Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128i          ewitab;
93     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
95     real             *ewtab;
96     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
97     real             rswitch_scalar,d_scalar;
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
117     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
118     beta2            = _mm_mul_ps(beta,beta);
119     beta3            = _mm_mul_ps(beta,beta2);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_ps(rcutoff_scalar);
127     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
128
129     rswitch_scalar   = fr->rcoulomb_switch;
130     rswitch          = _mm_set1_ps(rswitch_scalar);
131     /* Setup switch parameters */
132     d_scalar         = rcutoff_scalar-rswitch_scalar;
133     d                = _mm_set1_ps(d_scalar);
134     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
135     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
138     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
172
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176
177         /* Load parameters for i particles */
178         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_ps();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               x+j_coord_offsetC,x+j_coord_offsetD,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_ps(ix0,jx0);
204             dy00             = _mm_sub_ps(iy0,jy0);
205             dz00             = _mm_sub_ps(iz0,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
209
210             rinv00           = gmx_mm_invsqrt_ps(rsq00);
211
212             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
216                                                               charge+jnrC+0,charge+jnrD+0);
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             if (gmx_mm_any_lt(rsq00,rcutoff2))
223             {
224
225             r00              = _mm_mul_ps(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm_mul_ps(iq0,jq0);
229
230             /* EWALD ELECTROSTATICS */
231
232             /* Analytical PME correction */
233             zeta2            = _mm_mul_ps(beta2,rsq00);
234             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
235             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
236             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
237             felec            = _mm_mul_ps(qq00,felec);
238             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
239             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
240             velec            = _mm_mul_ps(qq00,velec);
241
242             d                = _mm_sub_ps(r00,rswitch);
243             d                = _mm_max_ps(d,_mm_setzero_ps());
244             d2               = _mm_mul_ps(d,d);
245             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
246
247             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
248
249             /* Evaluate switch function */
250             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
251             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
252             velec            = _mm_mul_ps(velec,sw);
253             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
254
255             /* Update potential sum for this i atom from the interaction with this j atom. */
256             velec            = _mm_and_ps(velec,cutoff_mask);
257             velecsum         = _mm_add_ps(velecsum,velec);
258
259             fscal            = felec;
260
261             fscal            = _mm_and_ps(fscal,cutoff_mask);
262
263              /* Update vectorial force */
264             fix0             = _mm_macc_ps(dx00,fscal,fix0);
265             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
266             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
267
268             fjptrA             = f+j_coord_offsetA;
269             fjptrB             = f+j_coord_offsetB;
270             fjptrC             = f+j_coord_offsetC;
271             fjptrD             = f+j_coord_offsetD;
272             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
273                                                    _mm_mul_ps(dx00,fscal),
274                                                    _mm_mul_ps(dy00,fscal),
275                                                    _mm_mul_ps(dz00,fscal));
276
277             }
278
279             /* Inner loop uses 53 flops */
280         }
281
282         if(jidx<j_index_end)
283         {
284
285             /* Get j neighbor index, and coordinate index */
286             jnrlistA         = jjnr[jidx];
287             jnrlistB         = jjnr[jidx+1];
288             jnrlistC         = jjnr[jidx+2];
289             jnrlistD         = jjnr[jidx+3];
290             /* Sign of each element will be negative for non-real atoms.
291              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
292              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
293              */
294             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
295             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
296             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
297             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
298             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
299             j_coord_offsetA  = DIM*jnrA;
300             j_coord_offsetB  = DIM*jnrB;
301             j_coord_offsetC  = DIM*jnrC;
302             j_coord_offsetD  = DIM*jnrD;
303
304             /* load j atom coordinates */
305             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
306                                               x+j_coord_offsetC,x+j_coord_offsetD,
307                                               &jx0,&jy0,&jz0);
308
309             /* Calculate displacement vector */
310             dx00             = _mm_sub_ps(ix0,jx0);
311             dy00             = _mm_sub_ps(iy0,jy0);
312             dz00             = _mm_sub_ps(iz0,jz0);
313
314             /* Calculate squared distance and things based on it */
315             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
316
317             rinv00           = gmx_mm_invsqrt_ps(rsq00);
318
319             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
320
321             /* Load parameters for j particles */
322             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
323                                                               charge+jnrC+0,charge+jnrD+0);
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             if (gmx_mm_any_lt(rsq00,rcutoff2))
330             {
331
332             r00              = _mm_mul_ps(rsq00,rinv00);
333             r00              = _mm_andnot_ps(dummy_mask,r00);
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq00             = _mm_mul_ps(iq0,jq0);
337
338             /* EWALD ELECTROSTATICS */
339
340             /* Analytical PME correction */
341             zeta2            = _mm_mul_ps(beta2,rsq00);
342             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
343             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
344             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
345             felec            = _mm_mul_ps(qq00,felec);
346             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
347             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
348             velec            = _mm_mul_ps(qq00,velec);
349
350             d                = _mm_sub_ps(r00,rswitch);
351             d                = _mm_max_ps(d,_mm_setzero_ps());
352             d2               = _mm_mul_ps(d,d);
353             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
354
355             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
356
357             /* Evaluate switch function */
358             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
359             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
360             velec            = _mm_mul_ps(velec,sw);
361             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velec            = _mm_and_ps(velec,cutoff_mask);
365             velec            = _mm_andnot_ps(dummy_mask,velec);
366             velecsum         = _mm_add_ps(velecsum,velec);
367
368             fscal            = felec;
369
370             fscal            = _mm_and_ps(fscal,cutoff_mask);
371
372             fscal            = _mm_andnot_ps(dummy_mask,fscal);
373
374              /* Update vectorial force */
375             fix0             = _mm_macc_ps(dx00,fscal,fix0);
376             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
377             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
378
379             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
380             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
381             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
382             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
383             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
384                                                    _mm_mul_ps(dx00,fscal),
385                                                    _mm_mul_ps(dy00,fscal),
386                                                    _mm_mul_ps(dz00,fscal));
387
388             }
389
390             /* Inner loop uses 54 flops */
391         }
392
393         /* End of innermost loop */
394
395         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
396                                               f+i_coord_offset,fshift+i_shift_offset);
397
398         ggid                        = gid[iidx];
399         /* Update potential energies */
400         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
401
402         /* Increment number of inner iterations */
403         inneriter                  += j_index_end - j_index_start;
404
405         /* Outer loop uses 8 flops */
406     }
407
408     /* Increment number of outer iterations */
409     outeriter        += nri;
410
411     /* Update outer/inner flops */
412
413     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*54);
414 }
415 /*
416  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_single
417  * Electrostatics interaction: Ewald
418  * VdW interaction:            None
419  * Geometry:                   Particle-Particle
420  * Calculate force/pot:        Force
421  */
422 void
423 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_single
424                     (t_nblist                    * gmx_restrict       nlist,
425                      rvec                        * gmx_restrict          xx,
426                      rvec                        * gmx_restrict          ff,
427                      t_forcerec                  * gmx_restrict          fr,
428                      t_mdatoms                   * gmx_restrict     mdatoms,
429                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
430                      t_nrnb                      * gmx_restrict        nrnb)
431 {
432     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
433      * just 0 for non-waters.
434      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
435      * jnr indices corresponding to data put in the four positions in the SIMD register.
436      */
437     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
438     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
439     int              jnrA,jnrB,jnrC,jnrD;
440     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
441     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
442     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
443     real             rcutoff_scalar;
444     real             *shiftvec,*fshift,*x,*f;
445     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
446     real             scratch[4*DIM];
447     __m128           fscal,rcutoff,rcutoff2,jidxall;
448     int              vdwioffset0;
449     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
450     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
451     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
452     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
453     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
454     real             *charge;
455     __m128i          ewitab;
456     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
457     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
458     real             *ewtab;
459     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
460     real             rswitch_scalar,d_scalar;
461     __m128           dummy_mask,cutoff_mask;
462     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
463     __m128           one     = _mm_set1_ps(1.0);
464     __m128           two     = _mm_set1_ps(2.0);
465     x                = xx[0];
466     f                = ff[0];
467
468     nri              = nlist->nri;
469     iinr             = nlist->iinr;
470     jindex           = nlist->jindex;
471     jjnr             = nlist->jjnr;
472     shiftidx         = nlist->shift;
473     gid              = nlist->gid;
474     shiftvec         = fr->shift_vec[0];
475     fshift           = fr->fshift[0];
476     facel            = _mm_set1_ps(fr->epsfac);
477     charge           = mdatoms->chargeA;
478
479     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
480     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
481     beta2            = _mm_mul_ps(beta,beta);
482     beta3            = _mm_mul_ps(beta,beta2);
483     ewtab            = fr->ic->tabq_coul_FDV0;
484     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
485     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
486
487     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
488     rcutoff_scalar   = fr->rcoulomb;
489     rcutoff          = _mm_set1_ps(rcutoff_scalar);
490     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
491
492     rswitch_scalar   = fr->rcoulomb_switch;
493     rswitch          = _mm_set1_ps(rswitch_scalar);
494     /* Setup switch parameters */
495     d_scalar         = rcutoff_scalar-rswitch_scalar;
496     d                = _mm_set1_ps(d_scalar);
497     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
498     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
499     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
500     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
501     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
502     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
503
504     /* Avoid stupid compiler warnings */
505     jnrA = jnrB = jnrC = jnrD = 0;
506     j_coord_offsetA = 0;
507     j_coord_offsetB = 0;
508     j_coord_offsetC = 0;
509     j_coord_offsetD = 0;
510
511     outeriter        = 0;
512     inneriter        = 0;
513
514     for(iidx=0;iidx<4*DIM;iidx++)
515     {
516         scratch[iidx] = 0.0;
517     }
518
519     /* Start outer loop over neighborlists */
520     for(iidx=0; iidx<nri; iidx++)
521     {
522         /* Load shift vector for this list */
523         i_shift_offset   = DIM*shiftidx[iidx];
524
525         /* Load limits for loop over neighbors */
526         j_index_start    = jindex[iidx];
527         j_index_end      = jindex[iidx+1];
528
529         /* Get outer coordinate index */
530         inr              = iinr[iidx];
531         i_coord_offset   = DIM*inr;
532
533         /* Load i particle coords and add shift vector */
534         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
535
536         fix0             = _mm_setzero_ps();
537         fiy0             = _mm_setzero_ps();
538         fiz0             = _mm_setzero_ps();
539
540         /* Load parameters for i particles */
541         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
542
543         /* Start inner kernel loop */
544         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
545         {
546
547             /* Get j neighbor index, and coordinate index */
548             jnrA             = jjnr[jidx];
549             jnrB             = jjnr[jidx+1];
550             jnrC             = jjnr[jidx+2];
551             jnrD             = jjnr[jidx+3];
552             j_coord_offsetA  = DIM*jnrA;
553             j_coord_offsetB  = DIM*jnrB;
554             j_coord_offsetC  = DIM*jnrC;
555             j_coord_offsetD  = DIM*jnrD;
556
557             /* load j atom coordinates */
558             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
559                                               x+j_coord_offsetC,x+j_coord_offsetD,
560                                               &jx0,&jy0,&jz0);
561
562             /* Calculate displacement vector */
563             dx00             = _mm_sub_ps(ix0,jx0);
564             dy00             = _mm_sub_ps(iy0,jy0);
565             dz00             = _mm_sub_ps(iz0,jz0);
566
567             /* Calculate squared distance and things based on it */
568             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
569
570             rinv00           = gmx_mm_invsqrt_ps(rsq00);
571
572             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
573
574             /* Load parameters for j particles */
575             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
576                                                               charge+jnrC+0,charge+jnrD+0);
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             if (gmx_mm_any_lt(rsq00,rcutoff2))
583             {
584
585             r00              = _mm_mul_ps(rsq00,rinv00);
586
587             /* Compute parameters for interactions between i and j atoms */
588             qq00             = _mm_mul_ps(iq0,jq0);
589
590             /* EWALD ELECTROSTATICS */
591
592             /* Analytical PME correction */
593             zeta2            = _mm_mul_ps(beta2,rsq00);
594             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
595             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
596             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
597             felec            = _mm_mul_ps(qq00,felec);
598             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
599             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
600             velec            = _mm_mul_ps(qq00,velec);
601
602             d                = _mm_sub_ps(r00,rswitch);
603             d                = _mm_max_ps(d,_mm_setzero_ps());
604             d2               = _mm_mul_ps(d,d);
605             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
606
607             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
608
609             /* Evaluate switch function */
610             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
611             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
612             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
613
614             fscal            = felec;
615
616             fscal            = _mm_and_ps(fscal,cutoff_mask);
617
618              /* Update vectorial force */
619             fix0             = _mm_macc_ps(dx00,fscal,fix0);
620             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
621             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
622
623             fjptrA             = f+j_coord_offsetA;
624             fjptrB             = f+j_coord_offsetB;
625             fjptrC             = f+j_coord_offsetC;
626             fjptrD             = f+j_coord_offsetD;
627             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
628                                                    _mm_mul_ps(dx00,fscal),
629                                                    _mm_mul_ps(dy00,fscal),
630                                                    _mm_mul_ps(dz00,fscal));
631
632             }
633
634             /* Inner loop uses 50 flops */
635         }
636
637         if(jidx<j_index_end)
638         {
639
640             /* Get j neighbor index, and coordinate index */
641             jnrlistA         = jjnr[jidx];
642             jnrlistB         = jjnr[jidx+1];
643             jnrlistC         = jjnr[jidx+2];
644             jnrlistD         = jjnr[jidx+3];
645             /* Sign of each element will be negative for non-real atoms.
646              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
647              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
648              */
649             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
650             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
651             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
652             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
653             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
654             j_coord_offsetA  = DIM*jnrA;
655             j_coord_offsetB  = DIM*jnrB;
656             j_coord_offsetC  = DIM*jnrC;
657             j_coord_offsetD  = DIM*jnrD;
658
659             /* load j atom coordinates */
660             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
661                                               x+j_coord_offsetC,x+j_coord_offsetD,
662                                               &jx0,&jy0,&jz0);
663
664             /* Calculate displacement vector */
665             dx00             = _mm_sub_ps(ix0,jx0);
666             dy00             = _mm_sub_ps(iy0,jy0);
667             dz00             = _mm_sub_ps(iz0,jz0);
668
669             /* Calculate squared distance and things based on it */
670             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
671
672             rinv00           = gmx_mm_invsqrt_ps(rsq00);
673
674             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
675
676             /* Load parameters for j particles */
677             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
678                                                               charge+jnrC+0,charge+jnrD+0);
679
680             /**************************
681              * CALCULATE INTERACTIONS *
682              **************************/
683
684             if (gmx_mm_any_lt(rsq00,rcutoff2))
685             {
686
687             r00              = _mm_mul_ps(rsq00,rinv00);
688             r00              = _mm_andnot_ps(dummy_mask,r00);
689
690             /* Compute parameters for interactions between i and j atoms */
691             qq00             = _mm_mul_ps(iq0,jq0);
692
693             /* EWALD ELECTROSTATICS */
694
695             /* Analytical PME correction */
696             zeta2            = _mm_mul_ps(beta2,rsq00);
697             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
698             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
699             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
700             felec            = _mm_mul_ps(qq00,felec);
701             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
702             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
703             velec            = _mm_mul_ps(qq00,velec);
704
705             d                = _mm_sub_ps(r00,rswitch);
706             d                = _mm_max_ps(d,_mm_setzero_ps());
707             d2               = _mm_mul_ps(d,d);
708             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
709
710             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
711
712             /* Evaluate switch function */
713             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
714             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
715             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
716
717             fscal            = felec;
718
719             fscal            = _mm_and_ps(fscal,cutoff_mask);
720
721             fscal            = _mm_andnot_ps(dummy_mask,fscal);
722
723              /* Update vectorial force */
724             fix0             = _mm_macc_ps(dx00,fscal,fix0);
725             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
726             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
727
728             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
729             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
730             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
731             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
732             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
733                                                    _mm_mul_ps(dx00,fscal),
734                                                    _mm_mul_ps(dy00,fscal),
735                                                    _mm_mul_ps(dz00,fscal));
736
737             }
738
739             /* Inner loop uses 51 flops */
740         }
741
742         /* End of innermost loop */
743
744         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
745                                               f+i_coord_offset,fshift+i_shift_offset);
746
747         /* Increment number of inner iterations */
748         inneriter                  += j_index_end - j_index_start;
749
750         /* Outer loop uses 7 flops */
751     }
752
753     /* Increment number of outer iterations */
754     outeriter        += nri;
755
756     /* Update outer/inner flops */
757
758     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*51);
759 }