Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          ewitab;
103     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
105     real             *ewtab;
106     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
107     real             rswitch_scalar,d_scalar;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
130     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
131     beta2            = _mm_mul_ps(beta,beta);
132     beta3            = _mm_mul_ps(beta,beta2);
133     ewtab            = fr->ic->tabq_coul_FDV0;
134     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
135     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
140     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
141     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
142     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
143
144     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
145     rcutoff_scalar   = fr->rcoulomb;
146     rcutoff          = _mm_set1_ps(rcutoff_scalar);
147     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
148
149     rswitch_scalar   = fr->rcoulomb_switch;
150     rswitch          = _mm_set1_ps(rswitch_scalar);
151     /* Setup switch parameters */
152     d_scalar         = rcutoff_scalar-rswitch_scalar;
153     d                = _mm_set1_ps(d_scalar);
154     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
155     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
156     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
157     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
158     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
159     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
160
161     /* Avoid stupid compiler warnings */
162     jnrA = jnrB = jnrC = jnrD = 0;
163     j_coord_offsetA = 0;
164     j_coord_offsetB = 0;
165     j_coord_offsetC = 0;
166     j_coord_offsetD = 0;
167
168     outeriter        = 0;
169     inneriter        = 0;
170
171     for(iidx=0;iidx<4*DIM;iidx++)
172     {
173         scratch[iidx] = 0.0;
174     }
175
176     /* Start outer loop over neighborlists */
177     for(iidx=0; iidx<nri; iidx++)
178     {
179         /* Load shift vector for this list */
180         i_shift_offset   = DIM*shiftidx[iidx];
181
182         /* Load limits for loop over neighbors */
183         j_index_start    = jindex[iidx];
184         j_index_end      = jindex[iidx+1];
185
186         /* Get outer coordinate index */
187         inr              = iinr[iidx];
188         i_coord_offset   = DIM*inr;
189
190         /* Load i particle coords and add shift vector */
191         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
192                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
193
194         fix0             = _mm_setzero_ps();
195         fiy0             = _mm_setzero_ps();
196         fiz0             = _mm_setzero_ps();
197         fix1             = _mm_setzero_ps();
198         fiy1             = _mm_setzero_ps();
199         fiz1             = _mm_setzero_ps();
200         fix2             = _mm_setzero_ps();
201         fiy2             = _mm_setzero_ps();
202         fiz2             = _mm_setzero_ps();
203
204         /* Reset potential sums */
205         velecsum         = _mm_setzero_ps();
206         vvdwsum          = _mm_setzero_ps();
207
208         /* Start inner kernel loop */
209         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
210         {
211
212             /* Get j neighbor index, and coordinate index */
213             jnrA             = jjnr[jidx];
214             jnrB             = jjnr[jidx+1];
215             jnrC             = jjnr[jidx+2];
216             jnrD             = jjnr[jidx+3];
217             j_coord_offsetA  = DIM*jnrA;
218             j_coord_offsetB  = DIM*jnrB;
219             j_coord_offsetC  = DIM*jnrC;
220             j_coord_offsetD  = DIM*jnrD;
221
222             /* load j atom coordinates */
223             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
224                                               x+j_coord_offsetC,x+j_coord_offsetD,
225                                               &jx0,&jy0,&jz0);
226
227             /* Calculate displacement vector */
228             dx00             = _mm_sub_ps(ix0,jx0);
229             dy00             = _mm_sub_ps(iy0,jy0);
230             dz00             = _mm_sub_ps(iz0,jz0);
231             dx10             = _mm_sub_ps(ix1,jx0);
232             dy10             = _mm_sub_ps(iy1,jy0);
233             dz10             = _mm_sub_ps(iz1,jz0);
234             dx20             = _mm_sub_ps(ix2,jx0);
235             dy20             = _mm_sub_ps(iy2,jy0);
236             dz20             = _mm_sub_ps(iz2,jz0);
237
238             /* Calculate squared distance and things based on it */
239             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
240             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
241             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
242
243             rinv00           = gmx_mm_invsqrt_ps(rsq00);
244             rinv10           = gmx_mm_invsqrt_ps(rsq10);
245             rinv20           = gmx_mm_invsqrt_ps(rsq20);
246
247             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
248             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
249             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
250
251             /* Load parameters for j particles */
252             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
253                                                               charge+jnrC+0,charge+jnrD+0);
254             vdwjidx0A        = 2*vdwtype[jnrA+0];
255             vdwjidx0B        = 2*vdwtype[jnrB+0];
256             vdwjidx0C        = 2*vdwtype[jnrC+0];
257             vdwjidx0D        = 2*vdwtype[jnrD+0];
258
259             fjx0             = _mm_setzero_ps();
260             fjy0             = _mm_setzero_ps();
261             fjz0             = _mm_setzero_ps();
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             if (gmx_mm_any_lt(rsq00,rcutoff2))
268             {
269
270             r00              = _mm_mul_ps(rsq00,rinv00);
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq00             = _mm_mul_ps(iq0,jq0);
274             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
275                                          vdwparam+vdwioffset0+vdwjidx0B,
276                                          vdwparam+vdwioffset0+vdwjidx0C,
277                                          vdwparam+vdwioffset0+vdwjidx0D,
278                                          &c6_00,&c12_00);
279
280             /* EWALD ELECTROSTATICS */
281
282             /* Analytical PME correction */
283             zeta2            = _mm_mul_ps(beta2,rsq00);
284             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
285             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
286             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
287             felec            = _mm_mul_ps(qq00,felec);
288             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
289             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
290             velec            = _mm_mul_ps(qq00,velec);
291
292             /* LENNARD-JONES DISPERSION/REPULSION */
293
294             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
295             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
296             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
297             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
298             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
299
300             d                = _mm_sub_ps(r00,rswitch);
301             d                = _mm_max_ps(d,_mm_setzero_ps());
302             d2               = _mm_mul_ps(d,d);
303             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
304
305             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
306
307             /* Evaluate switch function */
308             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
309             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
310             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
311             velec            = _mm_mul_ps(velec,sw);
312             vvdw             = _mm_mul_ps(vvdw,sw);
313             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velec            = _mm_and_ps(velec,cutoff_mask);
317             velecsum         = _mm_add_ps(velecsum,velec);
318             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
319             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
320
321             fscal            = _mm_add_ps(felec,fvdw);
322
323             fscal            = _mm_and_ps(fscal,cutoff_mask);
324
325              /* Update vectorial force */
326             fix0             = _mm_macc_ps(dx00,fscal,fix0);
327             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
328             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
329
330             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
331             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
332             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
333
334             }
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             if (gmx_mm_any_lt(rsq10,rcutoff2))
341             {
342
343             r10              = _mm_mul_ps(rsq10,rinv10);
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq10             = _mm_mul_ps(iq1,jq0);
347
348             /* EWALD ELECTROSTATICS */
349
350             /* Analytical PME correction */
351             zeta2            = _mm_mul_ps(beta2,rsq10);
352             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
353             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
354             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
355             felec            = _mm_mul_ps(qq10,felec);
356             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
357             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
358             velec            = _mm_mul_ps(qq10,velec);
359
360             d                = _mm_sub_ps(r10,rswitch);
361             d                = _mm_max_ps(d,_mm_setzero_ps());
362             d2               = _mm_mul_ps(d,d);
363             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
364
365             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
366
367             /* Evaluate switch function */
368             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
369             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
370             velec            = _mm_mul_ps(velec,sw);
371             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velec            = _mm_and_ps(velec,cutoff_mask);
375             velecsum         = _mm_add_ps(velecsum,velec);
376
377             fscal            = felec;
378
379             fscal            = _mm_and_ps(fscal,cutoff_mask);
380
381              /* Update vectorial force */
382             fix1             = _mm_macc_ps(dx10,fscal,fix1);
383             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
384             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
385
386             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
387             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
388             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
389
390             }
391
392             /**************************
393              * CALCULATE INTERACTIONS *
394              **************************/
395
396             if (gmx_mm_any_lt(rsq20,rcutoff2))
397             {
398
399             r20              = _mm_mul_ps(rsq20,rinv20);
400
401             /* Compute parameters for interactions between i and j atoms */
402             qq20             = _mm_mul_ps(iq2,jq0);
403
404             /* EWALD ELECTROSTATICS */
405
406             /* Analytical PME correction */
407             zeta2            = _mm_mul_ps(beta2,rsq20);
408             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
409             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
410             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
411             felec            = _mm_mul_ps(qq20,felec);
412             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
413             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
414             velec            = _mm_mul_ps(qq20,velec);
415
416             d                = _mm_sub_ps(r20,rswitch);
417             d                = _mm_max_ps(d,_mm_setzero_ps());
418             d2               = _mm_mul_ps(d,d);
419             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
420
421             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
422
423             /* Evaluate switch function */
424             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
425             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
426             velec            = _mm_mul_ps(velec,sw);
427             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
428
429             /* Update potential sum for this i atom from the interaction with this j atom. */
430             velec            = _mm_and_ps(velec,cutoff_mask);
431             velecsum         = _mm_add_ps(velecsum,velec);
432
433             fscal            = felec;
434
435             fscal            = _mm_and_ps(fscal,cutoff_mask);
436
437              /* Update vectorial force */
438             fix2             = _mm_macc_ps(dx20,fscal,fix2);
439             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
440             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
441
442             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
443             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
444             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
445
446             }
447
448             fjptrA             = f+j_coord_offsetA;
449             fjptrB             = f+j_coord_offsetB;
450             fjptrC             = f+j_coord_offsetC;
451             fjptrD             = f+j_coord_offsetD;
452
453             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
454
455             /* Inner loop uses 177 flops */
456         }
457
458         if(jidx<j_index_end)
459         {
460
461             /* Get j neighbor index, and coordinate index */
462             jnrlistA         = jjnr[jidx];
463             jnrlistB         = jjnr[jidx+1];
464             jnrlistC         = jjnr[jidx+2];
465             jnrlistD         = jjnr[jidx+3];
466             /* Sign of each element will be negative for non-real atoms.
467              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
468              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
469              */
470             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
471             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
472             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
473             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
474             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
475             j_coord_offsetA  = DIM*jnrA;
476             j_coord_offsetB  = DIM*jnrB;
477             j_coord_offsetC  = DIM*jnrC;
478             j_coord_offsetD  = DIM*jnrD;
479
480             /* load j atom coordinates */
481             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
482                                               x+j_coord_offsetC,x+j_coord_offsetD,
483                                               &jx0,&jy0,&jz0);
484
485             /* Calculate displacement vector */
486             dx00             = _mm_sub_ps(ix0,jx0);
487             dy00             = _mm_sub_ps(iy0,jy0);
488             dz00             = _mm_sub_ps(iz0,jz0);
489             dx10             = _mm_sub_ps(ix1,jx0);
490             dy10             = _mm_sub_ps(iy1,jy0);
491             dz10             = _mm_sub_ps(iz1,jz0);
492             dx20             = _mm_sub_ps(ix2,jx0);
493             dy20             = _mm_sub_ps(iy2,jy0);
494             dz20             = _mm_sub_ps(iz2,jz0);
495
496             /* Calculate squared distance and things based on it */
497             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
498             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
499             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
500
501             rinv00           = gmx_mm_invsqrt_ps(rsq00);
502             rinv10           = gmx_mm_invsqrt_ps(rsq10);
503             rinv20           = gmx_mm_invsqrt_ps(rsq20);
504
505             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
506             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
507             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
508
509             /* Load parameters for j particles */
510             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
511                                                               charge+jnrC+0,charge+jnrD+0);
512             vdwjidx0A        = 2*vdwtype[jnrA+0];
513             vdwjidx0B        = 2*vdwtype[jnrB+0];
514             vdwjidx0C        = 2*vdwtype[jnrC+0];
515             vdwjidx0D        = 2*vdwtype[jnrD+0];
516
517             fjx0             = _mm_setzero_ps();
518             fjy0             = _mm_setzero_ps();
519             fjz0             = _mm_setzero_ps();
520
521             /**************************
522              * CALCULATE INTERACTIONS *
523              **************************/
524
525             if (gmx_mm_any_lt(rsq00,rcutoff2))
526             {
527
528             r00              = _mm_mul_ps(rsq00,rinv00);
529             r00              = _mm_andnot_ps(dummy_mask,r00);
530
531             /* Compute parameters for interactions between i and j atoms */
532             qq00             = _mm_mul_ps(iq0,jq0);
533             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
534                                          vdwparam+vdwioffset0+vdwjidx0B,
535                                          vdwparam+vdwioffset0+vdwjidx0C,
536                                          vdwparam+vdwioffset0+vdwjidx0D,
537                                          &c6_00,&c12_00);
538
539             /* EWALD ELECTROSTATICS */
540
541             /* Analytical PME correction */
542             zeta2            = _mm_mul_ps(beta2,rsq00);
543             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
544             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
545             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
546             felec            = _mm_mul_ps(qq00,felec);
547             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
548             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
549             velec            = _mm_mul_ps(qq00,velec);
550
551             /* LENNARD-JONES DISPERSION/REPULSION */
552
553             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
554             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
555             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
556             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
557             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
558
559             d                = _mm_sub_ps(r00,rswitch);
560             d                = _mm_max_ps(d,_mm_setzero_ps());
561             d2               = _mm_mul_ps(d,d);
562             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
563
564             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
565
566             /* Evaluate switch function */
567             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
568             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
569             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
570             velec            = _mm_mul_ps(velec,sw);
571             vvdw             = _mm_mul_ps(vvdw,sw);
572             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
573
574             /* Update potential sum for this i atom from the interaction with this j atom. */
575             velec            = _mm_and_ps(velec,cutoff_mask);
576             velec            = _mm_andnot_ps(dummy_mask,velec);
577             velecsum         = _mm_add_ps(velecsum,velec);
578             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
579             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
580             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
581
582             fscal            = _mm_add_ps(felec,fvdw);
583
584             fscal            = _mm_and_ps(fscal,cutoff_mask);
585
586             fscal            = _mm_andnot_ps(dummy_mask,fscal);
587
588              /* Update vectorial force */
589             fix0             = _mm_macc_ps(dx00,fscal,fix0);
590             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
591             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
592
593             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
594             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
595             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
596
597             }
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             if (gmx_mm_any_lt(rsq10,rcutoff2))
604             {
605
606             r10              = _mm_mul_ps(rsq10,rinv10);
607             r10              = _mm_andnot_ps(dummy_mask,r10);
608
609             /* Compute parameters for interactions between i and j atoms */
610             qq10             = _mm_mul_ps(iq1,jq0);
611
612             /* EWALD ELECTROSTATICS */
613
614             /* Analytical PME correction */
615             zeta2            = _mm_mul_ps(beta2,rsq10);
616             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
617             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
618             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
619             felec            = _mm_mul_ps(qq10,felec);
620             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
621             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
622             velec            = _mm_mul_ps(qq10,velec);
623
624             d                = _mm_sub_ps(r10,rswitch);
625             d                = _mm_max_ps(d,_mm_setzero_ps());
626             d2               = _mm_mul_ps(d,d);
627             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
628
629             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
630
631             /* Evaluate switch function */
632             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
633             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
634             velec            = _mm_mul_ps(velec,sw);
635             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
636
637             /* Update potential sum for this i atom from the interaction with this j atom. */
638             velec            = _mm_and_ps(velec,cutoff_mask);
639             velec            = _mm_andnot_ps(dummy_mask,velec);
640             velecsum         = _mm_add_ps(velecsum,velec);
641
642             fscal            = felec;
643
644             fscal            = _mm_and_ps(fscal,cutoff_mask);
645
646             fscal            = _mm_andnot_ps(dummy_mask,fscal);
647
648              /* Update vectorial force */
649             fix1             = _mm_macc_ps(dx10,fscal,fix1);
650             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
651             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
652
653             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
654             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
655             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
656
657             }
658
659             /**************************
660              * CALCULATE INTERACTIONS *
661              **************************/
662
663             if (gmx_mm_any_lt(rsq20,rcutoff2))
664             {
665
666             r20              = _mm_mul_ps(rsq20,rinv20);
667             r20              = _mm_andnot_ps(dummy_mask,r20);
668
669             /* Compute parameters for interactions between i and j atoms */
670             qq20             = _mm_mul_ps(iq2,jq0);
671
672             /* EWALD ELECTROSTATICS */
673
674             /* Analytical PME correction */
675             zeta2            = _mm_mul_ps(beta2,rsq20);
676             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
677             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
678             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
679             felec            = _mm_mul_ps(qq20,felec);
680             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
681             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
682             velec            = _mm_mul_ps(qq20,velec);
683
684             d                = _mm_sub_ps(r20,rswitch);
685             d                = _mm_max_ps(d,_mm_setzero_ps());
686             d2               = _mm_mul_ps(d,d);
687             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
688
689             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
690
691             /* Evaluate switch function */
692             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
693             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
694             velec            = _mm_mul_ps(velec,sw);
695             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
696
697             /* Update potential sum for this i atom from the interaction with this j atom. */
698             velec            = _mm_and_ps(velec,cutoff_mask);
699             velec            = _mm_andnot_ps(dummy_mask,velec);
700             velecsum         = _mm_add_ps(velecsum,velec);
701
702             fscal            = felec;
703
704             fscal            = _mm_and_ps(fscal,cutoff_mask);
705
706             fscal            = _mm_andnot_ps(dummy_mask,fscal);
707
708              /* Update vectorial force */
709             fix2             = _mm_macc_ps(dx20,fscal,fix2);
710             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
711             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
712
713             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
714             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
715             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
716
717             }
718
719             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
720             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
721             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
722             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
723
724             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
725
726             /* Inner loop uses 180 flops */
727         }
728
729         /* End of innermost loop */
730
731         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
732                                               f+i_coord_offset,fshift+i_shift_offset);
733
734         ggid                        = gid[iidx];
735         /* Update potential energies */
736         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
737         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
738
739         /* Increment number of inner iterations */
740         inneriter                  += j_index_end - j_index_start;
741
742         /* Outer loop uses 20 flops */
743     }
744
745     /* Increment number of outer iterations */
746     outeriter        += nri;
747
748     /* Update outer/inner flops */
749
750     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*180);
751 }
752 /*
753  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_128_fma_single
754  * Electrostatics interaction: Ewald
755  * VdW interaction:            LennardJones
756  * Geometry:                   Water3-Particle
757  * Calculate force/pot:        Force
758  */
759 void
760 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_128_fma_single
761                     (t_nblist                    * gmx_restrict       nlist,
762                      rvec                        * gmx_restrict          xx,
763                      rvec                        * gmx_restrict          ff,
764                      t_forcerec                  * gmx_restrict          fr,
765                      t_mdatoms                   * gmx_restrict     mdatoms,
766                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
767                      t_nrnb                      * gmx_restrict        nrnb)
768 {
769     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
770      * just 0 for non-waters.
771      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
772      * jnr indices corresponding to data put in the four positions in the SIMD register.
773      */
774     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
775     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
776     int              jnrA,jnrB,jnrC,jnrD;
777     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
778     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
779     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
780     real             rcutoff_scalar;
781     real             *shiftvec,*fshift,*x,*f;
782     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
783     real             scratch[4*DIM];
784     __m128           fscal,rcutoff,rcutoff2,jidxall;
785     int              vdwioffset0;
786     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
787     int              vdwioffset1;
788     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
789     int              vdwioffset2;
790     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
791     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
792     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
793     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
794     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
795     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
796     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
797     real             *charge;
798     int              nvdwtype;
799     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
800     int              *vdwtype;
801     real             *vdwparam;
802     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
803     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
804     __m128i          ewitab;
805     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
806     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
807     real             *ewtab;
808     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
809     real             rswitch_scalar,d_scalar;
810     __m128           dummy_mask,cutoff_mask;
811     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
812     __m128           one     = _mm_set1_ps(1.0);
813     __m128           two     = _mm_set1_ps(2.0);
814     x                = xx[0];
815     f                = ff[0];
816
817     nri              = nlist->nri;
818     iinr             = nlist->iinr;
819     jindex           = nlist->jindex;
820     jjnr             = nlist->jjnr;
821     shiftidx         = nlist->shift;
822     gid              = nlist->gid;
823     shiftvec         = fr->shift_vec[0];
824     fshift           = fr->fshift[0];
825     facel            = _mm_set1_ps(fr->epsfac);
826     charge           = mdatoms->chargeA;
827     nvdwtype         = fr->ntype;
828     vdwparam         = fr->nbfp;
829     vdwtype          = mdatoms->typeA;
830
831     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
832     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
833     beta2            = _mm_mul_ps(beta,beta);
834     beta3            = _mm_mul_ps(beta,beta2);
835     ewtab            = fr->ic->tabq_coul_FDV0;
836     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
837     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
838
839     /* Setup water-specific parameters */
840     inr              = nlist->iinr[0];
841     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
842     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
843     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
844     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
845
846     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
847     rcutoff_scalar   = fr->rcoulomb;
848     rcutoff          = _mm_set1_ps(rcutoff_scalar);
849     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
850
851     rswitch_scalar   = fr->rcoulomb_switch;
852     rswitch          = _mm_set1_ps(rswitch_scalar);
853     /* Setup switch parameters */
854     d_scalar         = rcutoff_scalar-rswitch_scalar;
855     d                = _mm_set1_ps(d_scalar);
856     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
857     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
858     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
859     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
860     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
861     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
862
863     /* Avoid stupid compiler warnings */
864     jnrA = jnrB = jnrC = jnrD = 0;
865     j_coord_offsetA = 0;
866     j_coord_offsetB = 0;
867     j_coord_offsetC = 0;
868     j_coord_offsetD = 0;
869
870     outeriter        = 0;
871     inneriter        = 0;
872
873     for(iidx=0;iidx<4*DIM;iidx++)
874     {
875         scratch[iidx] = 0.0;
876     }
877
878     /* Start outer loop over neighborlists */
879     for(iidx=0; iidx<nri; iidx++)
880     {
881         /* Load shift vector for this list */
882         i_shift_offset   = DIM*shiftidx[iidx];
883
884         /* Load limits for loop over neighbors */
885         j_index_start    = jindex[iidx];
886         j_index_end      = jindex[iidx+1];
887
888         /* Get outer coordinate index */
889         inr              = iinr[iidx];
890         i_coord_offset   = DIM*inr;
891
892         /* Load i particle coords and add shift vector */
893         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
894                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
895
896         fix0             = _mm_setzero_ps();
897         fiy0             = _mm_setzero_ps();
898         fiz0             = _mm_setzero_ps();
899         fix1             = _mm_setzero_ps();
900         fiy1             = _mm_setzero_ps();
901         fiz1             = _mm_setzero_ps();
902         fix2             = _mm_setzero_ps();
903         fiy2             = _mm_setzero_ps();
904         fiz2             = _mm_setzero_ps();
905
906         /* Start inner kernel loop */
907         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
908         {
909
910             /* Get j neighbor index, and coordinate index */
911             jnrA             = jjnr[jidx];
912             jnrB             = jjnr[jidx+1];
913             jnrC             = jjnr[jidx+2];
914             jnrD             = jjnr[jidx+3];
915             j_coord_offsetA  = DIM*jnrA;
916             j_coord_offsetB  = DIM*jnrB;
917             j_coord_offsetC  = DIM*jnrC;
918             j_coord_offsetD  = DIM*jnrD;
919
920             /* load j atom coordinates */
921             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
922                                               x+j_coord_offsetC,x+j_coord_offsetD,
923                                               &jx0,&jy0,&jz0);
924
925             /* Calculate displacement vector */
926             dx00             = _mm_sub_ps(ix0,jx0);
927             dy00             = _mm_sub_ps(iy0,jy0);
928             dz00             = _mm_sub_ps(iz0,jz0);
929             dx10             = _mm_sub_ps(ix1,jx0);
930             dy10             = _mm_sub_ps(iy1,jy0);
931             dz10             = _mm_sub_ps(iz1,jz0);
932             dx20             = _mm_sub_ps(ix2,jx0);
933             dy20             = _mm_sub_ps(iy2,jy0);
934             dz20             = _mm_sub_ps(iz2,jz0);
935
936             /* Calculate squared distance and things based on it */
937             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
938             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
939             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
940
941             rinv00           = gmx_mm_invsqrt_ps(rsq00);
942             rinv10           = gmx_mm_invsqrt_ps(rsq10);
943             rinv20           = gmx_mm_invsqrt_ps(rsq20);
944
945             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
946             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
947             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
948
949             /* Load parameters for j particles */
950             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
951                                                               charge+jnrC+0,charge+jnrD+0);
952             vdwjidx0A        = 2*vdwtype[jnrA+0];
953             vdwjidx0B        = 2*vdwtype[jnrB+0];
954             vdwjidx0C        = 2*vdwtype[jnrC+0];
955             vdwjidx0D        = 2*vdwtype[jnrD+0];
956
957             fjx0             = _mm_setzero_ps();
958             fjy0             = _mm_setzero_ps();
959             fjz0             = _mm_setzero_ps();
960
961             /**************************
962              * CALCULATE INTERACTIONS *
963              **************************/
964
965             if (gmx_mm_any_lt(rsq00,rcutoff2))
966             {
967
968             r00              = _mm_mul_ps(rsq00,rinv00);
969
970             /* Compute parameters for interactions between i and j atoms */
971             qq00             = _mm_mul_ps(iq0,jq0);
972             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
973                                          vdwparam+vdwioffset0+vdwjidx0B,
974                                          vdwparam+vdwioffset0+vdwjidx0C,
975                                          vdwparam+vdwioffset0+vdwjidx0D,
976                                          &c6_00,&c12_00);
977
978             /* EWALD ELECTROSTATICS */
979
980             /* Analytical PME correction */
981             zeta2            = _mm_mul_ps(beta2,rsq00);
982             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
983             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
984             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
985             felec            = _mm_mul_ps(qq00,felec);
986             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
987             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
988             velec            = _mm_mul_ps(qq00,velec);
989
990             /* LENNARD-JONES DISPERSION/REPULSION */
991
992             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
993             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
994             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
995             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
996             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
997
998             d                = _mm_sub_ps(r00,rswitch);
999             d                = _mm_max_ps(d,_mm_setzero_ps());
1000             d2               = _mm_mul_ps(d,d);
1001             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1002
1003             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1004
1005             /* Evaluate switch function */
1006             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1007             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1008             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1009             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1010
1011             fscal            = _mm_add_ps(felec,fvdw);
1012
1013             fscal            = _mm_and_ps(fscal,cutoff_mask);
1014
1015              /* Update vectorial force */
1016             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1017             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1018             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1019
1020             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1021             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1022             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1023
1024             }
1025
1026             /**************************
1027              * CALCULATE INTERACTIONS *
1028              **************************/
1029
1030             if (gmx_mm_any_lt(rsq10,rcutoff2))
1031             {
1032
1033             r10              = _mm_mul_ps(rsq10,rinv10);
1034
1035             /* Compute parameters for interactions between i and j atoms */
1036             qq10             = _mm_mul_ps(iq1,jq0);
1037
1038             /* EWALD ELECTROSTATICS */
1039
1040             /* Analytical PME correction */
1041             zeta2            = _mm_mul_ps(beta2,rsq10);
1042             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1043             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1044             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1045             felec            = _mm_mul_ps(qq10,felec);
1046             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1047             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
1048             velec            = _mm_mul_ps(qq10,velec);
1049
1050             d                = _mm_sub_ps(r10,rswitch);
1051             d                = _mm_max_ps(d,_mm_setzero_ps());
1052             d2               = _mm_mul_ps(d,d);
1053             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1054
1055             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1056
1057             /* Evaluate switch function */
1058             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1059             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1060             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1061
1062             fscal            = felec;
1063
1064             fscal            = _mm_and_ps(fscal,cutoff_mask);
1065
1066              /* Update vectorial force */
1067             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1068             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1069             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1070
1071             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1072             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1073             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1074
1075             }
1076
1077             /**************************
1078              * CALCULATE INTERACTIONS *
1079              **************************/
1080
1081             if (gmx_mm_any_lt(rsq20,rcutoff2))
1082             {
1083
1084             r20              = _mm_mul_ps(rsq20,rinv20);
1085
1086             /* Compute parameters for interactions between i and j atoms */
1087             qq20             = _mm_mul_ps(iq2,jq0);
1088
1089             /* EWALD ELECTROSTATICS */
1090
1091             /* Analytical PME correction */
1092             zeta2            = _mm_mul_ps(beta2,rsq20);
1093             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1094             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1095             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1096             felec            = _mm_mul_ps(qq20,felec);
1097             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1098             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
1099             velec            = _mm_mul_ps(qq20,velec);
1100
1101             d                = _mm_sub_ps(r20,rswitch);
1102             d                = _mm_max_ps(d,_mm_setzero_ps());
1103             d2               = _mm_mul_ps(d,d);
1104             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1105
1106             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1107
1108             /* Evaluate switch function */
1109             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1110             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1111             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1112
1113             fscal            = felec;
1114
1115             fscal            = _mm_and_ps(fscal,cutoff_mask);
1116
1117              /* Update vectorial force */
1118             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1119             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1120             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1121
1122             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1123             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1124             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1125
1126             }
1127
1128             fjptrA             = f+j_coord_offsetA;
1129             fjptrB             = f+j_coord_offsetB;
1130             fjptrC             = f+j_coord_offsetC;
1131             fjptrD             = f+j_coord_offsetD;
1132
1133             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1134
1135             /* Inner loop uses 165 flops */
1136         }
1137
1138         if(jidx<j_index_end)
1139         {
1140
1141             /* Get j neighbor index, and coordinate index */
1142             jnrlistA         = jjnr[jidx];
1143             jnrlistB         = jjnr[jidx+1];
1144             jnrlistC         = jjnr[jidx+2];
1145             jnrlistD         = jjnr[jidx+3];
1146             /* Sign of each element will be negative for non-real atoms.
1147              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1148              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1149              */
1150             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1151             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1152             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1153             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1154             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1155             j_coord_offsetA  = DIM*jnrA;
1156             j_coord_offsetB  = DIM*jnrB;
1157             j_coord_offsetC  = DIM*jnrC;
1158             j_coord_offsetD  = DIM*jnrD;
1159
1160             /* load j atom coordinates */
1161             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1162                                               x+j_coord_offsetC,x+j_coord_offsetD,
1163                                               &jx0,&jy0,&jz0);
1164
1165             /* Calculate displacement vector */
1166             dx00             = _mm_sub_ps(ix0,jx0);
1167             dy00             = _mm_sub_ps(iy0,jy0);
1168             dz00             = _mm_sub_ps(iz0,jz0);
1169             dx10             = _mm_sub_ps(ix1,jx0);
1170             dy10             = _mm_sub_ps(iy1,jy0);
1171             dz10             = _mm_sub_ps(iz1,jz0);
1172             dx20             = _mm_sub_ps(ix2,jx0);
1173             dy20             = _mm_sub_ps(iy2,jy0);
1174             dz20             = _mm_sub_ps(iz2,jz0);
1175
1176             /* Calculate squared distance and things based on it */
1177             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1178             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1179             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1180
1181             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1182             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1183             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1184
1185             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1186             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1187             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1188
1189             /* Load parameters for j particles */
1190             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1191                                                               charge+jnrC+0,charge+jnrD+0);
1192             vdwjidx0A        = 2*vdwtype[jnrA+0];
1193             vdwjidx0B        = 2*vdwtype[jnrB+0];
1194             vdwjidx0C        = 2*vdwtype[jnrC+0];
1195             vdwjidx0D        = 2*vdwtype[jnrD+0];
1196
1197             fjx0             = _mm_setzero_ps();
1198             fjy0             = _mm_setzero_ps();
1199             fjz0             = _mm_setzero_ps();
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             if (gmx_mm_any_lt(rsq00,rcutoff2))
1206             {
1207
1208             r00              = _mm_mul_ps(rsq00,rinv00);
1209             r00              = _mm_andnot_ps(dummy_mask,r00);
1210
1211             /* Compute parameters for interactions between i and j atoms */
1212             qq00             = _mm_mul_ps(iq0,jq0);
1213             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1214                                          vdwparam+vdwioffset0+vdwjidx0B,
1215                                          vdwparam+vdwioffset0+vdwjidx0C,
1216                                          vdwparam+vdwioffset0+vdwjidx0D,
1217                                          &c6_00,&c12_00);
1218
1219             /* EWALD ELECTROSTATICS */
1220
1221             /* Analytical PME correction */
1222             zeta2            = _mm_mul_ps(beta2,rsq00);
1223             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
1224             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1225             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1226             felec            = _mm_mul_ps(qq00,felec);
1227             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1228             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
1229             velec            = _mm_mul_ps(qq00,velec);
1230
1231             /* LENNARD-JONES DISPERSION/REPULSION */
1232
1233             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1234             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1235             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1236             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
1237             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1238
1239             d                = _mm_sub_ps(r00,rswitch);
1240             d                = _mm_max_ps(d,_mm_setzero_ps());
1241             d2               = _mm_mul_ps(d,d);
1242             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1243
1244             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1245
1246             /* Evaluate switch function */
1247             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1248             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1249             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1250             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1251
1252             fscal            = _mm_add_ps(felec,fvdw);
1253
1254             fscal            = _mm_and_ps(fscal,cutoff_mask);
1255
1256             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1257
1258              /* Update vectorial force */
1259             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1260             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1261             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1262
1263             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1264             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1265             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1266
1267             }
1268
1269             /**************************
1270              * CALCULATE INTERACTIONS *
1271              **************************/
1272
1273             if (gmx_mm_any_lt(rsq10,rcutoff2))
1274             {
1275
1276             r10              = _mm_mul_ps(rsq10,rinv10);
1277             r10              = _mm_andnot_ps(dummy_mask,r10);
1278
1279             /* Compute parameters for interactions between i and j atoms */
1280             qq10             = _mm_mul_ps(iq1,jq0);
1281
1282             /* EWALD ELECTROSTATICS */
1283
1284             /* Analytical PME correction */
1285             zeta2            = _mm_mul_ps(beta2,rsq10);
1286             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1287             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1288             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1289             felec            = _mm_mul_ps(qq10,felec);
1290             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1291             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
1292             velec            = _mm_mul_ps(qq10,velec);
1293
1294             d                = _mm_sub_ps(r10,rswitch);
1295             d                = _mm_max_ps(d,_mm_setzero_ps());
1296             d2               = _mm_mul_ps(d,d);
1297             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1298
1299             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1300
1301             /* Evaluate switch function */
1302             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1303             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1304             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1305
1306             fscal            = felec;
1307
1308             fscal            = _mm_and_ps(fscal,cutoff_mask);
1309
1310             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1311
1312              /* Update vectorial force */
1313             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1314             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1315             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1316
1317             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1318             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1319             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1320
1321             }
1322
1323             /**************************
1324              * CALCULATE INTERACTIONS *
1325              **************************/
1326
1327             if (gmx_mm_any_lt(rsq20,rcutoff2))
1328             {
1329
1330             r20              = _mm_mul_ps(rsq20,rinv20);
1331             r20              = _mm_andnot_ps(dummy_mask,r20);
1332
1333             /* Compute parameters for interactions between i and j atoms */
1334             qq20             = _mm_mul_ps(iq2,jq0);
1335
1336             /* EWALD ELECTROSTATICS */
1337
1338             /* Analytical PME correction */
1339             zeta2            = _mm_mul_ps(beta2,rsq20);
1340             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1341             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1342             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1343             felec            = _mm_mul_ps(qq20,felec);
1344             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1345             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
1346             velec            = _mm_mul_ps(qq20,velec);
1347
1348             d                = _mm_sub_ps(r20,rswitch);
1349             d                = _mm_max_ps(d,_mm_setzero_ps());
1350             d2               = _mm_mul_ps(d,d);
1351             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1352
1353             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1354
1355             /* Evaluate switch function */
1356             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1357             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1358             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1359
1360             fscal            = felec;
1361
1362             fscal            = _mm_and_ps(fscal,cutoff_mask);
1363
1364             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1365
1366              /* Update vectorial force */
1367             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1368             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1369             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1370
1371             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1372             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1373             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1374
1375             }
1376
1377             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1378             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1379             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1380             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1381
1382             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1383
1384             /* Inner loop uses 168 flops */
1385         }
1386
1387         /* End of innermost loop */
1388
1389         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1390                                               f+i_coord_offset,fshift+i_shift_offset);
1391
1392         /* Increment number of inner iterations */
1393         inneriter                  += j_index_end - j_index_start;
1394
1395         /* Outer loop uses 18 flops */
1396     }
1397
1398     /* Increment number of outer iterations */
1399     outeriter        += nri;
1400
1401     /* Update outer/inner flops */
1402
1403     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*168);
1404 }