Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          ewitab;
89     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
91     real             *ewtab;
92     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
93     real             rswitch_scalar,d_scalar;
94     __m128           dummy_mask,cutoff_mask;
95     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
96     __m128           one     = _mm_set1_ps(1.0);
97     __m128           two     = _mm_set1_ps(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm_set1_ps(fr->epsfac);
110     charge           = mdatoms->chargeA;
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
116     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
117     beta2            = _mm_mul_ps(beta,beta);
118     beta3            = _mm_mul_ps(beta,beta2);
119     ewtab            = fr->ic->tabq_coul_FDV0;
120     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
121     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
126     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
127     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
128     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
129
130     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
131     rcutoff_scalar   = fr->rcoulomb;
132     rcutoff          = _mm_set1_ps(rcutoff_scalar);
133     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
134
135     rswitch_scalar   = fr->rcoulomb_switch;
136     rswitch          = _mm_set1_ps(rswitch_scalar);
137     /* Setup switch parameters */
138     d_scalar         = rcutoff_scalar-rswitch_scalar;
139     d                = _mm_set1_ps(d_scalar);
140     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
141     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
142     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
143     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
144     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
145     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm_setzero_ps();
181         fiy0             = _mm_setzero_ps();
182         fiz0             = _mm_setzero_ps();
183         fix1             = _mm_setzero_ps();
184         fiy1             = _mm_setzero_ps();
185         fiz1             = _mm_setzero_ps();
186         fix2             = _mm_setzero_ps();
187         fiy2             = _mm_setzero_ps();
188         fiz2             = _mm_setzero_ps();
189
190         /* Reset potential sums */
191         velecsum         = _mm_setzero_ps();
192         vvdwsum          = _mm_setzero_ps();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207
208             /* load j atom coordinates */
209             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
210                                               x+j_coord_offsetC,x+j_coord_offsetD,
211                                               &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm_sub_ps(ix0,jx0);
215             dy00             = _mm_sub_ps(iy0,jy0);
216             dz00             = _mm_sub_ps(iz0,jz0);
217             dx10             = _mm_sub_ps(ix1,jx0);
218             dy10             = _mm_sub_ps(iy1,jy0);
219             dz10             = _mm_sub_ps(iz1,jz0);
220             dx20             = _mm_sub_ps(ix2,jx0);
221             dy20             = _mm_sub_ps(iy2,jy0);
222             dz20             = _mm_sub_ps(iz2,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
226             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
227             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
228
229             rinv00           = gmx_mm_invsqrt_ps(rsq00);
230             rinv10           = gmx_mm_invsqrt_ps(rsq10);
231             rinv20           = gmx_mm_invsqrt_ps(rsq20);
232
233             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
234             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
235             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
239                                                               charge+jnrC+0,charge+jnrD+0);
240             vdwjidx0A        = 2*vdwtype[jnrA+0];
241             vdwjidx0B        = 2*vdwtype[jnrB+0];
242             vdwjidx0C        = 2*vdwtype[jnrC+0];
243             vdwjidx0D        = 2*vdwtype[jnrD+0];
244
245             fjx0             = _mm_setzero_ps();
246             fjy0             = _mm_setzero_ps();
247             fjz0             = _mm_setzero_ps();
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             if (gmx_mm_any_lt(rsq00,rcutoff2))
254             {
255
256             r00              = _mm_mul_ps(rsq00,rinv00);
257
258             /* Compute parameters for interactions between i and j atoms */
259             qq00             = _mm_mul_ps(iq0,jq0);
260             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
261                                          vdwparam+vdwioffset0+vdwjidx0B,
262                                          vdwparam+vdwioffset0+vdwjidx0C,
263                                          vdwparam+vdwioffset0+vdwjidx0D,
264                                          &c6_00,&c12_00);
265
266             /* EWALD ELECTROSTATICS */
267
268             /* Analytical PME correction */
269             zeta2            = _mm_mul_ps(beta2,rsq00);
270             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
271             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
272             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
273             felec            = _mm_mul_ps(qq00,felec);
274             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
275             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
276             velec            = _mm_mul_ps(qq00,velec);
277
278             /* LENNARD-JONES DISPERSION/REPULSION */
279
280             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
281             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
282             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
283             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
284             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
285
286             d                = _mm_sub_ps(r00,rswitch);
287             d                = _mm_max_ps(d,_mm_setzero_ps());
288             d2               = _mm_mul_ps(d,d);
289             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
290
291             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
292
293             /* Evaluate switch function */
294             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
295             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
296             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
297             velec            = _mm_mul_ps(velec,sw);
298             vvdw             = _mm_mul_ps(vvdw,sw);
299             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
300
301             /* Update potential sum for this i atom from the interaction with this j atom. */
302             velec            = _mm_and_ps(velec,cutoff_mask);
303             velecsum         = _mm_add_ps(velecsum,velec);
304             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
305             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
306
307             fscal            = _mm_add_ps(felec,fvdw);
308
309             fscal            = _mm_and_ps(fscal,cutoff_mask);
310
311              /* Update vectorial force */
312             fix0             = _mm_macc_ps(dx00,fscal,fix0);
313             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
314             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
315
316             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
317             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
318             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
319
320             }
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             if (gmx_mm_any_lt(rsq10,rcutoff2))
327             {
328
329             r10              = _mm_mul_ps(rsq10,rinv10);
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq10             = _mm_mul_ps(iq1,jq0);
333
334             /* EWALD ELECTROSTATICS */
335
336             /* Analytical PME correction */
337             zeta2            = _mm_mul_ps(beta2,rsq10);
338             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
339             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
340             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
341             felec            = _mm_mul_ps(qq10,felec);
342             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
343             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
344             velec            = _mm_mul_ps(qq10,velec);
345
346             d                = _mm_sub_ps(r10,rswitch);
347             d                = _mm_max_ps(d,_mm_setzero_ps());
348             d2               = _mm_mul_ps(d,d);
349             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
350
351             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
352
353             /* Evaluate switch function */
354             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
355             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
356             velec            = _mm_mul_ps(velec,sw);
357             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velec            = _mm_and_ps(velec,cutoff_mask);
361             velecsum         = _mm_add_ps(velecsum,velec);
362
363             fscal            = felec;
364
365             fscal            = _mm_and_ps(fscal,cutoff_mask);
366
367              /* Update vectorial force */
368             fix1             = _mm_macc_ps(dx10,fscal,fix1);
369             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
370             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
371
372             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
373             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
374             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
375
376             }
377
378             /**************************
379              * CALCULATE INTERACTIONS *
380              **************************/
381
382             if (gmx_mm_any_lt(rsq20,rcutoff2))
383             {
384
385             r20              = _mm_mul_ps(rsq20,rinv20);
386
387             /* Compute parameters for interactions between i and j atoms */
388             qq20             = _mm_mul_ps(iq2,jq0);
389
390             /* EWALD ELECTROSTATICS */
391
392             /* Analytical PME correction */
393             zeta2            = _mm_mul_ps(beta2,rsq20);
394             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
395             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
396             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
397             felec            = _mm_mul_ps(qq20,felec);
398             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
399             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
400             velec            = _mm_mul_ps(qq20,velec);
401
402             d                = _mm_sub_ps(r20,rswitch);
403             d                = _mm_max_ps(d,_mm_setzero_ps());
404             d2               = _mm_mul_ps(d,d);
405             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
406
407             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
408
409             /* Evaluate switch function */
410             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
411             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
412             velec            = _mm_mul_ps(velec,sw);
413             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
414
415             /* Update potential sum for this i atom from the interaction with this j atom. */
416             velec            = _mm_and_ps(velec,cutoff_mask);
417             velecsum         = _mm_add_ps(velecsum,velec);
418
419             fscal            = felec;
420
421             fscal            = _mm_and_ps(fscal,cutoff_mask);
422
423              /* Update vectorial force */
424             fix2             = _mm_macc_ps(dx20,fscal,fix2);
425             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
426             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
427
428             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
429             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
430             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
431
432             }
433
434             fjptrA             = f+j_coord_offsetA;
435             fjptrB             = f+j_coord_offsetB;
436             fjptrC             = f+j_coord_offsetC;
437             fjptrD             = f+j_coord_offsetD;
438
439             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
440
441             /* Inner loop uses 177 flops */
442         }
443
444         if(jidx<j_index_end)
445         {
446
447             /* Get j neighbor index, and coordinate index */
448             jnrlistA         = jjnr[jidx];
449             jnrlistB         = jjnr[jidx+1];
450             jnrlistC         = jjnr[jidx+2];
451             jnrlistD         = jjnr[jidx+3];
452             /* Sign of each element will be negative for non-real atoms.
453              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
454              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
455              */
456             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
457             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
458             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
459             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
460             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
461             j_coord_offsetA  = DIM*jnrA;
462             j_coord_offsetB  = DIM*jnrB;
463             j_coord_offsetC  = DIM*jnrC;
464             j_coord_offsetD  = DIM*jnrD;
465
466             /* load j atom coordinates */
467             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
468                                               x+j_coord_offsetC,x+j_coord_offsetD,
469                                               &jx0,&jy0,&jz0);
470
471             /* Calculate displacement vector */
472             dx00             = _mm_sub_ps(ix0,jx0);
473             dy00             = _mm_sub_ps(iy0,jy0);
474             dz00             = _mm_sub_ps(iz0,jz0);
475             dx10             = _mm_sub_ps(ix1,jx0);
476             dy10             = _mm_sub_ps(iy1,jy0);
477             dz10             = _mm_sub_ps(iz1,jz0);
478             dx20             = _mm_sub_ps(ix2,jx0);
479             dy20             = _mm_sub_ps(iy2,jy0);
480             dz20             = _mm_sub_ps(iz2,jz0);
481
482             /* Calculate squared distance and things based on it */
483             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
484             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
485             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
486
487             rinv00           = gmx_mm_invsqrt_ps(rsq00);
488             rinv10           = gmx_mm_invsqrt_ps(rsq10);
489             rinv20           = gmx_mm_invsqrt_ps(rsq20);
490
491             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
492             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
493             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
494
495             /* Load parameters for j particles */
496             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
497                                                               charge+jnrC+0,charge+jnrD+0);
498             vdwjidx0A        = 2*vdwtype[jnrA+0];
499             vdwjidx0B        = 2*vdwtype[jnrB+0];
500             vdwjidx0C        = 2*vdwtype[jnrC+0];
501             vdwjidx0D        = 2*vdwtype[jnrD+0];
502
503             fjx0             = _mm_setzero_ps();
504             fjy0             = _mm_setzero_ps();
505             fjz0             = _mm_setzero_ps();
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             if (gmx_mm_any_lt(rsq00,rcutoff2))
512             {
513
514             r00              = _mm_mul_ps(rsq00,rinv00);
515             r00              = _mm_andnot_ps(dummy_mask,r00);
516
517             /* Compute parameters for interactions between i and j atoms */
518             qq00             = _mm_mul_ps(iq0,jq0);
519             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
520                                          vdwparam+vdwioffset0+vdwjidx0B,
521                                          vdwparam+vdwioffset0+vdwjidx0C,
522                                          vdwparam+vdwioffset0+vdwjidx0D,
523                                          &c6_00,&c12_00);
524
525             /* EWALD ELECTROSTATICS */
526
527             /* Analytical PME correction */
528             zeta2            = _mm_mul_ps(beta2,rsq00);
529             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
530             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
531             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
532             felec            = _mm_mul_ps(qq00,felec);
533             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
534             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
535             velec            = _mm_mul_ps(qq00,velec);
536
537             /* LENNARD-JONES DISPERSION/REPULSION */
538
539             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
540             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
541             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
542             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
543             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
544
545             d                = _mm_sub_ps(r00,rswitch);
546             d                = _mm_max_ps(d,_mm_setzero_ps());
547             d2               = _mm_mul_ps(d,d);
548             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
549
550             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
551
552             /* Evaluate switch function */
553             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
554             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
555             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
556             velec            = _mm_mul_ps(velec,sw);
557             vvdw             = _mm_mul_ps(vvdw,sw);
558             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velec            = _mm_and_ps(velec,cutoff_mask);
562             velec            = _mm_andnot_ps(dummy_mask,velec);
563             velecsum         = _mm_add_ps(velecsum,velec);
564             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
565             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
566             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
567
568             fscal            = _mm_add_ps(felec,fvdw);
569
570             fscal            = _mm_and_ps(fscal,cutoff_mask);
571
572             fscal            = _mm_andnot_ps(dummy_mask,fscal);
573
574              /* Update vectorial force */
575             fix0             = _mm_macc_ps(dx00,fscal,fix0);
576             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
577             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
578
579             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
580             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
581             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
582
583             }
584
585             /**************************
586              * CALCULATE INTERACTIONS *
587              **************************/
588
589             if (gmx_mm_any_lt(rsq10,rcutoff2))
590             {
591
592             r10              = _mm_mul_ps(rsq10,rinv10);
593             r10              = _mm_andnot_ps(dummy_mask,r10);
594
595             /* Compute parameters for interactions between i and j atoms */
596             qq10             = _mm_mul_ps(iq1,jq0);
597
598             /* EWALD ELECTROSTATICS */
599
600             /* Analytical PME correction */
601             zeta2            = _mm_mul_ps(beta2,rsq10);
602             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
603             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
604             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
605             felec            = _mm_mul_ps(qq10,felec);
606             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
607             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
608             velec            = _mm_mul_ps(qq10,velec);
609
610             d                = _mm_sub_ps(r10,rswitch);
611             d                = _mm_max_ps(d,_mm_setzero_ps());
612             d2               = _mm_mul_ps(d,d);
613             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
614
615             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
616
617             /* Evaluate switch function */
618             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
619             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
620             velec            = _mm_mul_ps(velec,sw);
621             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
622
623             /* Update potential sum for this i atom from the interaction with this j atom. */
624             velec            = _mm_and_ps(velec,cutoff_mask);
625             velec            = _mm_andnot_ps(dummy_mask,velec);
626             velecsum         = _mm_add_ps(velecsum,velec);
627
628             fscal            = felec;
629
630             fscal            = _mm_and_ps(fscal,cutoff_mask);
631
632             fscal            = _mm_andnot_ps(dummy_mask,fscal);
633
634              /* Update vectorial force */
635             fix1             = _mm_macc_ps(dx10,fscal,fix1);
636             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
637             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
638
639             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
640             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
641             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
642
643             }
644
645             /**************************
646              * CALCULATE INTERACTIONS *
647              **************************/
648
649             if (gmx_mm_any_lt(rsq20,rcutoff2))
650             {
651
652             r20              = _mm_mul_ps(rsq20,rinv20);
653             r20              = _mm_andnot_ps(dummy_mask,r20);
654
655             /* Compute parameters for interactions between i and j atoms */
656             qq20             = _mm_mul_ps(iq2,jq0);
657
658             /* EWALD ELECTROSTATICS */
659
660             /* Analytical PME correction */
661             zeta2            = _mm_mul_ps(beta2,rsq20);
662             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
663             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
664             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
665             felec            = _mm_mul_ps(qq20,felec);
666             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
667             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
668             velec            = _mm_mul_ps(qq20,velec);
669
670             d                = _mm_sub_ps(r20,rswitch);
671             d                = _mm_max_ps(d,_mm_setzero_ps());
672             d2               = _mm_mul_ps(d,d);
673             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
674
675             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
676
677             /* Evaluate switch function */
678             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
679             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
680             velec            = _mm_mul_ps(velec,sw);
681             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
682
683             /* Update potential sum for this i atom from the interaction with this j atom. */
684             velec            = _mm_and_ps(velec,cutoff_mask);
685             velec            = _mm_andnot_ps(dummy_mask,velec);
686             velecsum         = _mm_add_ps(velecsum,velec);
687
688             fscal            = felec;
689
690             fscal            = _mm_and_ps(fscal,cutoff_mask);
691
692             fscal            = _mm_andnot_ps(dummy_mask,fscal);
693
694              /* Update vectorial force */
695             fix2             = _mm_macc_ps(dx20,fscal,fix2);
696             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
697             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
698
699             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
700             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
701             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
702
703             }
704
705             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
706             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
707             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
708             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
709
710             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
711
712             /* Inner loop uses 180 flops */
713         }
714
715         /* End of innermost loop */
716
717         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
718                                               f+i_coord_offset,fshift+i_shift_offset);
719
720         ggid                        = gid[iidx];
721         /* Update potential energies */
722         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
723         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
724
725         /* Increment number of inner iterations */
726         inneriter                  += j_index_end - j_index_start;
727
728         /* Outer loop uses 20 flops */
729     }
730
731     /* Increment number of outer iterations */
732     outeriter        += nri;
733
734     /* Update outer/inner flops */
735
736     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*180);
737 }
738 /*
739  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_128_fma_single
740  * Electrostatics interaction: Ewald
741  * VdW interaction:            LennardJones
742  * Geometry:                   Water3-Particle
743  * Calculate force/pot:        Force
744  */
745 void
746 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_128_fma_single
747                     (t_nblist * gmx_restrict                nlist,
748                      rvec * gmx_restrict                    xx,
749                      rvec * gmx_restrict                    ff,
750                      t_forcerec * gmx_restrict              fr,
751                      t_mdatoms * gmx_restrict               mdatoms,
752                      nb_kernel_data_t * gmx_restrict        kernel_data,
753                      t_nrnb * gmx_restrict                  nrnb)
754 {
755     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
756      * just 0 for non-waters.
757      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
758      * jnr indices corresponding to data put in the four positions in the SIMD register.
759      */
760     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
761     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
762     int              jnrA,jnrB,jnrC,jnrD;
763     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
764     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
765     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
766     real             rcutoff_scalar;
767     real             *shiftvec,*fshift,*x,*f;
768     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
769     real             scratch[4*DIM];
770     __m128           fscal,rcutoff,rcutoff2,jidxall;
771     int              vdwioffset0;
772     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
773     int              vdwioffset1;
774     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
775     int              vdwioffset2;
776     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
777     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
778     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
779     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
780     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
781     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
782     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
783     real             *charge;
784     int              nvdwtype;
785     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
786     int              *vdwtype;
787     real             *vdwparam;
788     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
789     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
790     __m128i          ewitab;
791     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
792     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
793     real             *ewtab;
794     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
795     real             rswitch_scalar,d_scalar;
796     __m128           dummy_mask,cutoff_mask;
797     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
798     __m128           one     = _mm_set1_ps(1.0);
799     __m128           two     = _mm_set1_ps(2.0);
800     x                = xx[0];
801     f                = ff[0];
802
803     nri              = nlist->nri;
804     iinr             = nlist->iinr;
805     jindex           = nlist->jindex;
806     jjnr             = nlist->jjnr;
807     shiftidx         = nlist->shift;
808     gid              = nlist->gid;
809     shiftvec         = fr->shift_vec[0];
810     fshift           = fr->fshift[0];
811     facel            = _mm_set1_ps(fr->epsfac);
812     charge           = mdatoms->chargeA;
813     nvdwtype         = fr->ntype;
814     vdwparam         = fr->nbfp;
815     vdwtype          = mdatoms->typeA;
816
817     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
818     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
819     beta2            = _mm_mul_ps(beta,beta);
820     beta3            = _mm_mul_ps(beta,beta2);
821     ewtab            = fr->ic->tabq_coul_FDV0;
822     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
823     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
824
825     /* Setup water-specific parameters */
826     inr              = nlist->iinr[0];
827     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
828     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
829     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
830     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
831
832     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
833     rcutoff_scalar   = fr->rcoulomb;
834     rcutoff          = _mm_set1_ps(rcutoff_scalar);
835     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
836
837     rswitch_scalar   = fr->rcoulomb_switch;
838     rswitch          = _mm_set1_ps(rswitch_scalar);
839     /* Setup switch parameters */
840     d_scalar         = rcutoff_scalar-rswitch_scalar;
841     d                = _mm_set1_ps(d_scalar);
842     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
843     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
844     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
845     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
846     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
847     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
848
849     /* Avoid stupid compiler warnings */
850     jnrA = jnrB = jnrC = jnrD = 0;
851     j_coord_offsetA = 0;
852     j_coord_offsetB = 0;
853     j_coord_offsetC = 0;
854     j_coord_offsetD = 0;
855
856     outeriter        = 0;
857     inneriter        = 0;
858
859     for(iidx=0;iidx<4*DIM;iidx++)
860     {
861         scratch[iidx] = 0.0;
862     }
863
864     /* Start outer loop over neighborlists */
865     for(iidx=0; iidx<nri; iidx++)
866     {
867         /* Load shift vector for this list */
868         i_shift_offset   = DIM*shiftidx[iidx];
869
870         /* Load limits for loop over neighbors */
871         j_index_start    = jindex[iidx];
872         j_index_end      = jindex[iidx+1];
873
874         /* Get outer coordinate index */
875         inr              = iinr[iidx];
876         i_coord_offset   = DIM*inr;
877
878         /* Load i particle coords and add shift vector */
879         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
880                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
881
882         fix0             = _mm_setzero_ps();
883         fiy0             = _mm_setzero_ps();
884         fiz0             = _mm_setzero_ps();
885         fix1             = _mm_setzero_ps();
886         fiy1             = _mm_setzero_ps();
887         fiz1             = _mm_setzero_ps();
888         fix2             = _mm_setzero_ps();
889         fiy2             = _mm_setzero_ps();
890         fiz2             = _mm_setzero_ps();
891
892         /* Start inner kernel loop */
893         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
894         {
895
896             /* Get j neighbor index, and coordinate index */
897             jnrA             = jjnr[jidx];
898             jnrB             = jjnr[jidx+1];
899             jnrC             = jjnr[jidx+2];
900             jnrD             = jjnr[jidx+3];
901             j_coord_offsetA  = DIM*jnrA;
902             j_coord_offsetB  = DIM*jnrB;
903             j_coord_offsetC  = DIM*jnrC;
904             j_coord_offsetD  = DIM*jnrD;
905
906             /* load j atom coordinates */
907             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
908                                               x+j_coord_offsetC,x+j_coord_offsetD,
909                                               &jx0,&jy0,&jz0);
910
911             /* Calculate displacement vector */
912             dx00             = _mm_sub_ps(ix0,jx0);
913             dy00             = _mm_sub_ps(iy0,jy0);
914             dz00             = _mm_sub_ps(iz0,jz0);
915             dx10             = _mm_sub_ps(ix1,jx0);
916             dy10             = _mm_sub_ps(iy1,jy0);
917             dz10             = _mm_sub_ps(iz1,jz0);
918             dx20             = _mm_sub_ps(ix2,jx0);
919             dy20             = _mm_sub_ps(iy2,jy0);
920             dz20             = _mm_sub_ps(iz2,jz0);
921
922             /* Calculate squared distance and things based on it */
923             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
924             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
925             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
926
927             rinv00           = gmx_mm_invsqrt_ps(rsq00);
928             rinv10           = gmx_mm_invsqrt_ps(rsq10);
929             rinv20           = gmx_mm_invsqrt_ps(rsq20);
930
931             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
932             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
933             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
934
935             /* Load parameters for j particles */
936             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
937                                                               charge+jnrC+0,charge+jnrD+0);
938             vdwjidx0A        = 2*vdwtype[jnrA+0];
939             vdwjidx0B        = 2*vdwtype[jnrB+0];
940             vdwjidx0C        = 2*vdwtype[jnrC+0];
941             vdwjidx0D        = 2*vdwtype[jnrD+0];
942
943             fjx0             = _mm_setzero_ps();
944             fjy0             = _mm_setzero_ps();
945             fjz0             = _mm_setzero_ps();
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             if (gmx_mm_any_lt(rsq00,rcutoff2))
952             {
953
954             r00              = _mm_mul_ps(rsq00,rinv00);
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq00             = _mm_mul_ps(iq0,jq0);
958             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
959                                          vdwparam+vdwioffset0+vdwjidx0B,
960                                          vdwparam+vdwioffset0+vdwjidx0C,
961                                          vdwparam+vdwioffset0+vdwjidx0D,
962                                          &c6_00,&c12_00);
963
964             /* EWALD ELECTROSTATICS */
965
966             /* Analytical PME correction */
967             zeta2            = _mm_mul_ps(beta2,rsq00);
968             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
969             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
970             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
971             felec            = _mm_mul_ps(qq00,felec);
972             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
973             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
974             velec            = _mm_mul_ps(qq00,velec);
975
976             /* LENNARD-JONES DISPERSION/REPULSION */
977
978             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
979             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
980             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
981             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
982             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
983
984             d                = _mm_sub_ps(r00,rswitch);
985             d                = _mm_max_ps(d,_mm_setzero_ps());
986             d2               = _mm_mul_ps(d,d);
987             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
988
989             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
990
991             /* Evaluate switch function */
992             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
993             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
994             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
995             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
996
997             fscal            = _mm_add_ps(felec,fvdw);
998
999             fscal            = _mm_and_ps(fscal,cutoff_mask);
1000
1001              /* Update vectorial force */
1002             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1003             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1004             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1005
1006             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1007             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1008             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1009
1010             }
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             if (gmx_mm_any_lt(rsq10,rcutoff2))
1017             {
1018
1019             r10              = _mm_mul_ps(rsq10,rinv10);
1020
1021             /* Compute parameters for interactions between i and j atoms */
1022             qq10             = _mm_mul_ps(iq1,jq0);
1023
1024             /* EWALD ELECTROSTATICS */
1025
1026             /* Analytical PME correction */
1027             zeta2            = _mm_mul_ps(beta2,rsq10);
1028             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1029             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1030             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1031             felec            = _mm_mul_ps(qq10,felec);
1032             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1033             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
1034             velec            = _mm_mul_ps(qq10,velec);
1035
1036             d                = _mm_sub_ps(r10,rswitch);
1037             d                = _mm_max_ps(d,_mm_setzero_ps());
1038             d2               = _mm_mul_ps(d,d);
1039             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1040
1041             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1042
1043             /* Evaluate switch function */
1044             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1045             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1046             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1047
1048             fscal            = felec;
1049
1050             fscal            = _mm_and_ps(fscal,cutoff_mask);
1051
1052              /* Update vectorial force */
1053             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1054             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1055             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1056
1057             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1058             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1059             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1060
1061             }
1062
1063             /**************************
1064              * CALCULATE INTERACTIONS *
1065              **************************/
1066
1067             if (gmx_mm_any_lt(rsq20,rcutoff2))
1068             {
1069
1070             r20              = _mm_mul_ps(rsq20,rinv20);
1071
1072             /* Compute parameters for interactions between i and j atoms */
1073             qq20             = _mm_mul_ps(iq2,jq0);
1074
1075             /* EWALD ELECTROSTATICS */
1076
1077             /* Analytical PME correction */
1078             zeta2            = _mm_mul_ps(beta2,rsq20);
1079             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1080             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1081             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1082             felec            = _mm_mul_ps(qq20,felec);
1083             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1084             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
1085             velec            = _mm_mul_ps(qq20,velec);
1086
1087             d                = _mm_sub_ps(r20,rswitch);
1088             d                = _mm_max_ps(d,_mm_setzero_ps());
1089             d2               = _mm_mul_ps(d,d);
1090             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1091
1092             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1093
1094             /* Evaluate switch function */
1095             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1096             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1097             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1098
1099             fscal            = felec;
1100
1101             fscal            = _mm_and_ps(fscal,cutoff_mask);
1102
1103              /* Update vectorial force */
1104             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1105             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1106             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1107
1108             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1109             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1110             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1111
1112             }
1113
1114             fjptrA             = f+j_coord_offsetA;
1115             fjptrB             = f+j_coord_offsetB;
1116             fjptrC             = f+j_coord_offsetC;
1117             fjptrD             = f+j_coord_offsetD;
1118
1119             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1120
1121             /* Inner loop uses 165 flops */
1122         }
1123
1124         if(jidx<j_index_end)
1125         {
1126
1127             /* Get j neighbor index, and coordinate index */
1128             jnrlistA         = jjnr[jidx];
1129             jnrlistB         = jjnr[jidx+1];
1130             jnrlistC         = jjnr[jidx+2];
1131             jnrlistD         = jjnr[jidx+3];
1132             /* Sign of each element will be negative for non-real atoms.
1133              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1134              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1135              */
1136             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1137             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1138             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1139             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1140             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1141             j_coord_offsetA  = DIM*jnrA;
1142             j_coord_offsetB  = DIM*jnrB;
1143             j_coord_offsetC  = DIM*jnrC;
1144             j_coord_offsetD  = DIM*jnrD;
1145
1146             /* load j atom coordinates */
1147             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1148                                               x+j_coord_offsetC,x+j_coord_offsetD,
1149                                               &jx0,&jy0,&jz0);
1150
1151             /* Calculate displacement vector */
1152             dx00             = _mm_sub_ps(ix0,jx0);
1153             dy00             = _mm_sub_ps(iy0,jy0);
1154             dz00             = _mm_sub_ps(iz0,jz0);
1155             dx10             = _mm_sub_ps(ix1,jx0);
1156             dy10             = _mm_sub_ps(iy1,jy0);
1157             dz10             = _mm_sub_ps(iz1,jz0);
1158             dx20             = _mm_sub_ps(ix2,jx0);
1159             dy20             = _mm_sub_ps(iy2,jy0);
1160             dz20             = _mm_sub_ps(iz2,jz0);
1161
1162             /* Calculate squared distance and things based on it */
1163             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1164             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1165             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1166
1167             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1168             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1169             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1170
1171             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1172             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1173             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1174
1175             /* Load parameters for j particles */
1176             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1177                                                               charge+jnrC+0,charge+jnrD+0);
1178             vdwjidx0A        = 2*vdwtype[jnrA+0];
1179             vdwjidx0B        = 2*vdwtype[jnrB+0];
1180             vdwjidx0C        = 2*vdwtype[jnrC+0];
1181             vdwjidx0D        = 2*vdwtype[jnrD+0];
1182
1183             fjx0             = _mm_setzero_ps();
1184             fjy0             = _mm_setzero_ps();
1185             fjz0             = _mm_setzero_ps();
1186
1187             /**************************
1188              * CALCULATE INTERACTIONS *
1189              **************************/
1190
1191             if (gmx_mm_any_lt(rsq00,rcutoff2))
1192             {
1193
1194             r00              = _mm_mul_ps(rsq00,rinv00);
1195             r00              = _mm_andnot_ps(dummy_mask,r00);
1196
1197             /* Compute parameters for interactions between i and j atoms */
1198             qq00             = _mm_mul_ps(iq0,jq0);
1199             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1200                                          vdwparam+vdwioffset0+vdwjidx0B,
1201                                          vdwparam+vdwioffset0+vdwjidx0C,
1202                                          vdwparam+vdwioffset0+vdwjidx0D,
1203                                          &c6_00,&c12_00);
1204
1205             /* EWALD ELECTROSTATICS */
1206
1207             /* Analytical PME correction */
1208             zeta2            = _mm_mul_ps(beta2,rsq00);
1209             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1210             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1211             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1212             felec            = _mm_mul_ps(qq00,felec);
1213             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1214             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
1215             velec            = _mm_mul_ps(qq00,velec);
1216
1217             /* LENNARD-JONES DISPERSION/REPULSION */
1218
1219             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1220             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1221             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1222             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
1223             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1224
1225             d                = _mm_sub_ps(r00,rswitch);
1226             d                = _mm_max_ps(d,_mm_setzero_ps());
1227             d2               = _mm_mul_ps(d,d);
1228             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1229
1230             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1231
1232             /* Evaluate switch function */
1233             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1234             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1235             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1236             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1237
1238             fscal            = _mm_add_ps(felec,fvdw);
1239
1240             fscal            = _mm_and_ps(fscal,cutoff_mask);
1241
1242             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1243
1244              /* Update vectorial force */
1245             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1246             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1247             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1248
1249             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1250             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1251             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1252
1253             }
1254
1255             /**************************
1256              * CALCULATE INTERACTIONS *
1257              **************************/
1258
1259             if (gmx_mm_any_lt(rsq10,rcutoff2))
1260             {
1261
1262             r10              = _mm_mul_ps(rsq10,rinv10);
1263             r10              = _mm_andnot_ps(dummy_mask,r10);
1264
1265             /* Compute parameters for interactions between i and j atoms */
1266             qq10             = _mm_mul_ps(iq1,jq0);
1267
1268             /* EWALD ELECTROSTATICS */
1269
1270             /* Analytical PME correction */
1271             zeta2            = _mm_mul_ps(beta2,rsq10);
1272             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1273             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1274             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1275             felec            = _mm_mul_ps(qq10,felec);
1276             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1277             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
1278             velec            = _mm_mul_ps(qq10,velec);
1279
1280             d                = _mm_sub_ps(r10,rswitch);
1281             d                = _mm_max_ps(d,_mm_setzero_ps());
1282             d2               = _mm_mul_ps(d,d);
1283             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1284
1285             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1286
1287             /* Evaluate switch function */
1288             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1289             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1290             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1291
1292             fscal            = felec;
1293
1294             fscal            = _mm_and_ps(fscal,cutoff_mask);
1295
1296             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1297
1298              /* Update vectorial force */
1299             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1300             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1301             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1302
1303             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1304             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1305             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1306
1307             }
1308
1309             /**************************
1310              * CALCULATE INTERACTIONS *
1311              **************************/
1312
1313             if (gmx_mm_any_lt(rsq20,rcutoff2))
1314             {
1315
1316             r20              = _mm_mul_ps(rsq20,rinv20);
1317             r20              = _mm_andnot_ps(dummy_mask,r20);
1318
1319             /* Compute parameters for interactions between i and j atoms */
1320             qq20             = _mm_mul_ps(iq2,jq0);
1321
1322             /* EWALD ELECTROSTATICS */
1323
1324             /* Analytical PME correction */
1325             zeta2            = _mm_mul_ps(beta2,rsq20);
1326             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1327             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1328             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1329             felec            = _mm_mul_ps(qq20,felec);
1330             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1331             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
1332             velec            = _mm_mul_ps(qq20,velec);
1333
1334             d                = _mm_sub_ps(r20,rswitch);
1335             d                = _mm_max_ps(d,_mm_setzero_ps());
1336             d2               = _mm_mul_ps(d,d);
1337             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1338
1339             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1340
1341             /* Evaluate switch function */
1342             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1343             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1344             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1345
1346             fscal            = felec;
1347
1348             fscal            = _mm_and_ps(fscal,cutoff_mask);
1349
1350             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1351
1352              /* Update vectorial force */
1353             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1354             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1355             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1356
1357             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1358             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1359             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1360
1361             }
1362
1363             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1364             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1365             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1366             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1367
1368             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1369
1370             /* Inner loop uses 168 flops */
1371         }
1372
1373         /* End of innermost loop */
1374
1375         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1376                                               f+i_coord_offset,fshift+i_shift_offset);
1377
1378         /* Increment number of inner iterations */
1379         inneriter                  += j_index_end - j_index_start;
1380
1381         /* Outer loop uses 18 flops */
1382     }
1383
1384     /* Increment number of outer iterations */
1385     outeriter        += nri;
1386
1387     /* Update outer/inner flops */
1388
1389     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*168);
1390 }