1_ps(rcutoff_scalar);
487     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
488
489     rswitch_scalar   = fr->ic->rcoulomb_switch;
490     rswitch          = _mm_set1_ps(rswitch_scalar);
491     /* Setup switch parameters */
492     d_scalar         = rcutoff_scalar-rswitch_scalar;
493     d                = _mm_set1_ps(d_scalar);
494     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
495     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
496     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
497     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
498     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
499     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
500
501     /* Avoid stupid compiler warnings */
502     jnrA = jnrB = jnrC = jnrD = 0;
503     j_coord_offsetA = 0;
504     j_coord_offsetB = 0;
505     j_coord_offsetC = 0;
506     j_coord_offsetD = 0;
507
508     outeriter        = 0;
509     inneriter        = 0;
510
511     for(iidx=0;iidx<4*DIM;iidx++)
512     {
513         scratch[iidx] = 0.0;
514     }
515
516     /* Start outer loop over neighborlists */
517     for(iidx=0; iidx<nri; iidx++)
518     {
519         /* Load shift vector for this list */
520         i_shift_offset   = DIM*shiftidx[iidx];
521
522         /* Load limits for loop over neighbors */
523         j_index_start    = jindex[iidx];
524         j_index_end      = jindex[iidx+1];
525
526         /* Get outer coordinate index */
527         inr              = iinr[iidx];
528         i_coord_offset   = DIM*inr;
529
530         /* Load i particle coords and add shift vector */
531         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
532
533         fix0             = _mm_setzero_ps();
534         fiy0             = _mm_setzero_ps();
535         fiz0             = _mm_setzero_ps();
536
537         /* Load parameters for i particles */
538         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
539
540         /* Start inner kernel loop */
541         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
542         {
543
544             /* Get j neighbor index, and coordinate index */
545             jnrA             = jjnr[jidx];
546             jnrB             = jjnr[jidx+1];
547             jnrC             = jjnr[jidx+2];
548             jnrD             = jjnr[jidx+3];
549             j_coord_offsetA  = DIM*jnrA;
550             j_coord_offsetB  = DIM*jnrB;
551             j_coord_offsetC  = DIM*jnrC;
552             j_coord_offsetD  = DIM*jnrD;
553
554             /* load j atom coordinates */
555             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
556                                               x+j_coord_offsetC,x+j_coord_offsetD,
557                                               &jx0,&jy0,&jz0);
558
559             /* Calculate displacement vector */
560             dx00             = _mm_sub_ps(ix0,jx0);
561             dy00             = _mm_sub_ps(iy0,jy0);
562             dz00             = _mm_sub_ps(iz0,jz0);
563
564             /* Calculate squared distance and things based on it */
565             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
566
567             rinv00           = avx128fma_invsqrt_f(rsq00);
568
569             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
570
571             /* Load parameters for j particles */
572             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
573                                                               charge+jnrC+0,charge+jnrD+0);
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             if (gmx_mm_any_lt(rsq00,rcutoff2))
580             {
581
582             r00              = _mm_mul_ps(rsq00,rinv00);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq00             = _mm_mul_ps(iq0,jq0);
586
587             /* EWALD ELECTROSTATICS */
588
589             /* Analytical PME correction */
590             zeta2            = _mm_mul_ps(beta2,rsq00);
591             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
592             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
593             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
594             felec            = _mm_mul_ps(qq00,felec);
595             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
596             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
597             velec            = _mm_mul_ps(qq00,velec);
598
599             d                = _mm_sub_ps(r00,rswitch);
600             d                = _mm_max_ps(d,_mm_setzero_ps());
601             d2               = _mm_mul_ps(d,d);
602             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
603
604             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
605
606             /* Evaluate switch function */
607             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
608             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
609             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
610
611             fscal            = felec;
612
613             fscal            = _mm_and_ps(fscal,cutoff_mask);
614
615              /* Update vectorial force */
616             fix0             = _mm_macc_ps(dx00,fscal,fix0);
617             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
618             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
619
620             fjptrA             = f+j_coord_offsetA;
621             fjptrB             = f+j_coord_offsetB;
622             fjptrC             = f+j_coord_offsetC;
623             fjptrD             = f+j_coord_offsetD;
624             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
625                                                    _mm_mul_ps(dx00,fscal),
626                                                    _mm_mul_ps(dy00,fscal),
627                                                    _mm_mul_ps(dz00,fscal));
628
629             }
630
631             /* Inner loop uses 50 flops */
632         }
633
634         if(jidx<j_index_end)
635         {
636
637             /* Get j neighbor index, and coordinate index */
638             jnrlistA         = jjnr[jidx];
639             jnrlistB         = jjnr[jidx+1];
640             jnrlistC         = jjnr[jidx+2];
641             jnrlistD         = jjnr[jidx+3];
642             /* Sign of each element will be negative for non-real atoms.
643              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
644              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
645              */
646             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
647             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
648             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
649             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
650             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
651             j_coord_offsetA  = DIM*jnrA;
652             j_coord_offsetB  = DIM*jnrB;
653             j_coord_offsetC  = DIM*jnrC;
654             j_coord_offsetD  = DIM*jnrD;
655
656             /* load j atom coordinates */
657             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
658                                               x+j_coord_offsetC,x+j_coord_offsetD,
659                                               &jx0,&jy0,&jz0);
660
661             /* Calculate displacement vector */
662             dx00             = _mm_sub_ps(ix0,jx0);
663             dy00             = _mm_sub_ps(iy0,jy0);
664             dz00             = _mm_sub_ps(iz0,jz0);
665
666             /* Calculate squared distance and things based on it */
667             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
668
669             rinv00           = avx128fma_invsqrt_f(rsq00);
670
671             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
672
673             /* Load parameters for j particles */
674             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
675                                                               charge+jnrC+0,charge+jnrD+0);
676
677             /**************************
678              * CALCULATE INTERACTIONS *
679              **************************/
680
681             if (gmx_mm_any_lt(rsq00,rcutoff2))
682             {
683
684             r00              = _mm_mul_ps(rsq00,rinv00);
685             r00              = _mm_andnot_ps(dummy_mask,r00);
686
687             /* Compute parameters for interactions between i and j atoms */
688             qq00             = _mm_mul_ps(iq0,jq0);
689
690             /* EWALD ELECTROSTATICS */
691
692             /* Analytical PME correction */
693             zeta2            = _mm_mul_ps(beta2,rsq00);
694             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
695             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
696             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
697             felec            = _mm_mul_ps(qq00,felec);
698             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
699             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
700             velec            = _mm_mul_ps(qq00,velec);
701
702             d                = _mm_sub_ps(r00,rswitch);
703             d                = _mm_max_ps(d,_mm_setzero_ps());
704             d2               = _mm_mul_ps(d,d);
705             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
706
707             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
708
709             /* Evaluate switch function */
710             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
711             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
712             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
713
714             fscal            = felec;
715
716             fscal            = _mm_and_ps(fscal,cutoff_mask);
717
718             fscal            = _mm_andnot_ps(dummy_mask,fscal);
719
720              /* Update vectorial force */
721             fix0             = _mm_macc_ps(dx00,fscal,fix0);
722             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
723             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
724
725             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
726             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
727             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
728             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
729             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
730                                                    _mm_mul_ps(dx00,fscal),
731                                                    _mm_mul_ps(dy00,fscal),
732                                                    _mm_mul_ps(dz00,fscal));
733
734             }
735
736             /* Inner loop uses 51 flops */
737         }
738
739         /* End of innermost loop */
740
741         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
742                                               f+i_coord_offset,fshift+i_shift_offset);
743
744         /* Increment number of inner iterations */
745         inneriter                  += j_index_end - j_index_start;
746
747         /* Outer loop uses 7 flops */
748     }
749
750     /* Increment number of outer iterations */
751     outeriter        += nri;
752
753     /* Update outer/inner flops */
754
755     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*51);
756 }