Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          ewitab;
105     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
107     real             *ewtab;
108     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
109     real             rswitch_scalar,d_scalar;
110     __m128           dummy_mask,cutoff_mask;
111     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
112     __m128           one     = _mm_set1_ps(1.0);
113     __m128           two     = _mm_set1_ps(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm_set1_ps(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
132     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
133     beta2            = _mm_mul_ps(beta,beta);
134     beta3            = _mm_mul_ps(beta,beta2);
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
137     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
142     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
143     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
144     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
147     rcutoff_scalar   = fr->rcoulomb;
148     rcutoff          = _mm_set1_ps(rcutoff_scalar);
149     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
150
151     rswitch_scalar   = fr->rcoulomb_switch;
152     rswitch          = _mm_set1_ps(rswitch_scalar);
153     /* Setup switch parameters */
154     d_scalar         = rcutoff_scalar-rswitch_scalar;
155     d                = _mm_set1_ps(d_scalar);
156     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
157     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
158     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
159     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
160     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
161     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
162
163     /* Avoid stupid compiler warnings */
164     jnrA = jnrB = jnrC = jnrD = 0;
165     j_coord_offsetA = 0;
166     j_coord_offsetB = 0;
167     j_coord_offsetC = 0;
168     j_coord_offsetD = 0;
169
170     outeriter        = 0;
171     inneriter        = 0;
172
173     for(iidx=0;iidx<4*DIM;iidx++)
174     {
175         scratch[iidx] = 0.0;
176     }
177
178     /* Start outer loop over neighborlists */
179     for(iidx=0; iidx<nri; iidx++)
180     {
181         /* Load shift vector for this list */
182         i_shift_offset   = DIM*shiftidx[iidx];
183
184         /* Load limits for loop over neighbors */
185         j_index_start    = jindex[iidx];
186         j_index_end      = jindex[iidx+1];
187
188         /* Get outer coordinate index */
189         inr              = iinr[iidx];
190         i_coord_offset   = DIM*inr;
191
192         /* Load i particle coords and add shift vector */
193         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
194                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
195
196         fix0             = _mm_setzero_ps();
197         fiy0             = _mm_setzero_ps();
198         fiz0             = _mm_setzero_ps();
199         fix1             = _mm_setzero_ps();
200         fiy1             = _mm_setzero_ps();
201         fiz1             = _mm_setzero_ps();
202         fix2             = _mm_setzero_ps();
203         fiy2             = _mm_setzero_ps();
204         fiz2             = _mm_setzero_ps();
205
206         /* Reset potential sums */
207         velecsum         = _mm_setzero_ps();
208         vvdwsum          = _mm_setzero_ps();
209
210         /* Start inner kernel loop */
211         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
212         {
213
214             /* Get j neighbor index, and coordinate index */
215             jnrA             = jjnr[jidx];
216             jnrB             = jjnr[jidx+1];
217             jnrC             = jjnr[jidx+2];
218             jnrD             = jjnr[jidx+3];
219             j_coord_offsetA  = DIM*jnrA;
220             j_coord_offsetB  = DIM*jnrB;
221             j_coord_offsetC  = DIM*jnrC;
222             j_coord_offsetD  = DIM*jnrD;
223
224             /* load j atom coordinates */
225             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
226                                               x+j_coord_offsetC,x+j_coord_offsetD,
227                                               &jx0,&jy0,&jz0);
228
229             /* Calculate displacement vector */
230             dx00             = _mm_sub_ps(ix0,jx0);
231             dy00             = _mm_sub_ps(iy0,jy0);
232             dz00             = _mm_sub_ps(iz0,jz0);
233             dx10             = _mm_sub_ps(ix1,jx0);
234             dy10             = _mm_sub_ps(iy1,jy0);
235             dz10             = _mm_sub_ps(iz1,jz0);
236             dx20             = _mm_sub_ps(ix2,jx0);
237             dy20             = _mm_sub_ps(iy2,jy0);
238             dz20             = _mm_sub_ps(iz2,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
242             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
243             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
244
245             rinv00           = gmx_mm_invsqrt_ps(rsq00);
246             rinv10           = gmx_mm_invsqrt_ps(rsq10);
247             rinv20           = gmx_mm_invsqrt_ps(rsq20);
248
249             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
250             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
251             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
252
253             /* Load parameters for j particles */
254             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
255                                                               charge+jnrC+0,charge+jnrD+0);
256             vdwjidx0A        = 2*vdwtype[jnrA+0];
257             vdwjidx0B        = 2*vdwtype[jnrB+0];
258             vdwjidx0C        = 2*vdwtype[jnrC+0];
259             vdwjidx0D        = 2*vdwtype[jnrD+0];
260
261             fjx0             = _mm_setzero_ps();
262             fjy0             = _mm_setzero_ps();
263             fjz0             = _mm_setzero_ps();
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             if (gmx_mm_any_lt(rsq00,rcutoff2))
270             {
271
272             r00              = _mm_mul_ps(rsq00,rinv00);
273
274             /* Compute parameters for interactions between i and j atoms */
275             qq00             = _mm_mul_ps(iq0,jq0);
276             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
277                                          vdwparam+vdwioffset0+vdwjidx0B,
278                                          vdwparam+vdwioffset0+vdwjidx0C,
279                                          vdwparam+vdwioffset0+vdwjidx0D,
280                                          &c6_00,&c12_00);
281
282             /* EWALD ELECTROSTATICS */
283
284             /* Analytical PME correction */
285             zeta2            = _mm_mul_ps(beta2,rsq00);
286             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
287             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
288             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
289             felec            = _mm_mul_ps(qq00,felec);
290             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
291             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
292             velec            = _mm_mul_ps(qq00,velec);
293
294             /* LENNARD-JONES DISPERSION/REPULSION */
295
296             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
297             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
298             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
299             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
300             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
301
302             d                = _mm_sub_ps(r00,rswitch);
303             d                = _mm_max_ps(d,_mm_setzero_ps());
304             d2               = _mm_mul_ps(d,d);
305             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
306
307             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
308
309             /* Evaluate switch function */
310             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
311             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
312             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
313             velec            = _mm_mul_ps(velec,sw);
314             vvdw             = _mm_mul_ps(vvdw,sw);
315             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velec            = _mm_and_ps(velec,cutoff_mask);
319             velecsum         = _mm_add_ps(velecsum,velec);
320             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
321             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
322
323             fscal            = _mm_add_ps(felec,fvdw);
324
325             fscal            = _mm_and_ps(fscal,cutoff_mask);
326
327              /* Update vectorial force */
328             fix0             = _mm_macc_ps(dx00,fscal,fix0);
329             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
330             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
331
332             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
333             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
334             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
335
336             }
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             if (gmx_mm_any_lt(rsq10,rcutoff2))
343             {
344
345             r10              = _mm_mul_ps(rsq10,rinv10);
346
347             /* Compute parameters for interactions between i and j atoms */
348             qq10             = _mm_mul_ps(iq1,jq0);
349
350             /* EWALD ELECTROSTATICS */
351
352             /* Analytical PME correction */
353             zeta2            = _mm_mul_ps(beta2,rsq10);
354             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
355             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
356             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
357             felec            = _mm_mul_ps(qq10,felec);
358             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
359             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
360             velec            = _mm_mul_ps(qq10,velec);
361
362             d                = _mm_sub_ps(r10,rswitch);
363             d                = _mm_max_ps(d,_mm_setzero_ps());
364             d2               = _mm_mul_ps(d,d);
365             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
366
367             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
368
369             /* Evaluate switch function */
370             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
371             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
372             velec            = _mm_mul_ps(velec,sw);
373             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
374
375             /* Update potential sum for this i atom from the interaction with this j atom. */
376             velec            = _mm_and_ps(velec,cutoff_mask);
377             velecsum         = _mm_add_ps(velecsum,velec);
378
379             fscal            = felec;
380
381             fscal            = _mm_and_ps(fscal,cutoff_mask);
382
383              /* Update vectorial force */
384             fix1             = _mm_macc_ps(dx10,fscal,fix1);
385             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
386             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
387
388             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
389             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
390             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
391
392             }
393
394             /**************************
395              * CALCULATE INTERACTIONS *
396              **************************/
397
398             if (gmx_mm_any_lt(rsq20,rcutoff2))
399             {
400
401             r20              = _mm_mul_ps(rsq20,rinv20);
402
403             /* Compute parameters for interactions between i and j atoms */
404             qq20             = _mm_mul_ps(iq2,jq0);
405
406             /* EWALD ELECTROSTATICS */
407
408             /* Analytical PME correction */
409             zeta2            = _mm_mul_ps(beta2,rsq20);
410             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
411             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
412             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
413             felec            = _mm_mul_ps(qq20,felec);
414             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
415             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
416             velec            = _mm_mul_ps(qq20,velec);
417
418             d                = _mm_sub_ps(r20,rswitch);
419             d                = _mm_max_ps(d,_mm_setzero_ps());
420             d2               = _mm_mul_ps(d,d);
421             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
422
423             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
424
425             /* Evaluate switch function */
426             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
427             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
428             velec            = _mm_mul_ps(velec,sw);
429             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
430
431             /* Update potential sum for this i atom from the interaction with this j atom. */
432             velec            = _mm_and_ps(velec,cutoff_mask);
433             velecsum         = _mm_add_ps(velecsum,velec);
434
435             fscal            = felec;
436
437             fscal            = _mm_and_ps(fscal,cutoff_mask);
438
439              /* Update vectorial force */
440             fix2             = _mm_macc_ps(dx20,fscal,fix2);
441             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
442             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
443
444             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
445             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
446             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
447
448             }
449
450             fjptrA             = f+j_coord_offsetA;
451             fjptrB             = f+j_coord_offsetB;
452             fjptrC             = f+j_coord_offsetC;
453             fjptrD             = f+j_coord_offsetD;
454
455             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
456
457             /* Inner loop uses 177 flops */
458         }
459
460         if(jidx<j_index_end)
461         {
462
463             /* Get j neighbor index, and coordinate index */
464             jnrlistA         = jjnr[jidx];
465             jnrlistB         = jjnr[jidx+1];
466             jnrlistC         = jjnr[jidx+2];
467             jnrlistD         = jjnr[jidx+3];
468             /* Sign of each element will be negative for non-real atoms.
469              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
470              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
471              */
472             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
473             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
474             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
475             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
476             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
477             j_coord_offsetA  = DIM*jnrA;
478             j_coord_offsetB  = DIM*jnrB;
479             j_coord_offsetC  = DIM*jnrC;
480             j_coord_offsetD  = DIM*jnrD;
481
482             /* load j atom coordinates */
483             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
484                                               x+j_coord_offsetC,x+j_coord_offsetD,
485                                               &jx0,&jy0,&jz0);
486
487             /* Calculate displacement vector */
488             dx00             = _mm_sub_ps(ix0,jx0);
489             dy00             = _mm_sub_ps(iy0,jy0);
490             dz00             = _mm_sub_ps(iz0,jz0);
491             dx10             = _mm_sub_ps(ix1,jx0);
492             dy10             = _mm_sub_ps(iy1,jy0);
493             dz10             = _mm_sub_ps(iz1,jz0);
494             dx20             = _mm_sub_ps(ix2,jx0);
495             dy20             = _mm_sub_ps(iy2,jy0);
496             dz20             = _mm_sub_ps(iz2,jz0);
497
498             /* Calculate squared distance and things based on it */
499             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
500             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
501             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
502
503             rinv00           = gmx_mm_invsqrt_ps(rsq00);
504             rinv10           = gmx_mm_invsqrt_ps(rsq10);
505             rinv20           = gmx_mm_invsqrt_ps(rsq20);
506
507             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
508             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
509             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
510
511             /* Load parameters for j particles */
512             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
513                                                               charge+jnrC+0,charge+jnrD+0);
514             vdwjidx0A        = 2*vdwtype[jnrA+0];
515             vdwjidx0B        = 2*vdwtype[jnrB+0];
516             vdwjidx0C        = 2*vdwtype[jnrC+0];
517             vdwjidx0D        = 2*vdwtype[jnrD+0];
518
519             fjx0             = _mm_setzero_ps();
520             fjy0             = _mm_setzero_ps();
521             fjz0             = _mm_setzero_ps();
522
523             /**************************
524              * CALCULATE INTERACTIONS *
525              **************************/
526
527             if (gmx_mm_any_lt(rsq00,rcutoff2))
528             {
529
530             r00              = _mm_mul_ps(rsq00,rinv00);
531             r00              = _mm_andnot_ps(dummy_mask,r00);
532
533             /* Compute parameters for interactions between i and j atoms */
534             qq00             = _mm_mul_ps(iq0,jq0);
535             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
536                                          vdwparam+vdwioffset0+vdwjidx0B,
537                                          vdwparam+vdwioffset0+vdwjidx0C,
538                                          vdwparam+vdwioffset0+vdwjidx0D,
539                                          &c6_00,&c12_00);
540
541             /* EWALD ELECTROSTATICS */
542
543             /* Analytical PME correction */
544             zeta2            = _mm_mul_ps(beta2,rsq00);
545             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
546             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
547             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
548             felec            = _mm_mul_ps(qq00,felec);
549             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
550             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
551             velec            = _mm_mul_ps(qq00,velec);
552
553             /* LENNARD-JONES DISPERSION/REPULSION */
554
555             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
556             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
557             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
558             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
559             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
560
561             d                = _mm_sub_ps(r00,rswitch);
562             d                = _mm_max_ps(d,_mm_setzero_ps());
563             d2               = _mm_mul_ps(d,d);
564             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
565
566             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
567
568             /* Evaluate switch function */
569             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
570             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
571             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
572             velec            = _mm_mul_ps(velec,sw);
573             vvdw             = _mm_mul_ps(vvdw,sw);
574             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
575
576             /* Update potential sum for this i atom from the interaction with this j atom. */
577             velec            = _mm_and_ps(velec,cutoff_mask);
578             velec            = _mm_andnot_ps(dummy_mask,velec);
579             velecsum         = _mm_add_ps(velecsum,velec);
580             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
581             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
582             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
583
584             fscal            = _mm_add_ps(felec,fvdw);
585
586             fscal            = _mm_and_ps(fscal,cutoff_mask);
587
588             fscal            = _mm_andnot_ps(dummy_mask,fscal);
589
590              /* Update vectorial force */
591             fix0             = _mm_macc_ps(dx00,fscal,fix0);
592             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
593             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
594
595             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
596             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
597             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
598
599             }
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             if (gmx_mm_any_lt(rsq10,rcutoff2))
606             {
607
608             r10              = _mm_mul_ps(rsq10,rinv10);
609             r10              = _mm_andnot_ps(dummy_mask,r10);
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq10             = _mm_mul_ps(iq1,jq0);
613
614             /* EWALD ELECTROSTATICS */
615
616             /* Analytical PME correction */
617             zeta2            = _mm_mul_ps(beta2,rsq10);
618             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
619             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
620             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
621             felec            = _mm_mul_ps(qq10,felec);
622             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
623             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
624             velec            = _mm_mul_ps(qq10,velec);
625
626             d                = _mm_sub_ps(r10,rswitch);
627             d                = _mm_max_ps(d,_mm_setzero_ps());
628             d2               = _mm_mul_ps(d,d);
629             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
630
631             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
632
633             /* Evaluate switch function */
634             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
635             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
636             velec            = _mm_mul_ps(velec,sw);
637             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velec            = _mm_and_ps(velec,cutoff_mask);
641             velec            = _mm_andnot_ps(dummy_mask,velec);
642             velecsum         = _mm_add_ps(velecsum,velec);
643
644             fscal            = felec;
645
646             fscal            = _mm_and_ps(fscal,cutoff_mask);
647
648             fscal            = _mm_andnot_ps(dummy_mask,fscal);
649
650              /* Update vectorial force */
651             fix1             = _mm_macc_ps(dx10,fscal,fix1);
652             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
653             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
654
655             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
656             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
657             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
658
659             }
660
661             /**************************
662              * CALCULATE INTERACTIONS *
663              **************************/
664
665             if (gmx_mm_any_lt(rsq20,rcutoff2))
666             {
667
668             r20              = _mm_mul_ps(rsq20,rinv20);
669             r20              = _mm_andnot_ps(dummy_mask,r20);
670
671             /* Compute parameters for interactions between i and j atoms */
672             qq20             = _mm_mul_ps(iq2,jq0);
673
674             /* EWALD ELECTROSTATICS */
675
676             /* Analytical PME correction */
677             zeta2            = _mm_mul_ps(beta2,rsq20);
678             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
679             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
680             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
681             felec            = _mm_mul_ps(qq20,felec);
682             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
683             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
684             velec            = _mm_mul_ps(qq20,velec);
685
686             d                = _mm_sub_ps(r20,rswitch);
687             d                = _mm_max_ps(d,_mm_setzero_ps());
688             d2               = _mm_mul_ps(d,d);
689             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
690
691             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
692
693             /* Evaluate switch function */
694             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
695             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
696             velec            = _mm_mul_ps(velec,sw);
697             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
698
699             /* Update potential sum for this i atom from the interaction with this j atom. */
700             velec            = _mm_and_ps(velec,cutoff_mask);
701             velec            = _mm_andnot_ps(dummy_mask,velec);
702             velecsum         = _mm_add_ps(velecsum,velec);
703
704             fscal            = felec;
705
706             fscal            = _mm_and_ps(fscal,cutoff_mask);
707
708             fscal            = _mm_andnot_ps(dummy_mask,fscal);
709
710              /* Update vectorial force */
711             fix2             = _mm_macc_ps(dx20,fscal,fix2);
712             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
713             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
714
715             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
716             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
717             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
718
719             }
720
721             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
722             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
723             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
724             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
725
726             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
727
728             /* Inner loop uses 180 flops */
729         }
730
731         /* End of innermost loop */
732
733         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
734                                               f+i_coord_offset,fshift+i_shift_offset);
735
736         ggid                        = gid[iidx];
737         /* Update potential energies */
738         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
739         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
740
741         /* Increment number of inner iterations */
742         inneriter                  += j_index_end - j_index_start;
743
744         /* Outer loop uses 20 flops */
745     }
746
747     /* Increment number of outer iterations */
748     outeriter        += nri;
749
750     /* Update outer/inner flops */
751
752     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*180);
753 }
754 /*
755  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_128_fma_single
756  * Electrostatics interaction: Ewald
757  * VdW interaction:            LennardJones
758  * Geometry:                   Water3-Particle
759  * Calculate force/pot:        Force
760  */
761 void
762 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_128_fma_single
763                     (t_nblist                    * gmx_restrict       nlist,
764                      rvec                        * gmx_restrict          xx,
765                      rvec                        * gmx_restrict          ff,
766                      t_forcerec                  * gmx_restrict          fr,
767                      t_mdatoms                   * gmx_restrict     mdatoms,
768                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
769                      t_nrnb                      * gmx_restrict        nrnb)
770 {
771     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
772      * just 0 for non-waters.
773      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
774      * jnr indices corresponding to data put in the four positions in the SIMD register.
775      */
776     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
777     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
778     int              jnrA,jnrB,jnrC,jnrD;
779     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
780     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
781     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
782     real             rcutoff_scalar;
783     real             *shiftvec,*fshift,*x,*f;
784     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
785     real             scratch[4*DIM];
786     __m128           fscal,rcutoff,rcutoff2,jidxall;
787     int              vdwioffset0;
788     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
789     int              vdwioffset1;
790     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
791     int              vdwioffset2;
792     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
793     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
794     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
795     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
796     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
797     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
798     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
799     real             *charge;
800     int              nvdwtype;
801     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
802     int              *vdwtype;
803     real             *vdwparam;
804     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
805     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
806     __m128i          ewitab;
807     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
808     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
809     real             *ewtab;
810     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
811     real             rswitch_scalar,d_scalar;
812     __m128           dummy_mask,cutoff_mask;
813     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
814     __m128           one     = _mm_set1_ps(1.0);
815     __m128           two     = _mm_set1_ps(2.0);
816     x                = xx[0];
817     f                = ff[0];
818
819     nri              = nlist->nri;
820     iinr             = nlist->iinr;
821     jindex           = nlist->jindex;
822     jjnr             = nlist->jjnr;
823     shiftidx         = nlist->shift;
824     gid              = nlist->gid;
825     shiftvec         = fr->shift_vec[0];
826     fshift           = fr->fshift[0];
827     facel            = _mm_set1_ps(fr->epsfac);
828     charge           = mdatoms->chargeA;
829     nvdwtype         = fr->ntype;
830     vdwparam         = fr->nbfp;
831     vdwtype          = mdatoms->typeA;
832
833     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
834     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
835     beta2            = _mm_mul_ps(beta,beta);
836     beta3            = _mm_mul_ps(beta,beta2);
837     ewtab            = fr->ic->tabq_coul_FDV0;
838     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
839     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
840
841     /* Setup water-specific parameters */
842     inr              = nlist->iinr[0];
843     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
844     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
845     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
846     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
847
848     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
849     rcutoff_scalar   = fr->rcoulomb;
850     rcutoff          = _mm_set1_ps(rcutoff_scalar);
851     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
852
853     rswitch_scalar   = fr->rcoulomb_switch;
854     rswitch          = _mm_set1_ps(rswitch_scalar);
855     /* Setup switch parameters */
856     d_scalar         = rcutoff_scalar-rswitch_scalar;
857     d                = _mm_set1_ps(d_scalar);
858     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
859     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
860     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
861     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
862     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
863     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
864
865     /* Avoid stupid compiler warnings */
866     jnrA = jnrB = jnrC = jnrD = 0;
867     j_coord_offsetA = 0;
868     j_coord_offsetB = 0;
869     j_coord_offsetC = 0;
870     j_coord_offsetD = 0;
871
872     outeriter        = 0;
873     inneriter        = 0;
874
875     for(iidx=0;iidx<4*DIM;iidx++)
876     {
877         scratch[iidx] = 0.0;
878     }
879
880     /* Start outer loop over neighborlists */
881     for(iidx=0; iidx<nri; iidx++)
882     {
883         /* Load shift vector for this list */
884         i_shift_offset   = DIM*shiftidx[iidx];
885
886         /* Load limits for loop over neighbors */
887         j_index_start    = jindex[iidx];
888         j_index_end      = jindex[iidx+1];
889
890         /* Get outer coordinate index */
891         inr              = iinr[iidx];
892         i_coord_offset   = DIM*inr;
893
894         /* Load i particle coords and add shift vector */
895         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
896                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
897
898         fix0             = _mm_setzero_ps();
899         fiy0             = _mm_setzero_ps();
900         fiz0             = _mm_setzero_ps();
901         fix1             = _mm_setzero_ps();
902         fiy1             = _mm_setzero_ps();
903         fiz1             = _mm_setzero_ps();
904         fix2             = _mm_setzero_ps();
905         fiy2             = _mm_setzero_ps();
906         fiz2             = _mm_setzero_ps();
907
908         /* Start inner kernel loop */
909         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
910         {
911
912             /* Get j neighbor index, and coordinate index */
913             jnrA             = jjnr[jidx];
914             jnrB             = jjnr[jidx+1];
915             jnrC             = jjnr[jidx+2];
916             jnrD             = jjnr[jidx+3];
917             j_coord_offsetA  = DIM*jnrA;
918             j_coord_offsetB  = DIM*jnrB;
919             j_coord_offsetC  = DIM*jnrC;
920             j_coord_offsetD  = DIM*jnrD;
921
922             /* load j atom coordinates */
923             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
924                                               x+j_coord_offsetC,x+j_coord_offsetD,
925                                               &jx0,&jy0,&jz0);
926
927             /* Calculate displacement vector */
928             dx00             = _mm_sub_ps(ix0,jx0);
929             dy00             = _mm_sub_ps(iy0,jy0);
930             dz00             = _mm_sub_ps(iz0,jz0);
931             dx10             = _mm_sub_ps(ix1,jx0);
932             dy10             = _mm_sub_ps(iy1,jy0);
933             dz10             = _mm_sub_ps(iz1,jz0);
934             dx20             = _mm_sub_ps(ix2,jx0);
935             dy20             = _mm_sub_ps(iy2,jy0);
936             dz20             = _mm_sub_ps(iz2,jz0);
937
938             /* Calculate squared distance and things based on it */
939             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
940             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
941             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
942
943             rinv00           = gmx_mm_invsqrt_ps(rsq00);
944             rinv10           = gmx_mm_invsqrt_ps(rsq10);
945             rinv20           = gmx_mm_invsqrt_ps(rsq20);
946
947             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
948             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
949             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
950
951             /* Load parameters for j particles */
952             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
953                                                               charge+jnrC+0,charge+jnrD+0);
954             vdwjidx0A        = 2*vdwtype[jnrA+0];
955             vdwjidx0B        = 2*vdwtype[jnrB+0];
956             vdwjidx0C        = 2*vdwtype[jnrC+0];
957             vdwjidx0D        = 2*vdwtype[jnrD+0];
958
959             fjx0             = _mm_setzero_ps();
960             fjy0             = _mm_setzero_ps();
961             fjz0             = _mm_setzero_ps();
962
963             /**************************
964              * CALCULATE INTERACTIONS *
965              **************************/
966
967             if (gmx_mm_any_lt(rsq00,rcutoff2))
968             {
969
970             r00              = _mm_mul_ps(rsq00,rinv00);
971
972             /* Compute parameters for interactions between i and j atoms */
973             qq00             = _mm_mul_ps(iq0,jq0);
974             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
975                                          vdwparam+vdwioffset0+vdwjidx0B,
976                                          vdwparam+vdwioffset0+vdwjidx0C,
977                                          vdwparam+vdwioffset0+vdwjidx0D,
978                                          &c6_00,&c12_00);
979
980             /* EWALD ELECTROSTATICS */
981
982             /* Analytical PME correction */
983             zeta2            = _mm_mul_ps(beta2,rsq00);
984             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
985             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
986             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
987             felec            = _mm_mul_ps(qq00,felec);
988             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
989             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
990             velec            = _mm_mul_ps(qq00,velec);
991
992             /* LENNARD-JONES DISPERSION/REPULSION */
993
994             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
995             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
996             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
997             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
998             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
999
1000             d                = _mm_sub_ps(r00,rswitch);
1001             d                = _mm_max_ps(d,_mm_setzero_ps());
1002             d2               = _mm_mul_ps(d,d);
1003             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1004
1005             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1006
1007             /* Evaluate switch function */
1008             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1009             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1010             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1011             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1012
1013             fscal            = _mm_add_ps(felec,fvdw);
1014
1015             fscal            = _mm_and_ps(fscal,cutoff_mask);
1016
1017              /* Update vectorial force */
1018             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1019             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1020             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1021
1022             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1023             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1024             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1025
1026             }
1027
1028             /**************************
1029              * CALCULATE INTERACTIONS *
1030              **************************/
1031
1032             if (gmx_mm_any_lt(rsq10,rcutoff2))
1033             {
1034
1035             r10              = _mm_mul_ps(rsq10,rinv10);
1036
1037             /* Compute parameters for interactions between i and j atoms */
1038             qq10             = _mm_mul_ps(iq1,jq0);
1039
1040             /* EWALD ELECTROSTATICS */
1041
1042             /* Analytical PME correction */
1043             zeta2            = _mm_mul_ps(beta2,rsq10);
1044             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1045             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1046             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1047             felec            = _mm_mul_ps(qq10,felec);
1048             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1049             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
1050             velec            = _mm_mul_ps(qq10,velec);
1051
1052             d                = _mm_sub_ps(r10,rswitch);
1053             d                = _mm_max_ps(d,_mm_setzero_ps());
1054             d2               = _mm_mul_ps(d,d);
1055             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1056
1057             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1058
1059             /* Evaluate switch function */
1060             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1061             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1062             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1063
1064             fscal            = felec;
1065
1066             fscal            = _mm_and_ps(fscal,cutoff_mask);
1067
1068              /* Update vectorial force */
1069             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1070             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1071             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1072
1073             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1074             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1075             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1076
1077             }
1078
1079             /**************************
1080              * CALCULATE INTERACTIONS *
1081              **************************/
1082
1083             if (gmx_mm_any_lt(rsq20,rcutoff2))
1084             {
1085
1086             r20              = _mm_mul_ps(rsq20,rinv20);
1087
1088             /* Compute parameters for interactions between i and j atoms */
1089             qq20             = _mm_mul_ps(iq2,jq0);
1090
1091             /* EWALD ELECTROSTATICS */
1092
1093             /* Analytical PME correction */
1094             zeta2            = _mm_mul_ps(beta2,rsq20);
1095             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1096             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1097             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1098             felec            = _mm_mul_ps(qq20,felec);
1099             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1100             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
1101             velec            = _mm_mul_ps(qq20,velec);
1102
1103             d                = _mm_sub_ps(r20,rswitch);
1104             d                = _mm_max_ps(d,_mm_setzero_ps());
1105             d2               = _mm_mul_ps(d,d);
1106             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1107
1108             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1109
1110             /* Evaluate switch function */
1111             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1112             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1113             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1114
1115             fscal            = felec;
1116
1117             fscal            = _mm_and_ps(fscal,cutoff_mask);
1118
1119              /* Update vectorial force */
1120             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1121             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1122             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1123
1124             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1125             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1126             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1127
1128             }
1129
1130             fjptrA             = f+j_coord_offsetA;
1131             fjptrB             = f+j_coord_offsetB;
1132             fjptrC             = f+j_coord_offsetC;
1133             fjptrD             = f+j_coord_offsetD;
1134
1135             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1136
1137             /* Inner loop uses 165 flops */
1138         }
1139
1140         if(jidx<j_index_end)
1141         {
1142
1143             /* Get j neighbor index, and coordinate index */
1144             jnrlistA         = jjnr[jidx];
1145             jnrlistB         = jjnr[jidx+1];
1146             jnrlistC         = jjnr[jidx+2];
1147             jnrlistD         = jjnr[jidx+3];
1148             /* Sign of each element will be negative for non-real atoms.
1149              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1150              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1151              */
1152             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1153             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1154             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1155             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1156             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1157             j_coord_offsetA  = DIM*jnrA;
1158             j_coord_offsetB  = DIM*jnrB;
1159             j_coord_offsetC  = DIM*jnrC;
1160             j_coord_offsetD  = DIM*jnrD;
1161
1162             /* load j atom coordinates */
1163             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1164                                               x+j_coord_offsetC,x+j_coord_offsetD,
1165                                               &jx0,&jy0,&jz0);
1166
1167             /* Calculate displacement vector */
1168             dx00             = _mm_sub_ps(ix0,jx0);
1169             dy00             = _mm_sub_ps(iy0,jy0);
1170             dz00             = _mm_sub_ps(iz0,jz0);
1171             dx10             = _mm_sub_ps(ix1,jx0);
1172             dy10             = _mm_sub_ps(iy1,jy0);
1173             dz10             = _mm_sub_ps(iz1,jz0);
1174             dx20             = _mm_sub_ps(ix2,jx0);
1175             dy20             = _mm_sub_ps(iy2,jy0);
1176             dz20             = _mm_sub_ps(iz2,jz0);
1177
1178             /* Calculate squared distance and things based on it */
1179             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1180             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1181             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1182
1183             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1184             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1185             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1186
1187             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1188             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1189             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1190
1191             /* Load parameters for j particles */
1192             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1193                                                               charge+jnrC+0,charge+jnrD+0);
1194             vdwjidx0A        = 2*vdwtype[jnrA+0];
1195             vdwjidx0B        = 2*vdwtype[jnrB+0];
1196             vdwjidx0C        = 2*vdwtype[jnrC+0];
1197             vdwjidx0D        = 2*vdwtype[jnrD+0];
1198
1199             fjx0             = _mm_setzero_ps();
1200             fjy0             = _mm_setzero_ps();
1201             fjz0             = _mm_setzero_ps();
1202
1203             /**************************
1204              * CALCULATE INTERACTIONS *
1205              **************************/
1206
1207             if (gmx_mm_any_lt(rsq00,rcutoff2))
1208             {
1209
1210             r00              = _mm_mul_ps(rsq00,rinv00);
1211             r00              = _mm_andnot_ps(dummy_mask,r00);
1212
1213             /* Compute parameters for interactions between i and j atoms */
1214             qq00             = _mm_mul_ps(iq0,jq0);
1215             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1216                                          vdwparam+vdwioffset0+vdwjidx0B,
1217                                          vdwparam+vdwioffset0+vdwjidx0C,
1218                                          vdwparam+vdwioffset0+vdwjidx0D,
1219                                          &c6_00,&c12_00);
1220
1221             /* EWALD ELECTROSTATICS */
1222
1223             /* Analytical PME correction */
1224             zeta2            = _mm_mul_ps(beta2,rsq00);
1225             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1226             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1227             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1228             felec            = _mm_mul_ps(qq00,felec);
1229             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1230             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
1231             velec            = _mm_mul_ps(qq00,velec);
1232
1233             /* LENNARD-JONES DISPERSION/REPULSION */
1234
1235             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1236             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1237             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1238             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
1239             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1240
1241             d                = _mm_sub_ps(r00,rswitch);
1242             d                = _mm_max_ps(d,_mm_setzero_ps());
1243             d2               = _mm_mul_ps(d,d);
1244             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1245
1246             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1247
1248             /* Evaluate switch function */
1249             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1250             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1251             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1252             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1253
1254             fscal            = _mm_add_ps(felec,fvdw);
1255
1256             fscal            = _mm_and_ps(fscal,cutoff_mask);
1257
1258             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1259
1260              /* Update vectorial force */
1261             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1262             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1263             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1264
1265             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1266             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1267             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1268
1269             }
1270
1271             /**************************
1272              * CALCULATE INTERACTIONS *
1273              **************************/
1274
1275             if (gmx_mm_any_lt(rsq10,rcutoff2))
1276             {
1277
1278             r10              = _mm_mul_ps(rsq10,rinv10);
1279             r10              = _mm_andnot_ps(dummy_mask,r10);
1280
1281             /* Compute parameters for interactions between i and j atoms */
1282             qq10             = _mm_mul_ps(iq1,jq0);
1283
1284             /* EWALD ELECTROSTATICS */
1285
1286             /* Analytical PME correction */
1287             zeta2            = _mm_mul_ps(beta2,rsq10);
1288             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1289             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1290             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1291             felec            = _mm_mul_ps(qq10,felec);
1292             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1293             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
1294             velec            = _mm_mul_ps(qq10,velec);
1295
1296             d                = _mm_sub_ps(r10,rswitch);
1297             d                = _mm_max_ps(d,_mm_setzero_ps());
1298             d2               = _mm_mul_ps(d,d);
1299             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1300
1301             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1302
1303             /* Evaluate switch function */
1304             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1305             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1306             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1307
1308             fscal            = felec;
1309
1310             fscal            = _mm_and_ps(fscal,cutoff_mask);
1311
1312             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1313
1314              /* Update vectorial force */
1315             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1316             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1317             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1318
1319             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1320             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1321             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1322
1323             }
1324
1325             /**************************
1326              * CALCULATE INTERACTIONS *
1327              **************************/
1328
1329             if (gmx_mm_any_lt(rsq20,rcutoff2))
1330             {
1331
1332             r20              = _mm_mul_ps(rsq20,rinv20);
1333             r20              = _mm_andnot_ps(dummy_mask,r20);
1334
1335             /* Compute parameters for interactions between i and j atoms */
1336             qq20             = _mm_mul_ps(iq2,jq0);
1337
1338             /* EWALD ELECTROSTATICS */
1339
1340             /* Analytical PME correction */
1341             zeta2            = _mm_mul_ps(beta2,rsq20);
1342             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1343             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1344             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1345             felec            = _mm_mul_ps(qq20,felec);
1346             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1347             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
1348             velec            = _mm_mul_ps(qq20,velec);
1349
1350             d                = _mm_sub_ps(r20,rswitch);
1351             d                = _mm_max_ps(d,_mm_setzero_ps());
1352             d2               = _mm_mul_ps(d,d);
1353             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1354
1355             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1356
1357             /* Evaluate switch function */
1358             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1359             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1360             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1361
1362             fscal            = felec;
1363
1364             fscal            = _mm_and_ps(fscal,cutoff_mask);
1365
1366             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1367
1368              /* Update vectorial force */
1369             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1370             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1371             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1372
1373             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1374             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1375             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1376
1377             }
1378
1379             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1380             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1381             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1382             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1383
1384             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1385
1386             /* Inner loop uses 168 flops */
1387         }
1388
1389         /* End of innermost loop */
1390
1391         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1392                                               f+i_coord_offset,fshift+i_shift_offset);
1393
1394         /* Increment number of inner iterations */
1395         inneriter                  += j_index_end - j_index_start;
1396
1397         /* Outer loop uses 18 flops */
1398     }
1399
1400     /* Increment number of outer iterations */
1401     outeriter        += nri;
1402
1403     /* Update outer/inner flops */
1404
1405     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*168);
1406 }