9270b74d9386a4e015fb9ce97c1466eb0f11a899
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128i          ewitab;
108     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
109     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
110     real             *ewtab;
111     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
112     real             rswitch_scalar,d_scalar;
113     __m128           dummy_mask,cutoff_mask;
114     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
115     __m128           one     = _mm_set1_ps(1.0);
116     __m128           two     = _mm_set1_ps(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm_set1_ps(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
135     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
136     beta2            = _mm_mul_ps(beta,beta);
137     beta3            = _mm_mul_ps(beta,beta2);
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
145     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
146     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
147     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
150     rcutoff_scalar   = fr->rcoulomb;
151     rcutoff          = _mm_set1_ps(rcutoff_scalar);
152     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
153
154     rswitch_scalar   = fr->rcoulomb_switch;
155     rswitch          = _mm_set1_ps(rswitch_scalar);
156     /* Setup switch parameters */
157     d_scalar         = rcutoff_scalar-rswitch_scalar;
158     d                = _mm_set1_ps(d_scalar);
159     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
160     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
161     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
162     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
163     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
164     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
165
166     /* Avoid stupid compiler warnings */
167     jnrA = jnrB = jnrC = jnrD = 0;
168     j_coord_offsetA = 0;
169     j_coord_offsetB = 0;
170     j_coord_offsetC = 0;
171     j_coord_offsetD = 0;
172
173     outeriter        = 0;
174     inneriter        = 0;
175
176     for(iidx=0;iidx<4*DIM;iidx++)
177     {
178         scratch[iidx] = 0.0;
179     }
180
181     /* Start outer loop over neighborlists */
182     for(iidx=0; iidx<nri; iidx++)
183     {
184         /* Load shift vector for this list */
185         i_shift_offset   = DIM*shiftidx[iidx];
186
187         /* Load limits for loop over neighbors */
188         j_index_start    = jindex[iidx];
189         j_index_end      = jindex[iidx+1];
190
191         /* Get outer coordinate index */
192         inr              = iinr[iidx];
193         i_coord_offset   = DIM*inr;
194
195         /* Load i particle coords and add shift vector */
196         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
197                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
198
199         fix0             = _mm_setzero_ps();
200         fiy0             = _mm_setzero_ps();
201         fiz0             = _mm_setzero_ps();
202         fix1             = _mm_setzero_ps();
203         fiy1             = _mm_setzero_ps();
204         fiz1             = _mm_setzero_ps();
205         fix2             = _mm_setzero_ps();
206         fiy2             = _mm_setzero_ps();
207         fiz2             = _mm_setzero_ps();
208         fix3             = _mm_setzero_ps();
209         fiy3             = _mm_setzero_ps();
210         fiz3             = _mm_setzero_ps();
211
212         /* Reset potential sums */
213         velecsum         = _mm_setzero_ps();
214         vvdwsum          = _mm_setzero_ps();
215
216         /* Start inner kernel loop */
217         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
218         {
219
220             /* Get j neighbor index, and coordinate index */
221             jnrA             = jjnr[jidx];
222             jnrB             = jjnr[jidx+1];
223             jnrC             = jjnr[jidx+2];
224             jnrD             = jjnr[jidx+3];
225             j_coord_offsetA  = DIM*jnrA;
226             j_coord_offsetB  = DIM*jnrB;
227             j_coord_offsetC  = DIM*jnrC;
228             j_coord_offsetD  = DIM*jnrD;
229
230             /* load j atom coordinates */
231             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
232                                               x+j_coord_offsetC,x+j_coord_offsetD,
233                                               &jx0,&jy0,&jz0);
234
235             /* Calculate displacement vector */
236             dx00             = _mm_sub_ps(ix0,jx0);
237             dy00             = _mm_sub_ps(iy0,jy0);
238             dz00             = _mm_sub_ps(iz0,jz0);
239             dx10             = _mm_sub_ps(ix1,jx0);
240             dy10             = _mm_sub_ps(iy1,jy0);
241             dz10             = _mm_sub_ps(iz1,jz0);
242             dx20             = _mm_sub_ps(ix2,jx0);
243             dy20             = _mm_sub_ps(iy2,jy0);
244             dz20             = _mm_sub_ps(iz2,jz0);
245             dx30             = _mm_sub_ps(ix3,jx0);
246             dy30             = _mm_sub_ps(iy3,jy0);
247             dz30             = _mm_sub_ps(iz3,jz0);
248
249             /* Calculate squared distance and things based on it */
250             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
251             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
252             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
253             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
254
255             rinv00           = gmx_mm_invsqrt_ps(rsq00);
256             rinv10           = gmx_mm_invsqrt_ps(rsq10);
257             rinv20           = gmx_mm_invsqrt_ps(rsq20);
258             rinv30           = gmx_mm_invsqrt_ps(rsq30);
259
260             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
261             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
262             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
263             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
264
265             /* Load parameters for j particles */
266             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
267                                                               charge+jnrC+0,charge+jnrD+0);
268             vdwjidx0A        = 2*vdwtype[jnrA+0];
269             vdwjidx0B        = 2*vdwtype[jnrB+0];
270             vdwjidx0C        = 2*vdwtype[jnrC+0];
271             vdwjidx0D        = 2*vdwtype[jnrD+0];
272
273             fjx0             = _mm_setzero_ps();
274             fjy0             = _mm_setzero_ps();
275             fjz0             = _mm_setzero_ps();
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             if (gmx_mm_any_lt(rsq00,rcutoff2))
282             {
283
284             r00              = _mm_mul_ps(rsq00,rinv00);
285
286             /* Compute parameters for interactions between i and j atoms */
287             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
288                                          vdwparam+vdwioffset0+vdwjidx0B,
289                                          vdwparam+vdwioffset0+vdwjidx0C,
290                                          vdwparam+vdwioffset0+vdwjidx0D,
291                                          &c6_00,&c12_00);
292
293             /* LENNARD-JONES DISPERSION/REPULSION */
294
295             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
296             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
297             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
298             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
299             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
300
301             d                = _mm_sub_ps(r00,rswitch);
302             d                = _mm_max_ps(d,_mm_setzero_ps());
303             d2               = _mm_mul_ps(d,d);
304             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
305
306             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
307
308             /* Evaluate switch function */
309             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
310             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
311             vvdw             = _mm_mul_ps(vvdw,sw);
312             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
316             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
317
318             fscal            = fvdw;
319
320             fscal            = _mm_and_ps(fscal,cutoff_mask);
321
322              /* Update vectorial force */
323             fix0             = _mm_macc_ps(dx00,fscal,fix0);
324             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
325             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
326
327             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
328             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
329             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
330
331             }
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             if (gmx_mm_any_lt(rsq10,rcutoff2))
338             {
339
340             r10              = _mm_mul_ps(rsq10,rinv10);
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq10             = _mm_mul_ps(iq1,jq0);
344
345             /* EWALD ELECTROSTATICS */
346
347             /* Analytical PME correction */
348             zeta2            = _mm_mul_ps(beta2,rsq10);
349             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
350             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
351             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
352             felec            = _mm_mul_ps(qq10,felec);
353             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
354             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
355             velec            = _mm_mul_ps(qq10,velec);
356
357             d                = _mm_sub_ps(r10,rswitch);
358             d                = _mm_max_ps(d,_mm_setzero_ps());
359             d2               = _mm_mul_ps(d,d);
360             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
361
362             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
363
364             /* Evaluate switch function */
365             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
366             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
367             velec            = _mm_mul_ps(velec,sw);
368             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velec            = _mm_and_ps(velec,cutoff_mask);
372             velecsum         = _mm_add_ps(velecsum,velec);
373
374             fscal            = felec;
375
376             fscal            = _mm_and_ps(fscal,cutoff_mask);
377
378              /* Update vectorial force */
379             fix1             = _mm_macc_ps(dx10,fscal,fix1);
380             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
381             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
382
383             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
384             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
385             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
386
387             }
388
389             /**************************
390              * CALCULATE INTERACTIONS *
391              **************************/
392
393             if (gmx_mm_any_lt(rsq20,rcutoff2))
394             {
395
396             r20              = _mm_mul_ps(rsq20,rinv20);
397
398             /* Compute parameters for interactions between i and j atoms */
399             qq20             = _mm_mul_ps(iq2,jq0);
400
401             /* EWALD ELECTROSTATICS */
402
403             /* Analytical PME correction */
404             zeta2            = _mm_mul_ps(beta2,rsq20);
405             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
406             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
407             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
408             felec            = _mm_mul_ps(qq20,felec);
409             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
410             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
411             velec            = _mm_mul_ps(qq20,velec);
412
413             d                = _mm_sub_ps(r20,rswitch);
414             d                = _mm_max_ps(d,_mm_setzero_ps());
415             d2               = _mm_mul_ps(d,d);
416             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
417
418             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
419
420             /* Evaluate switch function */
421             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
422             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
423             velec            = _mm_mul_ps(velec,sw);
424             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
425
426             /* Update potential sum for this i atom from the interaction with this j atom. */
427             velec            = _mm_and_ps(velec,cutoff_mask);
428             velecsum         = _mm_add_ps(velecsum,velec);
429
430             fscal            = felec;
431
432             fscal            = _mm_and_ps(fscal,cutoff_mask);
433
434              /* Update vectorial force */
435             fix2             = _mm_macc_ps(dx20,fscal,fix2);
436             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
437             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
438
439             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
440             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
441             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
442
443             }
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             if (gmx_mm_any_lt(rsq30,rcutoff2))
450             {
451
452             r30              = _mm_mul_ps(rsq30,rinv30);
453
454             /* Compute parameters for interactions between i and j atoms */
455             qq30             = _mm_mul_ps(iq3,jq0);
456
457             /* EWALD ELECTROSTATICS */
458
459             /* Analytical PME correction */
460             zeta2            = _mm_mul_ps(beta2,rsq30);
461             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
462             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
463             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
464             felec            = _mm_mul_ps(qq30,felec);
465             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
466             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
467             velec            = _mm_mul_ps(qq30,velec);
468
469             d                = _mm_sub_ps(r30,rswitch);
470             d                = _mm_max_ps(d,_mm_setzero_ps());
471             d2               = _mm_mul_ps(d,d);
472             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
473
474             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
475
476             /* Evaluate switch function */
477             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
478             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
479             velec            = _mm_mul_ps(velec,sw);
480             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
481
482             /* Update potential sum for this i atom from the interaction with this j atom. */
483             velec            = _mm_and_ps(velec,cutoff_mask);
484             velecsum         = _mm_add_ps(velecsum,velec);
485
486             fscal            = felec;
487
488             fscal            = _mm_and_ps(fscal,cutoff_mask);
489
490              /* Update vectorial force */
491             fix3             = _mm_macc_ps(dx30,fscal,fix3);
492             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
493             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
494
495             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
496             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
497             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
498
499             }
500
501             fjptrA             = f+j_coord_offsetA;
502             fjptrB             = f+j_coord_offsetB;
503             fjptrC             = f+j_coord_offsetC;
504             fjptrD             = f+j_coord_offsetD;
505
506             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
507
508             /* Inner loop uses 221 flops */
509         }
510
511         if(jidx<j_index_end)
512         {
513
514             /* Get j neighbor index, and coordinate index */
515             jnrlistA         = jjnr[jidx];
516             jnrlistB         = jjnr[jidx+1];
517             jnrlistC         = jjnr[jidx+2];
518             jnrlistD         = jjnr[jidx+3];
519             /* Sign of each element will be negative for non-real atoms.
520              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
521              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
522              */
523             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
524             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
525             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
526             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
527             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
528             j_coord_offsetA  = DIM*jnrA;
529             j_coord_offsetB  = DIM*jnrB;
530             j_coord_offsetC  = DIM*jnrC;
531             j_coord_offsetD  = DIM*jnrD;
532
533             /* load j atom coordinates */
534             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
535                                               x+j_coord_offsetC,x+j_coord_offsetD,
536                                               &jx0,&jy0,&jz0);
537
538             /* Calculate displacement vector */
539             dx00             = _mm_sub_ps(ix0,jx0);
540             dy00             = _mm_sub_ps(iy0,jy0);
541             dz00             = _mm_sub_ps(iz0,jz0);
542             dx10             = _mm_sub_ps(ix1,jx0);
543             dy10             = _mm_sub_ps(iy1,jy0);
544             dz10             = _mm_sub_ps(iz1,jz0);
545             dx20             = _mm_sub_ps(ix2,jx0);
546             dy20             = _mm_sub_ps(iy2,jy0);
547             dz20             = _mm_sub_ps(iz2,jz0);
548             dx30             = _mm_sub_ps(ix3,jx0);
549             dy30             = _mm_sub_ps(iy3,jy0);
550             dz30             = _mm_sub_ps(iz3,jz0);
551
552             /* Calculate squared distance and things based on it */
553             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
554             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
555             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
556             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
557
558             rinv00           = gmx_mm_invsqrt_ps(rsq00);
559             rinv10           = gmx_mm_invsqrt_ps(rsq10);
560             rinv20           = gmx_mm_invsqrt_ps(rsq20);
561             rinv30           = gmx_mm_invsqrt_ps(rsq30);
562
563             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
564             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
565             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
566             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
567
568             /* Load parameters for j particles */
569             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
570                                                               charge+jnrC+0,charge+jnrD+0);
571             vdwjidx0A        = 2*vdwtype[jnrA+0];
572             vdwjidx0B        = 2*vdwtype[jnrB+0];
573             vdwjidx0C        = 2*vdwtype[jnrC+0];
574             vdwjidx0D        = 2*vdwtype[jnrD+0];
575
576             fjx0             = _mm_setzero_ps();
577             fjy0             = _mm_setzero_ps();
578             fjz0             = _mm_setzero_ps();
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             if (gmx_mm_any_lt(rsq00,rcutoff2))
585             {
586
587             r00              = _mm_mul_ps(rsq00,rinv00);
588             r00              = _mm_andnot_ps(dummy_mask,r00);
589
590             /* Compute parameters for interactions between i and j atoms */
591             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
592                                          vdwparam+vdwioffset0+vdwjidx0B,
593                                          vdwparam+vdwioffset0+vdwjidx0C,
594                                          vdwparam+vdwioffset0+vdwjidx0D,
595                                          &c6_00,&c12_00);
596
597             /* LENNARD-JONES DISPERSION/REPULSION */
598
599             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
600             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
601             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
602             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
603             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
604
605             d                = _mm_sub_ps(r00,rswitch);
606             d                = _mm_max_ps(d,_mm_setzero_ps());
607             d2               = _mm_mul_ps(d,d);
608             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
609
610             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
611
612             /* Evaluate switch function */
613             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
614             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
615             vvdw             = _mm_mul_ps(vvdw,sw);
616             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
617
618             /* Update potential sum for this i atom from the interaction with this j atom. */
619             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
620             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
621             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
622
623             fscal            = fvdw;
624
625             fscal            = _mm_and_ps(fscal,cutoff_mask);
626
627             fscal            = _mm_andnot_ps(dummy_mask,fscal);
628
629              /* Update vectorial force */
630             fix0             = _mm_macc_ps(dx00,fscal,fix0);
631             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
632             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
633
634             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
635             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
636             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
637
638             }
639
640             /**************************
641              * CALCULATE INTERACTIONS *
642              **************************/
643
644             if (gmx_mm_any_lt(rsq10,rcutoff2))
645             {
646
647             r10              = _mm_mul_ps(rsq10,rinv10);
648             r10              = _mm_andnot_ps(dummy_mask,r10);
649
650             /* Compute parameters for interactions between i and j atoms */
651             qq10             = _mm_mul_ps(iq1,jq0);
652
653             /* EWALD ELECTROSTATICS */
654
655             /* Analytical PME correction */
656             zeta2            = _mm_mul_ps(beta2,rsq10);
657             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
658             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
659             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
660             felec            = _mm_mul_ps(qq10,felec);
661             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
662             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
663             velec            = _mm_mul_ps(qq10,velec);
664
665             d                = _mm_sub_ps(r10,rswitch);
666             d                = _mm_max_ps(d,_mm_setzero_ps());
667             d2               = _mm_mul_ps(d,d);
668             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
669
670             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
671
672             /* Evaluate switch function */
673             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
674             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
675             velec            = _mm_mul_ps(velec,sw);
676             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
677
678             /* Update potential sum for this i atom from the interaction with this j atom. */
679             velec            = _mm_and_ps(velec,cutoff_mask);
680             velec            = _mm_andnot_ps(dummy_mask,velec);
681             velecsum         = _mm_add_ps(velecsum,velec);
682
683             fscal            = felec;
684
685             fscal            = _mm_and_ps(fscal,cutoff_mask);
686
687             fscal            = _mm_andnot_ps(dummy_mask,fscal);
688
689              /* Update vectorial force */
690             fix1             = _mm_macc_ps(dx10,fscal,fix1);
691             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
692             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
693
694             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
695             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
696             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
697
698             }
699
700             /**************************
701              * CALCULATE INTERACTIONS *
702              **************************/
703
704             if (gmx_mm_any_lt(rsq20,rcutoff2))
705             {
706
707             r20              = _mm_mul_ps(rsq20,rinv20);
708             r20              = _mm_andnot_ps(dummy_mask,r20);
709
710             /* Compute parameters for interactions between i and j atoms */
711             qq20             = _mm_mul_ps(iq2,jq0);
712
713             /* EWALD ELECTROSTATICS */
714
715             /* Analytical PME correction */
716             zeta2            = _mm_mul_ps(beta2,rsq20);
717             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
718             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
719             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
720             felec            = _mm_mul_ps(qq20,felec);
721             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
722             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
723             velec            = _mm_mul_ps(qq20,velec);
724
725             d                = _mm_sub_ps(r20,rswitch);
726             d                = _mm_max_ps(d,_mm_setzero_ps());
727             d2               = _mm_mul_ps(d,d);
728             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
729
730             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
731
732             /* Evaluate switch function */
733             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
734             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
735             velec            = _mm_mul_ps(velec,sw);
736             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
737
738             /* Update potential sum for this i atom from the interaction with this j atom. */
739             velec            = _mm_and_ps(velec,cutoff_mask);
740             velec            = _mm_andnot_ps(dummy_mask,velec);
741             velecsum         = _mm_add_ps(velecsum,velec);
742
743             fscal            = felec;
744
745             fscal            = _mm_and_ps(fscal,cutoff_mask);
746
747             fscal            = _mm_andnot_ps(dummy_mask,fscal);
748
749              /* Update vectorial force */
750             fix2             = _mm_macc_ps(dx20,fscal,fix2);
751             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
752             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
753
754             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
755             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
756             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
757
758             }
759
760             /**************************
761              * CALCULATE INTERACTIONS *
762              **************************/
763
764             if (gmx_mm_any_lt(rsq30,rcutoff2))
765             {
766
767             r30              = _mm_mul_ps(rsq30,rinv30);
768             r30              = _mm_andnot_ps(dummy_mask,r30);
769
770             /* Compute parameters for interactions between i and j atoms */
771             qq30             = _mm_mul_ps(iq3,jq0);
772
773             /* EWALD ELECTROSTATICS */
774
775             /* Analytical PME correction */
776             zeta2            = _mm_mul_ps(beta2,rsq30);
777             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
778             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
779             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
780             felec            = _mm_mul_ps(qq30,felec);
781             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
782             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
783             velec            = _mm_mul_ps(qq30,velec);
784
785             d                = _mm_sub_ps(r30,rswitch);
786             d                = _mm_max_ps(d,_mm_setzero_ps());
787             d2               = _mm_mul_ps(d,d);
788             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
789
790             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
791
792             /* Evaluate switch function */
793             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
794             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
795             velec            = _mm_mul_ps(velec,sw);
796             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
797
798             /* Update potential sum for this i atom from the interaction with this j atom. */
799             velec            = _mm_and_ps(velec,cutoff_mask);
800             velec            = _mm_andnot_ps(dummy_mask,velec);
801             velecsum         = _mm_add_ps(velecsum,velec);
802
803             fscal            = felec;
804
805             fscal            = _mm_and_ps(fscal,cutoff_mask);
806
807             fscal            = _mm_andnot_ps(dummy_mask,fscal);
808
809              /* Update vectorial force */
810             fix3             = _mm_macc_ps(dx30,fscal,fix3);
811             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
812             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
813
814             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
815             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
816             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
817
818             }
819
820             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
821             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
822             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
823             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
824
825             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
826
827             /* Inner loop uses 225 flops */
828         }
829
830         /* End of innermost loop */
831
832         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
833                                               f+i_coord_offset,fshift+i_shift_offset);
834
835         ggid                        = gid[iidx];
836         /* Update potential energies */
837         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
838         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
839
840         /* Increment number of inner iterations */
841         inneriter                  += j_index_end - j_index_start;
842
843         /* Outer loop uses 26 flops */
844     }
845
846     /* Increment number of outer iterations */
847     outeriter        += nri;
848
849     /* Update outer/inner flops */
850
851     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*225);
852 }
853 /*
854  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_128_fma_single
855  * Electrostatics interaction: Ewald
856  * VdW interaction:            LennardJones
857  * Geometry:                   Water4-Particle
858  * Calculate force/pot:        Force
859  */
860 void
861 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_128_fma_single
862                     (t_nblist                    * gmx_restrict       nlist,
863                      rvec                        * gmx_restrict          xx,
864                      rvec                        * gmx_restrict          ff,
865                      t_forcerec                  * gmx_restrict          fr,
866                      t_mdatoms                   * gmx_restrict     mdatoms,
867                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
868                      t_nrnb                      * gmx_restrict        nrnb)
869 {
870     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
871      * just 0 for non-waters.
872      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
873      * jnr indices corresponding to data put in the four positions in the SIMD register.
874      */
875     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
876     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
877     int              jnrA,jnrB,jnrC,jnrD;
878     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
879     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
880     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
881     real             rcutoff_scalar;
882     real             *shiftvec,*fshift,*x,*f;
883     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
884     real             scratch[4*DIM];
885     __m128           fscal,rcutoff,rcutoff2,jidxall;
886     int              vdwioffset0;
887     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
888     int              vdwioffset1;
889     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
890     int              vdwioffset2;
891     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
892     int              vdwioffset3;
893     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
894     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
895     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
896     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
897     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
898     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
899     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
900     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
901     real             *charge;
902     int              nvdwtype;
903     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
904     int              *vdwtype;
905     real             *vdwparam;
906     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
907     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
908     __m128i          ewitab;
909     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
910     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
911     real             *ewtab;
912     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
913     real             rswitch_scalar,d_scalar;
914     __m128           dummy_mask,cutoff_mask;
915     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
916     __m128           one     = _mm_set1_ps(1.0);
917     __m128           two     = _mm_set1_ps(2.0);
918     x                = xx[0];
919     f                = ff[0];
920
921     nri              = nlist->nri;
922     iinr             = nlist->iinr;
923     jindex           = nlist->jindex;
924     jjnr             = nlist->jjnr;
925     shiftidx         = nlist->shift;
926     gid              = nlist->gid;
927     shiftvec         = fr->shift_vec[0];
928     fshift           = fr->fshift[0];
929     facel            = _mm_set1_ps(fr->epsfac);
930     charge           = mdatoms->chargeA;
931     nvdwtype         = fr->ntype;
932     vdwparam         = fr->nbfp;
933     vdwtype          = mdatoms->typeA;
934
935     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
936     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
937     beta2            = _mm_mul_ps(beta,beta);
938     beta3            = _mm_mul_ps(beta,beta2);
939     ewtab            = fr->ic->tabq_coul_FDV0;
940     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
941     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
942
943     /* Setup water-specific parameters */
944     inr              = nlist->iinr[0];
945     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
946     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
947     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
948     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
949
950     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
951     rcutoff_scalar   = fr->rcoulomb;
952     rcutoff          = _mm_set1_ps(rcutoff_scalar);
953     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
954
955     rswitch_scalar   = fr->rcoulomb_switch;
956     rswitch          = _mm_set1_ps(rswitch_scalar);
957     /* Setup switch parameters */
958     d_scalar         = rcutoff_scalar-rswitch_scalar;
959     d                = _mm_set1_ps(d_scalar);
960     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
961     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
962     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
963     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
964     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
965     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
966
967     /* Avoid stupid compiler warnings */
968     jnrA = jnrB = jnrC = jnrD = 0;
969     j_coord_offsetA = 0;
970     j_coord_offsetB = 0;
971     j_coord_offsetC = 0;
972     j_coord_offsetD = 0;
973
974     outeriter        = 0;
975     inneriter        = 0;
976
977     for(iidx=0;iidx<4*DIM;iidx++)
978     {
979         scratch[iidx] = 0.0;
980     }
981
982     /* Start outer loop over neighborlists */
983     for(iidx=0; iidx<nri; iidx++)
984     {
985         /* Load shift vector for this list */
986         i_shift_offset   = DIM*shiftidx[iidx];
987
988         /* Load limits for loop over neighbors */
989         j_index_start    = jindex[iidx];
990         j_index_end      = jindex[iidx+1];
991
992         /* Get outer coordinate index */
993         inr              = iinr[iidx];
994         i_coord_offset   = DIM*inr;
995
996         /* Load i particle coords and add shift vector */
997         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
998                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
999
1000         fix0             = _mm_setzero_ps();
1001         fiy0             = _mm_setzero_ps();
1002         fiz0             = _mm_setzero_ps();
1003         fix1             = _mm_setzero_ps();
1004         fiy1             = _mm_setzero_ps();
1005         fiz1             = _mm_setzero_ps();
1006         fix2             = _mm_setzero_ps();
1007         fiy2             = _mm_setzero_ps();
1008         fiz2             = _mm_setzero_ps();
1009         fix3             = _mm_setzero_ps();
1010         fiy3             = _mm_setzero_ps();
1011         fiz3             = _mm_setzero_ps();
1012
1013         /* Start inner kernel loop */
1014         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1015         {
1016
1017             /* Get j neighbor index, and coordinate index */
1018             jnrA             = jjnr[jidx];
1019             jnrB             = jjnr[jidx+1];
1020             jnrC             = jjnr[jidx+2];
1021             jnrD             = jjnr[jidx+3];
1022             j_coord_offsetA  = DIM*jnrA;
1023             j_coord_offsetB  = DIM*jnrB;
1024             j_coord_offsetC  = DIM*jnrC;
1025             j_coord_offsetD  = DIM*jnrD;
1026
1027             /* load j atom coordinates */
1028             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1029                                               x+j_coord_offsetC,x+j_coord_offsetD,
1030                                               &jx0,&jy0,&jz0);
1031
1032             /* Calculate displacement vector */
1033             dx00             = _mm_sub_ps(ix0,jx0);
1034             dy00             = _mm_sub_ps(iy0,jy0);
1035             dz00             = _mm_sub_ps(iz0,jz0);
1036             dx10             = _mm_sub_ps(ix1,jx0);
1037             dy10             = _mm_sub_ps(iy1,jy0);
1038             dz10             = _mm_sub_ps(iz1,jz0);
1039             dx20             = _mm_sub_ps(ix2,jx0);
1040             dy20             = _mm_sub_ps(iy2,jy0);
1041             dz20             = _mm_sub_ps(iz2,jz0);
1042             dx30             = _mm_sub_ps(ix3,jx0);
1043             dy30             = _mm_sub_ps(iy3,jy0);
1044             dz30             = _mm_sub_ps(iz3,jz0);
1045
1046             /* Calculate squared distance and things based on it */
1047             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1048             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1049             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1050             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1051
1052             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1053             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1054             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1055             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1056
1057             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1058             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1059             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1060             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1061
1062             /* Load parameters for j particles */
1063             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1064                                                               charge+jnrC+0,charge+jnrD+0);
1065             vdwjidx0A        = 2*vdwtype[jnrA+0];
1066             vdwjidx0B        = 2*vdwtype[jnrB+0];
1067             vdwjidx0C        = 2*vdwtype[jnrC+0];
1068             vdwjidx0D        = 2*vdwtype[jnrD+0];
1069
1070             fjx0             = _mm_setzero_ps();
1071             fjy0             = _mm_setzero_ps();
1072             fjz0             = _mm_setzero_ps();
1073
1074             /**************************
1075              * CALCULATE INTERACTIONS *
1076              **************************/
1077
1078             if (gmx_mm_any_lt(rsq00,rcutoff2))
1079             {
1080
1081             r00              = _mm_mul_ps(rsq00,rinv00);
1082
1083             /* Compute parameters for interactions between i and j atoms */
1084             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1085                                          vdwparam+vdwioffset0+vdwjidx0B,
1086                                          vdwparam+vdwioffset0+vdwjidx0C,
1087                                          vdwparam+vdwioffset0+vdwjidx0D,
1088                                          &c6_00,&c12_00);
1089
1090             /* LENNARD-JONES DISPERSION/REPULSION */
1091
1092             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1093             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1094             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1095             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
1096             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1097
1098             d                = _mm_sub_ps(r00,rswitch);
1099             d                = _mm_max_ps(d,_mm_setzero_ps());
1100             d2               = _mm_mul_ps(d,d);
1101             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1102
1103             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1104
1105             /* Evaluate switch function */
1106             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1107             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1108             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1109
1110             fscal            = fvdw;
1111
1112             fscal            = _mm_and_ps(fscal,cutoff_mask);
1113
1114              /* Update vectorial force */
1115             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1116             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1117             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1118
1119             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1120             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1121             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1122
1123             }
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             if (gmx_mm_any_lt(rsq10,rcutoff2))
1130             {
1131
1132             r10              = _mm_mul_ps(rsq10,rinv10);
1133
1134             /* Compute parameters for interactions between i and j atoms */
1135             qq10             = _mm_mul_ps(iq1,jq0);
1136
1137             /* EWALD ELECTROSTATICS */
1138
1139             /* Analytical PME correction */
1140             zeta2            = _mm_mul_ps(beta2,rsq10);
1141             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1142             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1143             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1144             felec            = _mm_mul_ps(qq10,felec);
1145             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1146             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
1147             velec            = _mm_mul_ps(qq10,velec);
1148
1149             d                = _mm_sub_ps(r10,rswitch);
1150             d                = _mm_max_ps(d,_mm_setzero_ps());
1151             d2               = _mm_mul_ps(d,d);
1152             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1153
1154             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1155
1156             /* Evaluate switch function */
1157             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1158             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1159             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1160
1161             fscal            = felec;
1162
1163             fscal            = _mm_and_ps(fscal,cutoff_mask);
1164
1165              /* Update vectorial force */
1166             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1167             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1168             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1169
1170             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1171             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1172             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1173
1174             }
1175
1176             /**************************
1177              * CALCULATE INTERACTIONS *
1178              **************************/
1179
1180             if (gmx_mm_any_lt(rsq20,rcutoff2))
1181             {
1182
1183             r20              = _mm_mul_ps(rsq20,rinv20);
1184
1185             /* Compute parameters for interactions between i and j atoms */
1186             qq20             = _mm_mul_ps(iq2,jq0);
1187
1188             /* EWALD ELECTROSTATICS */
1189
1190             /* Analytical PME correction */
1191             zeta2            = _mm_mul_ps(beta2,rsq20);
1192             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1193             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1194             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1195             felec            = _mm_mul_ps(qq20,felec);
1196             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1197             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
1198             velec            = _mm_mul_ps(qq20,velec);
1199
1200             d                = _mm_sub_ps(r20,rswitch);
1201             d                = _mm_max_ps(d,_mm_setzero_ps());
1202             d2               = _mm_mul_ps(d,d);
1203             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1204
1205             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1206
1207             /* Evaluate switch function */
1208             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1209             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1210             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1211
1212             fscal            = felec;
1213
1214             fscal            = _mm_and_ps(fscal,cutoff_mask);
1215
1216              /* Update vectorial force */
1217             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1218             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1219             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1220
1221             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1222             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1223             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1224
1225             }
1226
1227             /**************************
1228              * CALCULATE INTERACTIONS *
1229              **************************/
1230
1231             if (gmx_mm_any_lt(rsq30,rcutoff2))
1232             {
1233
1234             r30              = _mm_mul_ps(rsq30,rinv30);
1235
1236             /* Compute parameters for interactions between i and j atoms */
1237             qq30             = _mm_mul_ps(iq3,jq0);
1238
1239             /* EWALD ELECTROSTATICS */
1240
1241             /* Analytical PME correction */
1242             zeta2            = _mm_mul_ps(beta2,rsq30);
1243             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1244             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1245             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1246             felec            = _mm_mul_ps(qq30,felec);
1247             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1248             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
1249             velec            = _mm_mul_ps(qq30,velec);
1250
1251             d                = _mm_sub_ps(r30,rswitch);
1252             d                = _mm_max_ps(d,_mm_setzero_ps());
1253             d2               = _mm_mul_ps(d,d);
1254             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1255
1256             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1257
1258             /* Evaluate switch function */
1259             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1260             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1261             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1262
1263             fscal            = felec;
1264
1265             fscal            = _mm_and_ps(fscal,cutoff_mask);
1266
1267              /* Update vectorial force */
1268             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1269             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1270             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1271
1272             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1273             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1274             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1275
1276             }
1277
1278             fjptrA             = f+j_coord_offsetA;
1279             fjptrB             = f+j_coord_offsetB;
1280             fjptrC             = f+j_coord_offsetC;
1281             fjptrD             = f+j_coord_offsetD;
1282
1283             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1284
1285             /* Inner loop uses 209 flops */
1286         }
1287
1288         if(jidx<j_index_end)
1289         {
1290
1291             /* Get j neighbor index, and coordinate index */
1292             jnrlistA         = jjnr[jidx];
1293             jnrlistB         = jjnr[jidx+1];
1294             jnrlistC         = jjnr[jidx+2];
1295             jnrlistD         = jjnr[jidx+3];
1296             /* Sign of each element will be negative for non-real atoms.
1297              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1298              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1299              */
1300             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1301             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1302             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1303             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1304             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1305             j_coord_offsetA  = DIM*jnrA;
1306             j_coord_offsetB  = DIM*jnrB;
1307             j_coord_offsetC  = DIM*jnrC;
1308             j_coord_offsetD  = DIM*jnrD;
1309
1310             /* load j atom coordinates */
1311             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1312                                               x+j_coord_offsetC,x+j_coord_offsetD,
1313                                               &jx0,&jy0,&jz0);
1314
1315             /* Calculate displacement vector */
1316             dx00             = _mm_sub_ps(ix0,jx0);
1317             dy00             = _mm_sub_ps(iy0,jy0);
1318             dz00             = _mm_sub_ps(iz0,jz0);
1319             dx10             = _mm_sub_ps(ix1,jx0);
1320             dy10             = _mm_sub_ps(iy1,jy0);
1321             dz10             = _mm_sub_ps(iz1,jz0);
1322             dx20             = _mm_sub_ps(ix2,jx0);
1323             dy20             = _mm_sub_ps(iy2,jy0);
1324             dz20             = _mm_sub_ps(iz2,jz0);
1325             dx30             = _mm_sub_ps(ix3,jx0);
1326             dy30             = _mm_sub_ps(iy3,jy0);
1327             dz30             = _mm_sub_ps(iz3,jz0);
1328
1329             /* Calculate squared distance and things based on it */
1330             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1331             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1332             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1333             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1334
1335             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1336             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1337             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1338             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1339
1340             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1341             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1342             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1343             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1344
1345             /* Load parameters for j particles */
1346             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1347                                                               charge+jnrC+0,charge+jnrD+0);
1348             vdwjidx0A        = 2*vdwtype[jnrA+0];
1349             vdwjidx0B        = 2*vdwtype[jnrB+0];
1350             vdwjidx0C        = 2*vdwtype[jnrC+0];
1351             vdwjidx0D        = 2*vdwtype[jnrD+0];
1352
1353             fjx0             = _mm_setzero_ps();
1354             fjy0             = _mm_setzero_ps();
1355             fjz0             = _mm_setzero_ps();
1356
1357             /**************************
1358              * CALCULATE INTERACTIONS *
1359              **************************/
1360
1361             if (gmx_mm_any_lt(rsq00,rcutoff2))
1362             {
1363
1364             r00              = _mm_mul_ps(rsq00,rinv00);
1365             r00              = _mm_andnot_ps(dummy_mask,r00);
1366
1367             /* Compute parameters for interactions between i and j atoms */
1368             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1369                                          vdwparam+vdwioffset0+vdwjidx0B,
1370                                          vdwparam+vdwioffset0+vdwjidx0C,
1371                                          vdwparam+vdwioffset0+vdwjidx0D,
1372                                          &c6_00,&c12_00);
1373
1374             /* LENNARD-JONES DISPERSION/REPULSION */
1375
1376             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1377             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1378             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1379             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
1380             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1381
1382             d                = _mm_sub_ps(r00,rswitch);
1383             d                = _mm_max_ps(d,_mm_setzero_ps());
1384             d2               = _mm_mul_ps(d,d);
1385             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1386
1387             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1388
1389             /* Evaluate switch function */
1390             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1391             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1392             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1393
1394             fscal            = fvdw;
1395
1396             fscal            = _mm_and_ps(fscal,cutoff_mask);
1397
1398             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1399
1400              /* Update vectorial force */
1401             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1402             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1403             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1404
1405             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1406             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1407             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1408
1409             }
1410
1411             /**************************
1412              * CALCULATE INTERACTIONS *
1413              **************************/
1414
1415             if (gmx_mm_any_lt(rsq10,rcutoff2))
1416             {
1417
1418             r10              = _mm_mul_ps(rsq10,rinv10);
1419             r10              = _mm_andnot_ps(dummy_mask,r10);
1420
1421             /* Compute parameters for interactions between i and j atoms */
1422             qq10             = _mm_mul_ps(iq1,jq0);
1423
1424             /* EWALD ELECTROSTATICS */
1425
1426             /* Analytical PME correction */
1427             zeta2            = _mm_mul_ps(beta2,rsq10);
1428             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1429             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1430             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1431             felec            = _mm_mul_ps(qq10,felec);
1432             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1433             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
1434             velec            = _mm_mul_ps(qq10,velec);
1435
1436             d                = _mm_sub_ps(r10,rswitch);
1437             d                = _mm_max_ps(d,_mm_setzero_ps());
1438             d2               = _mm_mul_ps(d,d);
1439             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1440
1441             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1442
1443             /* Evaluate switch function */
1444             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1445             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1446             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1447
1448             fscal            = felec;
1449
1450             fscal            = _mm_and_ps(fscal,cutoff_mask);
1451
1452             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1453
1454              /* Update vectorial force */
1455             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1456             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1457             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1458
1459             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1460             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1461             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1462
1463             }
1464
1465             /**************************
1466              * CALCULATE INTERACTIONS *
1467              **************************/
1468
1469             if (gmx_mm_any_lt(rsq20,rcutoff2))
1470             {
1471
1472             r20              = _mm_mul_ps(rsq20,rinv20);
1473             r20              = _mm_andnot_ps(dummy_mask,r20);
1474
1475             /* Compute parameters for interactions between i and j atoms */
1476             qq20             = _mm_mul_ps(iq2,jq0);
1477
1478             /* EWALD ELECTROSTATICS */
1479
1480             /* Analytical PME correction */
1481             zeta2            = _mm_mul_ps(beta2,rsq20);
1482             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1483             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1484             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1485             felec            = _mm_mul_ps(qq20,felec);
1486             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1487             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
1488             velec            = _mm_mul_ps(qq20,velec);
1489
1490             d                = _mm_sub_ps(r20,rswitch);
1491             d                = _mm_max_ps(d,_mm_setzero_ps());
1492             d2               = _mm_mul_ps(d,d);
1493             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1494
1495             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1496
1497             /* Evaluate switch function */
1498             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1499             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1500             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1501
1502             fscal            = felec;
1503
1504             fscal            = _mm_and_ps(fscal,cutoff_mask);
1505
1506             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1507
1508              /* Update vectorial force */
1509             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1510             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1511             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1512
1513             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1514             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1515             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1516
1517             }
1518
1519             /**************************
1520              * CALCULATE INTERACTIONS *
1521              **************************/
1522
1523             if (gmx_mm_any_lt(rsq30,rcutoff2))
1524             {
1525
1526             r30              = _mm_mul_ps(rsq30,rinv30);
1527             r30              = _mm_andnot_ps(dummy_mask,r30);
1528
1529             /* Compute parameters for interactions between i and j atoms */
1530             qq30             = _mm_mul_ps(iq3,jq0);
1531
1532             /* EWALD ELECTROSTATICS */
1533
1534             /* Analytical PME correction */
1535             zeta2            = _mm_mul_ps(beta2,rsq30);
1536             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1537             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1538             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1539             felec            = _mm_mul_ps(qq30,felec);
1540             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1541             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
1542             velec            = _mm_mul_ps(qq30,velec);
1543
1544             d                = _mm_sub_ps(r30,rswitch);
1545             d                = _mm_max_ps(d,_mm_setzero_ps());
1546             d2               = _mm_mul_ps(d,d);
1547             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1548
1549             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1550
1551             /* Evaluate switch function */
1552             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1553             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1554             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1555
1556             fscal            = felec;
1557
1558             fscal            = _mm_and_ps(fscal,cutoff_mask);
1559
1560             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1561
1562              /* Update vectorial force */
1563             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1564             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1565             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1566
1567             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1568             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1569             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1570
1571             }
1572
1573             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1574             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1575             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1576             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1577
1578             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1579
1580             /* Inner loop uses 213 flops */
1581         }
1582
1583         /* End of innermost loop */
1584
1585         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1586                                               f+i_coord_offset,fshift+i_shift_offset);
1587
1588         /* Increment number of inner iterations */
1589         inneriter                  += j_index_end - j_index_start;
1590
1591         /* Outer loop uses 24 flops */
1592     }
1593
1594     /* Increment number of outer iterations */
1595     outeriter        += nri;
1596
1597     /* Update outer/inner flops */
1598
1599     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*213);
1600 }