Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128i          ewitab;
83     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
84     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
85     real             *ewtab;
86     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
87     real             rswitch_scalar,d_scalar;
88     __m128           dummy_mask,cutoff_mask;
89     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
90     __m128           one     = _mm_set1_ps(1.0);
91     __m128           two     = _mm_set1_ps(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm_set1_ps(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
110     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
111     beta2            = _mm_mul_ps(beta,beta);
112     beta3            = _mm_mul_ps(beta,beta2);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
116
117     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
118     rcutoff_scalar   = fr->rcoulomb;
119     rcutoff          = _mm_set1_ps(rcutoff_scalar);
120     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
121
122     rswitch_scalar   = fr->rcoulomb_switch;
123     rswitch          = _mm_set1_ps(rswitch_scalar);
124     /* Setup switch parameters */
125     d_scalar         = rcutoff_scalar-rswitch_scalar;
126     d                = _mm_set1_ps(d_scalar);
127     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
128     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
129     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
130     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
131     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
132     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176         vvdwsum          = _mm_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               x+j_coord_offsetC,x+j_coord_offsetD,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_ps(ix0,jx0);
199             dy00             = _mm_sub_ps(iy0,jy0);
200             dz00             = _mm_sub_ps(iz0,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206
207             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211                                                               charge+jnrC+0,charge+jnrD+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214             vdwjidx0C        = 2*vdwtype[jnrC+0];
215             vdwjidx0D        = 2*vdwtype[jnrD+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             if (gmx_mm_any_lt(rsq00,rcutoff2))
222             {
223
224             r00              = _mm_mul_ps(rsq00,rinv00);
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq00             = _mm_mul_ps(iq0,jq0);
228             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
229                                          vdwparam+vdwioffset0+vdwjidx0B,
230                                          vdwparam+vdwioffset0+vdwjidx0C,
231                                          vdwparam+vdwioffset0+vdwjidx0D,
232                                          &c6_00,&c12_00);
233
234             /* EWALD ELECTROSTATICS */
235
236             /* Analytical PME correction */
237             zeta2            = _mm_mul_ps(beta2,rsq00);
238             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
239             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
240             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
241             felec            = _mm_mul_ps(qq00,felec);
242             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
243             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
244             velec            = _mm_mul_ps(qq00,velec);
245
246             /* LENNARD-JONES DISPERSION/REPULSION */
247
248             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
249             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
250             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
251             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
252             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
253
254             d                = _mm_sub_ps(r00,rswitch);
255             d                = _mm_max_ps(d,_mm_setzero_ps());
256             d2               = _mm_mul_ps(d,d);
257             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
258
259             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
260
261             /* Evaluate switch function */
262             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
263             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
264             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
265             velec            = _mm_mul_ps(velec,sw);
266             vvdw             = _mm_mul_ps(vvdw,sw);
267             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
268
269             /* Update potential sum for this i atom from the interaction with this j atom. */
270             velec            = _mm_and_ps(velec,cutoff_mask);
271             velecsum         = _mm_add_ps(velecsum,velec);
272             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
273             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
274
275             fscal            = _mm_add_ps(felec,fvdw);
276
277             fscal            = _mm_and_ps(fscal,cutoff_mask);
278
279              /* Update vectorial force */
280             fix0             = _mm_macc_ps(dx00,fscal,fix0);
281             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
282             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
283
284             fjptrA             = f+j_coord_offsetA;
285             fjptrB             = f+j_coord_offsetB;
286             fjptrC             = f+j_coord_offsetC;
287             fjptrD             = f+j_coord_offsetD;
288             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
289                                                    _mm_mul_ps(dx00,fscal),
290                                                    _mm_mul_ps(dy00,fscal),
291                                                    _mm_mul_ps(dz00,fscal));
292
293             }
294
295             /* Inner loop uses 71 flops */
296         }
297
298         if(jidx<j_index_end)
299         {
300
301             /* Get j neighbor index, and coordinate index */
302             jnrlistA         = jjnr[jidx];
303             jnrlistB         = jjnr[jidx+1];
304             jnrlistC         = jjnr[jidx+2];
305             jnrlistD         = jjnr[jidx+3];
306             /* Sign of each element will be negative for non-real atoms.
307              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
308              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
309              */
310             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
311             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
312             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
313             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
314             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
315             j_coord_offsetA  = DIM*jnrA;
316             j_coord_offsetB  = DIM*jnrB;
317             j_coord_offsetC  = DIM*jnrC;
318             j_coord_offsetD  = DIM*jnrD;
319
320             /* load j atom coordinates */
321             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
322                                               x+j_coord_offsetC,x+j_coord_offsetD,
323                                               &jx0,&jy0,&jz0);
324
325             /* Calculate displacement vector */
326             dx00             = _mm_sub_ps(ix0,jx0);
327             dy00             = _mm_sub_ps(iy0,jy0);
328             dz00             = _mm_sub_ps(iz0,jz0);
329
330             /* Calculate squared distance and things based on it */
331             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
332
333             rinv00           = gmx_mm_invsqrt_ps(rsq00);
334
335             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
336
337             /* Load parameters for j particles */
338             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
339                                                               charge+jnrC+0,charge+jnrD+0);
340             vdwjidx0A        = 2*vdwtype[jnrA+0];
341             vdwjidx0B        = 2*vdwtype[jnrB+0];
342             vdwjidx0C        = 2*vdwtype[jnrC+0];
343             vdwjidx0D        = 2*vdwtype[jnrD+0];
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             if (gmx_mm_any_lt(rsq00,rcutoff2))
350             {
351
352             r00              = _mm_mul_ps(rsq00,rinv00);
353             r00              = _mm_andnot_ps(dummy_mask,r00);
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq00             = _mm_mul_ps(iq0,jq0);
357             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
358                                          vdwparam+vdwioffset0+vdwjidx0B,
359                                          vdwparam+vdwioffset0+vdwjidx0C,
360                                          vdwparam+vdwioffset0+vdwjidx0D,
361                                          &c6_00,&c12_00);
362
363             /* EWALD ELECTROSTATICS */
364
365             /* Analytical PME correction */
366             zeta2            = _mm_mul_ps(beta2,rsq00);
367             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
368             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
369             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
370             felec            = _mm_mul_ps(qq00,felec);
371             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
372             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
373             velec            = _mm_mul_ps(qq00,velec);
374
375             /* LENNARD-JONES DISPERSION/REPULSION */
376
377             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
378             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
379             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
380             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
381             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
382
383             d                = _mm_sub_ps(r00,rswitch);
384             d                = _mm_max_ps(d,_mm_setzero_ps());
385             d2               = _mm_mul_ps(d,d);
386             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
387
388             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
389
390             /* Evaluate switch function */
391             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
392             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
393             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
394             velec            = _mm_mul_ps(velec,sw);
395             vvdw             = _mm_mul_ps(vvdw,sw);
396             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velec            = _mm_and_ps(velec,cutoff_mask);
400             velec            = _mm_andnot_ps(dummy_mask,velec);
401             velecsum         = _mm_add_ps(velecsum,velec);
402             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
403             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
404             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
405
406             fscal            = _mm_add_ps(felec,fvdw);
407
408             fscal            = _mm_and_ps(fscal,cutoff_mask);
409
410             fscal            = _mm_andnot_ps(dummy_mask,fscal);
411
412              /* Update vectorial force */
413             fix0             = _mm_macc_ps(dx00,fscal,fix0);
414             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
415             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
416
417             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
418             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
419             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
420             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
421             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
422                                                    _mm_mul_ps(dx00,fscal),
423                                                    _mm_mul_ps(dy00,fscal),
424                                                    _mm_mul_ps(dz00,fscal));
425
426             }
427
428             /* Inner loop uses 72 flops */
429         }
430
431         /* End of innermost loop */
432
433         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
434                                               f+i_coord_offset,fshift+i_shift_offset);
435
436         ggid                        = gid[iidx];
437         /* Update potential energies */
438         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
439         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
440
441         /* Increment number of inner iterations */
442         inneriter                  += j_index_end - j_index_start;
443
444         /* Outer loop uses 9 flops */
445     }
446
447     /* Increment number of outer iterations */
448     outeriter        += nri;
449
450     /* Update outer/inner flops */
451
452     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*72);
453 }
454 /*
455  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_single
456  * Electrostatics interaction: Ewald
457  * VdW interaction:            LennardJones
458  * Geometry:                   Particle-Particle
459  * Calculate force/pot:        Force
460  */
461 void
462 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_single
463                     (t_nblist * gmx_restrict                nlist,
464                      rvec * gmx_restrict                    xx,
465                      rvec * gmx_restrict                    ff,
466                      t_forcerec * gmx_restrict              fr,
467                      t_mdatoms * gmx_restrict               mdatoms,
468                      nb_kernel_data_t * gmx_restrict        kernel_data,
469                      t_nrnb * gmx_restrict                  nrnb)
470 {
471     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
472      * just 0 for non-waters.
473      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
474      * jnr indices corresponding to data put in the four positions in the SIMD register.
475      */
476     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
477     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
478     int              jnrA,jnrB,jnrC,jnrD;
479     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
480     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
481     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
482     real             rcutoff_scalar;
483     real             *shiftvec,*fshift,*x,*f;
484     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
485     real             scratch[4*DIM];
486     __m128           fscal,rcutoff,rcutoff2,jidxall;
487     int              vdwioffset0;
488     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
489     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
490     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
491     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
492     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
493     real             *charge;
494     int              nvdwtype;
495     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
496     int              *vdwtype;
497     real             *vdwparam;
498     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
499     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
500     __m128i          ewitab;
501     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
502     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
503     real             *ewtab;
504     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
505     real             rswitch_scalar,d_scalar;
506     __m128           dummy_mask,cutoff_mask;
507     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
508     __m128           one     = _mm_set1_ps(1.0);
509     __m128           two     = _mm_set1_ps(2.0);
510     x                = xx[0];
511     f                = ff[0];
512
513     nri              = nlist->nri;
514     iinr             = nlist->iinr;
515     jindex           = nlist->jindex;
516     jjnr             = nlist->jjnr;
517     shiftidx         = nlist->shift;
518     gid              = nlist->gid;
519     shiftvec         = fr->shift_vec[0];
520     fshift           = fr->fshift[0];
521     facel            = _mm_set1_ps(fr->epsfac);
522     charge           = mdatoms->chargeA;
523     nvdwtype         = fr->ntype;
524     vdwparam         = fr->nbfp;
525     vdwtype          = mdatoms->typeA;
526
527     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
528     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
529     beta2            = _mm_mul_ps(beta,beta);
530     beta3            = _mm_mul_ps(beta,beta2);
531     ewtab            = fr->ic->tabq_coul_FDV0;
532     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
533     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
534
535     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
536     rcutoff_scalar   = fr->rcoulomb;
537     rcutoff          = _mm_set1_ps(rcutoff_scalar);
538     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
539
540     rswitch_scalar   = fr->rcoulomb_switch;
541     rswitch          = _mm_set1_ps(rswitch_scalar);
542     /* Setup switch parameters */
543     d_scalar         = rcutoff_scalar-rswitch_scalar;
544     d                = _mm_set1_ps(d_scalar);
545     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
546     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
547     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
548     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
549     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
550     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
551
552     /* Avoid stupid compiler warnings */
553     jnrA = jnrB = jnrC = jnrD = 0;
554     j_coord_offsetA = 0;
555     j_coord_offsetB = 0;
556     j_coord_offsetC = 0;
557     j_coord_offsetD = 0;
558
559     outeriter        = 0;
560     inneriter        = 0;
561
562     for(iidx=0;iidx<4*DIM;iidx++)
563     {
564         scratch[iidx] = 0.0;
565     }
566
567     /* Start outer loop over neighborlists */
568     for(iidx=0; iidx<nri; iidx++)
569     {
570         /* Load shift vector for this list */
571         i_shift_offset   = DIM*shiftidx[iidx];
572
573         /* Load limits for loop over neighbors */
574         j_index_start    = jindex[iidx];
575         j_index_end      = jindex[iidx+1];
576
577         /* Get outer coordinate index */
578         inr              = iinr[iidx];
579         i_coord_offset   = DIM*inr;
580
581         /* Load i particle coords and add shift vector */
582         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
583
584         fix0             = _mm_setzero_ps();
585         fiy0             = _mm_setzero_ps();
586         fiz0             = _mm_setzero_ps();
587
588         /* Load parameters for i particles */
589         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
590         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
591
592         /* Start inner kernel loop */
593         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
594         {
595
596             /* Get j neighbor index, and coordinate index */
597             jnrA             = jjnr[jidx];
598             jnrB             = jjnr[jidx+1];
599             jnrC             = jjnr[jidx+2];
600             jnrD             = jjnr[jidx+3];
601             j_coord_offsetA  = DIM*jnrA;
602             j_coord_offsetB  = DIM*jnrB;
603             j_coord_offsetC  = DIM*jnrC;
604             j_coord_offsetD  = DIM*jnrD;
605
606             /* load j atom coordinates */
607             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
608                                               x+j_coord_offsetC,x+j_coord_offsetD,
609                                               &jx0,&jy0,&jz0);
610
611             /* Calculate displacement vector */
612             dx00             = _mm_sub_ps(ix0,jx0);
613             dy00             = _mm_sub_ps(iy0,jy0);
614             dz00             = _mm_sub_ps(iz0,jz0);
615
616             /* Calculate squared distance and things based on it */
617             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
618
619             rinv00           = gmx_mm_invsqrt_ps(rsq00);
620
621             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
622
623             /* Load parameters for j particles */
624             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
625                                                               charge+jnrC+0,charge+jnrD+0);
626             vdwjidx0A        = 2*vdwtype[jnrA+0];
627             vdwjidx0B        = 2*vdwtype[jnrB+0];
628             vdwjidx0C        = 2*vdwtype[jnrC+0];
629             vdwjidx0D        = 2*vdwtype[jnrD+0];
630
631             /**************************
632              * CALCULATE INTERACTIONS *
633              **************************/
634
635             if (gmx_mm_any_lt(rsq00,rcutoff2))
636             {
637
638             r00              = _mm_mul_ps(rsq00,rinv00);
639
640             /* Compute parameters for interactions between i and j atoms */
641             qq00             = _mm_mul_ps(iq0,jq0);
642             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
643                                          vdwparam+vdwioffset0+vdwjidx0B,
644                                          vdwparam+vdwioffset0+vdwjidx0C,
645                                          vdwparam+vdwioffset0+vdwjidx0D,
646                                          &c6_00,&c12_00);
647
648             /* EWALD ELECTROSTATICS */
649
650             /* Analytical PME correction */
651             zeta2            = _mm_mul_ps(beta2,rsq00);
652             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
653             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
654             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
655             felec            = _mm_mul_ps(qq00,felec);
656             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
657             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
658             velec            = _mm_mul_ps(qq00,velec);
659
660             /* LENNARD-JONES DISPERSION/REPULSION */
661
662             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
663             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
664             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
665             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
666             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
667
668             d                = _mm_sub_ps(r00,rswitch);
669             d                = _mm_max_ps(d,_mm_setzero_ps());
670             d2               = _mm_mul_ps(d,d);
671             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
672
673             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
674
675             /* Evaluate switch function */
676             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
677             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
678             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
679             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
680
681             fscal            = _mm_add_ps(felec,fvdw);
682
683             fscal            = _mm_and_ps(fscal,cutoff_mask);
684
685              /* Update vectorial force */
686             fix0             = _mm_macc_ps(dx00,fscal,fix0);
687             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
688             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
689
690             fjptrA             = f+j_coord_offsetA;
691             fjptrB             = f+j_coord_offsetB;
692             fjptrC             = f+j_coord_offsetC;
693             fjptrD             = f+j_coord_offsetD;
694             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
695                                                    _mm_mul_ps(dx00,fscal),
696                                                    _mm_mul_ps(dy00,fscal),
697                                                    _mm_mul_ps(dz00,fscal));
698
699             }
700
701             /* Inner loop uses 65 flops */
702         }
703
704         if(jidx<j_index_end)
705         {
706
707             /* Get j neighbor index, and coordinate index */
708             jnrlistA         = jjnr[jidx];
709             jnrlistB         = jjnr[jidx+1];
710             jnrlistC         = jjnr[jidx+2];
711             jnrlistD         = jjnr[jidx+3];
712             /* Sign of each element will be negative for non-real atoms.
713              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
714              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
715              */
716             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
717             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
718             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
719             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
720             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
721             j_coord_offsetA  = DIM*jnrA;
722             j_coord_offsetB  = DIM*jnrB;
723             j_coord_offsetC  = DIM*jnrC;
724             j_coord_offsetD  = DIM*jnrD;
725
726             /* load j atom coordinates */
727             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
728                                               x+j_coord_offsetC,x+j_coord_offsetD,
729                                               &jx0,&jy0,&jz0);
730
731             /* Calculate displacement vector */
732             dx00             = _mm_sub_ps(ix0,jx0);
733             dy00             = _mm_sub_ps(iy0,jy0);
734             dz00             = _mm_sub_ps(iz0,jz0);
735
736             /* Calculate squared distance and things based on it */
737             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
738
739             rinv00           = gmx_mm_invsqrt_ps(rsq00);
740
741             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
742
743             /* Load parameters for j particles */
744             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
745                                                               charge+jnrC+0,charge+jnrD+0);
746             vdwjidx0A        = 2*vdwtype[jnrA+0];
747             vdwjidx0B        = 2*vdwtype[jnrB+0];
748             vdwjidx0C        = 2*vdwtype[jnrC+0];
749             vdwjidx0D        = 2*vdwtype[jnrD+0];
750
751             /**************************
752              * CALCULATE INTERACTIONS *
753              **************************/
754
755             if (gmx_mm_any_lt(rsq00,rcutoff2))
756             {
757
758             r00              = _mm_mul_ps(rsq00,rinv00);
759             r00              = _mm_andnot_ps(dummy_mask,r00);
760
761             /* Compute parameters for interactions between i and j atoms */
762             qq00             = _mm_mul_ps(iq0,jq0);
763             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
764                                          vdwparam+vdwioffset0+vdwjidx0B,
765                                          vdwparam+vdwioffset0+vdwjidx0C,
766                                          vdwparam+vdwioffset0+vdwjidx0D,
767                                          &c6_00,&c12_00);
768
769             /* EWALD ELECTROSTATICS */
770
771             /* Analytical PME correction */
772             zeta2            = _mm_mul_ps(beta2,rsq00);
773             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
774             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
775             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
776             felec            = _mm_mul_ps(qq00,felec);
777             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
778             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
779             velec            = _mm_mul_ps(qq00,velec);
780
781             /* LENNARD-JONES DISPERSION/REPULSION */
782
783             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
784             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
785             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
786             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
787             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
788
789             d                = _mm_sub_ps(r00,rswitch);
790             d                = _mm_max_ps(d,_mm_setzero_ps());
791             d2               = _mm_mul_ps(d,d);
792             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
793
794             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
795
796             /* Evaluate switch function */
797             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
798             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
799             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
800             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
801
802             fscal            = _mm_add_ps(felec,fvdw);
803
804             fscal            = _mm_and_ps(fscal,cutoff_mask);
805
806             fscal            = _mm_andnot_ps(dummy_mask,fscal);
807
808              /* Update vectorial force */
809             fix0             = _mm_macc_ps(dx00,fscal,fix0);
810             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
811             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
812
813             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
814             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
815             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
816             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
817             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
818                                                    _mm_mul_ps(dx00,fscal),
819                                                    _mm_mul_ps(dy00,fscal),
820                                                    _mm_mul_ps(dz00,fscal));
821
822             }
823
824             /* Inner loop uses 66 flops */
825         }
826
827         /* End of innermost loop */
828
829         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
830                                               f+i_coord_offset,fshift+i_shift_offset);
831
832         /* Increment number of inner iterations */
833         inneriter                  += j_index_end - j_index_start;
834
835         /* Outer loop uses 7 flops */
836     }
837
838     /* Increment number of outer iterations */
839     outeriter        += nri;
840
841     /* Update outer/inner flops */
842
843     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*66);
844 }