116cd44e7d0e9424b8d48b2194ef259519e2daeb
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          ewitab;
77     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
78     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
79     real             *ewtab;
80     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
81     real             rswitch_scalar,d_scalar;
82     __m128           dummy_mask,cutoff_mask;
83     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
84     __m128           one     = _mm_set1_ps(1.0);
85     __m128           two     = _mm_set1_ps(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_ps(fr->epsfac);
98     charge           = mdatoms->chargeA;
99
100     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
101     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
102     beta2            = _mm_mul_ps(beta,beta);
103     beta3            = _mm_mul_ps(beta,beta2);
104     ewtab            = fr->ic->tabq_coul_FDV0;
105     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
106     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
107
108     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
109     rcutoff_scalar   = fr->rcoulomb;
110     rcutoff          = _mm_set1_ps(rcutoff_scalar);
111     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
112
113     rswitch_scalar   = fr->rcoulomb_switch;
114     rswitch          = _mm_set1_ps(rswitch_scalar);
115     /* Setup switch parameters */
116     d_scalar         = rcutoff_scalar-rswitch_scalar;
117     d                = _mm_set1_ps(d_scalar);
118     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
119     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
120     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
121     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
122     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
123     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     for(iidx=0;iidx<4*DIM;iidx++)
136     {
137         scratch[iidx] = 0.0;
138     }
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156
157         fix0             = _mm_setzero_ps();
158         fiy0             = _mm_setzero_ps();
159         fiz0             = _mm_setzero_ps();
160
161         /* Load parameters for i particles */
162         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_ps();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178             j_coord_offsetC  = DIM*jnrC;
179             j_coord_offsetD  = DIM*jnrD;
180
181             /* load j atom coordinates */
182             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               x+j_coord_offsetC,x+j_coord_offsetD,
184                                               &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm_sub_ps(ix0,jx0);
188             dy00             = _mm_sub_ps(iy0,jy0);
189             dz00             = _mm_sub_ps(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
193
194             rinv00           = gmx_mm_invsqrt_ps(rsq00);
195
196             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
197
198             /* Load parameters for j particles */
199             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
200                                                               charge+jnrC+0,charge+jnrD+0);
201
202             /**************************
203              * CALCULATE INTERACTIONS *
204              **************************/
205
206             if (gmx_mm_any_lt(rsq00,rcutoff2))
207             {
208
209             r00              = _mm_mul_ps(rsq00,rinv00);
210
211             /* Compute parameters for interactions between i and j atoms */
212             qq00             = _mm_mul_ps(iq0,jq0);
213
214             /* EWALD ELECTROSTATICS */
215
216             /* Analytical PME correction */
217             zeta2            = _mm_mul_ps(beta2,rsq00);
218             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
219             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
220             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
221             felec            = _mm_mul_ps(qq00,felec);
222             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
223             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
224             velec            = _mm_mul_ps(qq00,velec);
225
226             d                = _mm_sub_ps(r00,rswitch);
227             d                = _mm_max_ps(d,_mm_setzero_ps());
228             d2               = _mm_mul_ps(d,d);
229             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
230
231             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
232
233             /* Evaluate switch function */
234             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
235             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
236             velec            = _mm_mul_ps(velec,sw);
237             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
238
239             /* Update potential sum for this i atom from the interaction with this j atom. */
240             velec            = _mm_and_ps(velec,cutoff_mask);
241             velecsum         = _mm_add_ps(velecsum,velec);
242
243             fscal            = felec;
244
245             fscal            = _mm_and_ps(fscal,cutoff_mask);
246
247              /* Update vectorial force */
248             fix0             = _mm_macc_ps(dx00,fscal,fix0);
249             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
250             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
251
252             fjptrA             = f+j_coord_offsetA;
253             fjptrB             = f+j_coord_offsetB;
254             fjptrC             = f+j_coord_offsetC;
255             fjptrD             = f+j_coord_offsetD;
256             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
257                                                    _mm_mul_ps(dx00,fscal),
258                                                    _mm_mul_ps(dy00,fscal),
259                                                    _mm_mul_ps(dz00,fscal));
260
261             }
262
263             /* Inner loop uses 53 flops */
264         }
265
266         if(jidx<j_index_end)
267         {
268
269             /* Get j neighbor index, and coordinate index */
270             jnrlistA         = jjnr[jidx];
271             jnrlistB         = jjnr[jidx+1];
272             jnrlistC         = jjnr[jidx+2];
273             jnrlistD         = jjnr[jidx+3];
274             /* Sign of each element will be negative for non-real atoms.
275              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
276              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
277              */
278             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
279             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
280             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
281             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
282             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
283             j_coord_offsetA  = DIM*jnrA;
284             j_coord_offsetB  = DIM*jnrB;
285             j_coord_offsetC  = DIM*jnrC;
286             j_coord_offsetD  = DIM*jnrD;
287
288             /* load j atom coordinates */
289             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
290                                               x+j_coord_offsetC,x+j_coord_offsetD,
291                                               &jx0,&jy0,&jz0);
292
293             /* Calculate displacement vector */
294             dx00             = _mm_sub_ps(ix0,jx0);
295             dy00             = _mm_sub_ps(iy0,jy0);
296             dz00             = _mm_sub_ps(iz0,jz0);
297
298             /* Calculate squared distance and things based on it */
299             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
300
301             rinv00           = gmx_mm_invsqrt_ps(rsq00);
302
303             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
304
305             /* Load parameters for j particles */
306             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
307                                                               charge+jnrC+0,charge+jnrD+0);
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             if (gmx_mm_any_lt(rsq00,rcutoff2))
314             {
315
316             r00              = _mm_mul_ps(rsq00,rinv00);
317             r00              = _mm_andnot_ps(dummy_mask,r00);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq00             = _mm_mul_ps(iq0,jq0);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Analytical PME correction */
325             zeta2            = _mm_mul_ps(beta2,rsq00);
326             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
327             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
328             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
329             felec            = _mm_mul_ps(qq00,felec);
330             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
331             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
332             velec            = _mm_mul_ps(qq00,velec);
333
334             d                = _mm_sub_ps(r00,rswitch);
335             d                = _mm_max_ps(d,_mm_setzero_ps());
336             d2               = _mm_mul_ps(d,d);
337             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
338
339             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
340
341             /* Evaluate switch function */
342             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
343             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
344             velec            = _mm_mul_ps(velec,sw);
345             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velec            = _mm_and_ps(velec,cutoff_mask);
349             velec            = _mm_andnot_ps(dummy_mask,velec);
350             velecsum         = _mm_add_ps(velecsum,velec);
351
352             fscal            = felec;
353
354             fscal            = _mm_and_ps(fscal,cutoff_mask);
355
356             fscal            = _mm_andnot_ps(dummy_mask,fscal);
357
358              /* Update vectorial force */
359             fix0             = _mm_macc_ps(dx00,fscal,fix0);
360             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
361             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
362
363             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
364             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
365             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
366             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
367             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
368                                                    _mm_mul_ps(dx00,fscal),
369                                                    _mm_mul_ps(dy00,fscal),
370                                                    _mm_mul_ps(dz00,fscal));
371
372             }
373
374             /* Inner loop uses 54 flops */
375         }
376
377         /* End of innermost loop */
378
379         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
380                                               f+i_coord_offset,fshift+i_shift_offset);
381
382         ggid                        = gid[iidx];
383         /* Update potential energies */
384         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
385
386         /* Increment number of inner iterations */
387         inneriter                  += j_index_end - j_index_start;
388
389         /* Outer loop uses 8 flops */
390     }
391
392     /* Increment number of outer iterations */
393     outeriter        += nri;
394
395     /* Update outer/inner flops */
396
397     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*54);
398 }
399 /*
400  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_single
401  * Electrostatics interaction: Ewald
402  * VdW interaction:            None
403  * Geometry:                   Particle-Particle
404  * Calculate force/pot:        Force
405  */
406 void
407 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_single
408                     (t_nblist * gmx_restrict                nlist,
409                      rvec * gmx_restrict                    xx,
410                      rvec * gmx_restrict                    ff,
411                      t_forcerec * gmx_restrict              fr,
412                      t_mdatoms * gmx_restrict               mdatoms,
413                      nb_kernel_data_t * gmx_restrict        kernel_data,
414                      t_nrnb * gmx_restrict                  nrnb)
415 {
416     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
417      * just 0 for non-waters.
418      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
419      * jnr indices corresponding to data put in the four positions in the SIMD register.
420      */
421     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
422     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
423     int              jnrA,jnrB,jnrC,jnrD;
424     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
425     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
426     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
427     real             rcutoff_scalar;
428     real             *shiftvec,*fshift,*x,*f;
429     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
430     real             scratch[4*DIM];
431     __m128           fscal,rcutoff,rcutoff2,jidxall;
432     int              vdwioffset0;
433     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
434     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
435     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
436     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
437     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
438     real             *charge;
439     __m128i          ewitab;
440     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
441     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
442     real             *ewtab;
443     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
444     real             rswitch_scalar,d_scalar;
445     __m128           dummy_mask,cutoff_mask;
446     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
447     __m128           one     = _mm_set1_ps(1.0);
448     __m128           two     = _mm_set1_ps(2.0);
449     x                = xx[0];
450     f                = ff[0];
451
452     nri              = nlist->nri;
453     iinr             = nlist->iinr;
454     jindex           = nlist->jindex;
455     jjnr             = nlist->jjnr;
456     shiftidx         = nlist->shift;
457     gid              = nlist->gid;
458     shiftvec         = fr->shift_vec[0];
459     fshift           = fr->fshift[0];
460     facel            = _mm_set1_ps(fr->epsfac);
461     charge           = mdatoms->chargeA;
462
463     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
464     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
465     beta2            = _mm_mul_ps(beta,beta);
466     beta3            = _mm_mul_ps(beta,beta2);
467     ewtab            = fr->ic->tabq_coul_FDV0;
468     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
469     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
470
471     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
472     rcutoff_scalar   = fr->rcoulomb;
473     rcutoff          = _mm_set1_ps(rcutoff_scalar);
474     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
475
476     rswitch_scalar   = fr->rcoulomb_switch;
477     rswitch          = _mm_set1_ps(rswitch_scalar);
478     /* Setup switch parameters */
479     d_scalar         = rcutoff_scalar-rswitch_scalar;
480     d                = _mm_set1_ps(d_scalar);
481     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
482     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
483     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
484     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
485     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
486     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
487
488     /* Avoid stupid compiler warnings */
489     jnrA = jnrB = jnrC = jnrD = 0;
490     j_coord_offsetA = 0;
491     j_coord_offsetB = 0;
492     j_coord_offsetC = 0;
493     j_coord_offsetD = 0;
494
495     outeriter        = 0;
496     inneriter        = 0;
497
498     for(iidx=0;iidx<4*DIM;iidx++)
499     {
500         scratch[iidx] = 0.0;
501     }
502
503     /* Start outer loop over neighborlists */
504     for(iidx=0; iidx<nri; iidx++)
505     {
506         /* Load shift vector for this list */
507         i_shift_offset   = DIM*shiftidx[iidx];
508
509         /* Load limits for loop over neighbors */
510         j_index_start    = jindex[iidx];
511         j_index_end      = jindex[iidx+1];
512
513         /* Get outer coordinate index */
514         inr              = iinr[iidx];
515         i_coord_offset   = DIM*inr;
516
517         /* Load i particle coords and add shift vector */
518         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
519
520         fix0             = _mm_setzero_ps();
521         fiy0             = _mm_setzero_ps();
522         fiz0             = _mm_setzero_ps();
523
524         /* Load parameters for i particles */
525         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
526
527         /* Start inner kernel loop */
528         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
529         {
530
531             /* Get j neighbor index, and coordinate index */
532             jnrA             = jjnr[jidx];
533             jnrB             = jjnr[jidx+1];
534             jnrC             = jjnr[jidx+2];
535             jnrD             = jjnr[jidx+3];
536             j_coord_offsetA  = DIM*jnrA;
537             j_coord_offsetB  = DIM*jnrB;
538             j_coord_offsetC  = DIM*jnrC;
539             j_coord_offsetD  = DIM*jnrD;
540
541             /* load j atom coordinates */
542             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
543                                               x+j_coord_offsetC,x+j_coord_offsetD,
544                                               &jx0,&jy0,&jz0);
545
546             /* Calculate displacement vector */
547             dx00             = _mm_sub_ps(ix0,jx0);
548             dy00             = _mm_sub_ps(iy0,jy0);
549             dz00             = _mm_sub_ps(iz0,jz0);
550
551             /* Calculate squared distance and things based on it */
552             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
553
554             rinv00           = gmx_mm_invsqrt_ps(rsq00);
555
556             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
557
558             /* Load parameters for j particles */
559             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
560                                                               charge+jnrC+0,charge+jnrD+0);
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             if (gmx_mm_any_lt(rsq00,rcutoff2))
567             {
568
569             r00              = _mm_mul_ps(rsq00,rinv00);
570
571             /* Compute parameters for interactions between i and j atoms */
572             qq00             = _mm_mul_ps(iq0,jq0);
573
574             /* EWALD ELECTROSTATICS */
575
576             /* Analytical PME correction */
577             zeta2            = _mm_mul_ps(beta2,rsq00);
578             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
579             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
580             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
581             felec            = _mm_mul_ps(qq00,felec);
582             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
583             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
584             velec            = _mm_mul_ps(qq00,velec);
585
586             d                = _mm_sub_ps(r00,rswitch);
587             d                = _mm_max_ps(d,_mm_setzero_ps());
588             d2               = _mm_mul_ps(d,d);
589             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
590
591             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
592
593             /* Evaluate switch function */
594             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
595             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
596             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
597
598             fscal            = felec;
599
600             fscal            = _mm_and_ps(fscal,cutoff_mask);
601
602              /* Update vectorial force */
603             fix0             = _mm_macc_ps(dx00,fscal,fix0);
604             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
605             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
606
607             fjptrA             = f+j_coord_offsetA;
608             fjptrB             = f+j_coord_offsetB;
609             fjptrC             = f+j_coord_offsetC;
610             fjptrD             = f+j_coord_offsetD;
611             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
612                                                    _mm_mul_ps(dx00,fscal),
613                                                    _mm_mul_ps(dy00,fscal),
614                                                    _mm_mul_ps(dz00,fscal));
615
616             }
617
618             /* Inner loop uses 50 flops */
619         }
620
621         if(jidx<j_index_end)
622         {
623
624             /* Get j neighbor index, and coordinate index */
625             jnrlistA         = jjnr[jidx];
626             jnrlistB         = jjnr[jidx+1];
627             jnrlistC         = jjnr[jidx+2];
628             jnrlistD         = jjnr[jidx+3];
629             /* Sign of each element will be negative for non-real atoms.
630              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
631              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
632              */
633             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
634             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
635             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
636             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
637             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
638             j_coord_offsetA  = DIM*jnrA;
639             j_coord_offsetB  = DIM*jnrB;
640             j_coord_offsetC  = DIM*jnrC;
641             j_coord_offsetD  = DIM*jnrD;
642
643             /* load j atom coordinates */
644             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
645                                               x+j_coord_offsetC,x+j_coord_offsetD,
646                                               &jx0,&jy0,&jz0);
647
648             /* Calculate displacement vector */
649             dx00             = _mm_sub_ps(ix0,jx0);
650             dy00             = _mm_sub_ps(iy0,jy0);
651             dz00             = _mm_sub_ps(iz0,jz0);
652
653             /* Calculate squared distance and things based on it */
654             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
655
656             rinv00           = gmx_mm_invsqrt_ps(rsq00);
657
658             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
659
660             /* Load parameters for j particles */
661             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
662                                                               charge+jnrC+0,charge+jnrD+0);
663
664             /**************************
665              * CALCULATE INTERACTIONS *
666              **************************/
667
668             if (gmx_mm_any_lt(rsq00,rcutoff2))
669             {
670
671             r00              = _mm_mul_ps(rsq00,rinv00);
672             r00              = _mm_andnot_ps(dummy_mask,r00);
673
674             /* Compute parameters for interactions between i and j atoms */
675             qq00             = _mm_mul_ps(iq0,jq0);
676
677             /* EWALD ELECTROSTATICS */
678
679             /* Analytical PME correction */
680             zeta2            = _mm_mul_ps(beta2,rsq00);
681             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
682             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
683             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
684             felec            = _mm_mul_ps(qq00,felec);
685             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
686             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
687             velec            = _mm_mul_ps(qq00,velec);
688
689             d                = _mm_sub_ps(r00,rswitch);
690             d                = _mm_max_ps(d,_mm_setzero_ps());
691             d2               = _mm_mul_ps(d,d);
692             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
693
694             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
695
696             /* Evaluate switch function */
697             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
698             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
699             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
700
701             fscal            = felec;
702
703             fscal            = _mm_and_ps(fscal,cutoff_mask);
704
705             fscal            = _mm_andnot_ps(dummy_mask,fscal);
706
707              /* Update vectorial force */
708             fix0             = _mm_macc_ps(dx00,fscal,fix0);
709             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
710             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
711
712             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
713             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
714             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
715             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
716             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
717                                                    _mm_mul_ps(dx00,fscal),
718                                                    _mm_mul_ps(dy00,fscal),
719                                                    _mm_mul_ps(dz00,fscal));
720
721             }
722
723             /* Inner loop uses 51 flops */
724         }
725
726         /* End of innermost loop */
727
728         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
729                                               f+i_coord_offset,fshift+i_shift_offset);
730
731         /* Increment number of inner iterations */
732         inneriter                  += j_index_end - j_index_start;
733
734         /* Outer loop uses 7 flops */
735     }
736
737     /* Increment number of outer iterations */
738     outeriter        += nri;
739
740     /* Update outer/inner flops */
741
742     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*51);
743 }