Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128i          ewitab;
99     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
101     real             *ewtab;
102     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
103     real             rswitch_scalar,d_scalar;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
126     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
127     beta2            = _mm_mul_ps(beta,beta);
128     beta3            = _mm_mul_ps(beta,beta2);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = _mm_set1_ps(rcutoff_scalar);
136     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
137
138     rswitch_scalar   = fr->rcoulomb_switch;
139     rswitch          = _mm_set1_ps(rswitch_scalar);
140     /* Setup switch parameters */
141     d_scalar         = rcutoff_scalar-rswitch_scalar;
142     d                = _mm_set1_ps(d_scalar);
143     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
144     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
145     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
146     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
147     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
148     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = jnrC = jnrD = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154     j_coord_offsetC = 0;
155     j_coord_offsetD = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
181
182         fix0             = _mm_setzero_ps();
183         fiy0             = _mm_setzero_ps();
184         fiz0             = _mm_setzero_ps();
185
186         /* Load parameters for i particles */
187         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
188         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
189
190         /* Reset potential sums */
191         velecsum         = _mm_setzero_ps();
192         vvdwsum          = _mm_setzero_ps();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207
208             /* load j atom coordinates */
209             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
210                                               x+j_coord_offsetC,x+j_coord_offsetD,
211                                               &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm_sub_ps(ix0,jx0);
215             dy00             = _mm_sub_ps(iy0,jy0);
216             dz00             = _mm_sub_ps(iz0,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
220
221             rinv00           = gmx_mm_invsqrt_ps(rsq00);
222
223             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                               charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             if (gmx_mm_any_lt(rsq00,rcutoff2))
238             {
239
240             r00              = _mm_mul_ps(rsq00,rinv00);
241
242             /* Compute parameters for interactions between i and j atoms */
243             qq00             = _mm_mul_ps(iq0,jq0);
244             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
245                                          vdwparam+vdwioffset0+vdwjidx0B,
246                                          vdwparam+vdwioffset0+vdwjidx0C,
247                                          vdwparam+vdwioffset0+vdwjidx0D,
248                                          &c6_00,&c12_00);
249
250             /* EWALD ELECTROSTATICS */
251
252             /* Analytical PME correction */
253             zeta2            = _mm_mul_ps(beta2,rsq00);
254             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
255             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
256             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
257             felec            = _mm_mul_ps(qq00,felec);
258             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
259             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
260             velec            = _mm_mul_ps(qq00,velec);
261
262             /* LENNARD-JONES DISPERSION/REPULSION */
263
264             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
265             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
266             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
267             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
268             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
269
270             d                = _mm_sub_ps(r00,rswitch);
271             d                = _mm_max_ps(d,_mm_setzero_ps());
272             d2               = _mm_mul_ps(d,d);
273             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
274
275             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
276
277             /* Evaluate switch function */
278             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
279             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
280             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
281             velec            = _mm_mul_ps(velec,sw);
282             vvdw             = _mm_mul_ps(vvdw,sw);
283             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             velec            = _mm_and_ps(velec,cutoff_mask);
287             velecsum         = _mm_add_ps(velecsum,velec);
288             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
289             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
290
291             fscal            = _mm_add_ps(felec,fvdw);
292
293             fscal            = _mm_and_ps(fscal,cutoff_mask);
294
295              /* Update vectorial force */
296             fix0             = _mm_macc_ps(dx00,fscal,fix0);
297             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
298             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
299
300             fjptrA             = f+j_coord_offsetA;
301             fjptrB             = f+j_coord_offsetB;
302             fjptrC             = f+j_coord_offsetC;
303             fjptrD             = f+j_coord_offsetD;
304             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
305                                                    _mm_mul_ps(dx00,fscal),
306                                                    _mm_mul_ps(dy00,fscal),
307                                                    _mm_mul_ps(dz00,fscal));
308
309             }
310
311             /* Inner loop uses 71 flops */
312         }
313
314         if(jidx<j_index_end)
315         {
316
317             /* Get j neighbor index, and coordinate index */
318             jnrlistA         = jjnr[jidx];
319             jnrlistB         = jjnr[jidx+1];
320             jnrlistC         = jjnr[jidx+2];
321             jnrlistD         = jjnr[jidx+3];
322             /* Sign of each element will be negative for non-real atoms.
323              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
324              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
325              */
326             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
327             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
328             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
329             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
330             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
331             j_coord_offsetA  = DIM*jnrA;
332             j_coord_offsetB  = DIM*jnrB;
333             j_coord_offsetC  = DIM*jnrC;
334             j_coord_offsetD  = DIM*jnrD;
335
336             /* load j atom coordinates */
337             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
338                                               x+j_coord_offsetC,x+j_coord_offsetD,
339                                               &jx0,&jy0,&jz0);
340
341             /* Calculate displacement vector */
342             dx00             = _mm_sub_ps(ix0,jx0);
343             dy00             = _mm_sub_ps(iy0,jy0);
344             dz00             = _mm_sub_ps(iz0,jz0);
345
346             /* Calculate squared distance and things based on it */
347             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
348
349             rinv00           = gmx_mm_invsqrt_ps(rsq00);
350
351             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
352
353             /* Load parameters for j particles */
354             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
355                                                               charge+jnrC+0,charge+jnrD+0);
356             vdwjidx0A        = 2*vdwtype[jnrA+0];
357             vdwjidx0B        = 2*vdwtype[jnrB+0];
358             vdwjidx0C        = 2*vdwtype[jnrC+0];
359             vdwjidx0D        = 2*vdwtype[jnrD+0];
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             if (gmx_mm_any_lt(rsq00,rcutoff2))
366             {
367
368             r00              = _mm_mul_ps(rsq00,rinv00);
369             r00              = _mm_andnot_ps(dummy_mask,r00);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq00             = _mm_mul_ps(iq0,jq0);
373             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
374                                          vdwparam+vdwioffset0+vdwjidx0B,
375                                          vdwparam+vdwioffset0+vdwjidx0C,
376                                          vdwparam+vdwioffset0+vdwjidx0D,
377                                          &c6_00,&c12_00);
378
379             /* EWALD ELECTROSTATICS */
380
381             /* Analytical PME correction */
382             zeta2            = _mm_mul_ps(beta2,rsq00);
383             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
384             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
385             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
386             felec            = _mm_mul_ps(qq00,felec);
387             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
388             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
389             velec            = _mm_mul_ps(qq00,velec);
390
391             /* LENNARD-JONES DISPERSION/REPULSION */
392
393             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
394             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
395             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
396             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
397             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
398
399             d                = _mm_sub_ps(r00,rswitch);
400             d                = _mm_max_ps(d,_mm_setzero_ps());
401             d2               = _mm_mul_ps(d,d);
402             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
403
404             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
405
406             /* Evaluate switch function */
407             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
408             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
409             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
410             velec            = _mm_mul_ps(velec,sw);
411             vvdw             = _mm_mul_ps(vvdw,sw);
412             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
413
414             /* Update potential sum for this i atom from the interaction with this j atom. */
415             velec            = _mm_and_ps(velec,cutoff_mask);
416             velec            = _mm_andnot_ps(dummy_mask,velec);
417             velecsum         = _mm_add_ps(velecsum,velec);
418             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
419             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
420             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
421
422             fscal            = _mm_add_ps(felec,fvdw);
423
424             fscal            = _mm_and_ps(fscal,cutoff_mask);
425
426             fscal            = _mm_andnot_ps(dummy_mask,fscal);
427
428              /* Update vectorial force */
429             fix0             = _mm_macc_ps(dx00,fscal,fix0);
430             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
431             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
432
433             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
434             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
435             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
436             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
437             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
438                                                    _mm_mul_ps(dx00,fscal),
439                                                    _mm_mul_ps(dy00,fscal),
440                                                    _mm_mul_ps(dz00,fscal));
441
442             }
443
444             /* Inner loop uses 72 flops */
445         }
446
447         /* End of innermost loop */
448
449         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
450                                               f+i_coord_offset,fshift+i_shift_offset);
451
452         ggid                        = gid[iidx];
453         /* Update potential energies */
454         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
455         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
456
457         /* Increment number of inner iterations */
458         inneriter                  += j_index_end - j_index_start;
459
460         /* Outer loop uses 9 flops */
461     }
462
463     /* Increment number of outer iterations */
464     outeriter        += nri;
465
466     /* Update outer/inner flops */
467
468     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*72);
469 }
470 /*
471  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_single
472  * Electrostatics interaction: Ewald
473  * VdW interaction:            LennardJones
474  * Geometry:                   Particle-Particle
475  * Calculate force/pot:        Force
476  */
477 void
478 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_single
479                     (t_nblist                    * gmx_restrict       nlist,
480                      rvec                        * gmx_restrict          xx,
481                      rvec                        * gmx_restrict          ff,
482                      t_forcerec                  * gmx_restrict          fr,
483                      t_mdatoms                   * gmx_restrict     mdatoms,
484                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
485                      t_nrnb                      * gmx_restrict        nrnb)
486 {
487     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
488      * just 0 for non-waters.
489      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
490      * jnr indices corresponding to data put in the four positions in the SIMD register.
491      */
492     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
493     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
494     int              jnrA,jnrB,jnrC,jnrD;
495     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
496     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
497     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
498     real             rcutoff_scalar;
499     real             *shiftvec,*fshift,*x,*f;
500     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
501     real             scratch[4*DIM];
502     __m128           fscal,rcutoff,rcutoff2,jidxall;
503     int              vdwioffset0;
504     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
505     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
506     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
507     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
508     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
509     real             *charge;
510     int              nvdwtype;
511     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
512     int              *vdwtype;
513     real             *vdwparam;
514     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
515     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
516     __m128i          ewitab;
517     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
518     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
519     real             *ewtab;
520     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
521     real             rswitch_scalar,d_scalar;
522     __m128           dummy_mask,cutoff_mask;
523     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
524     __m128           one     = _mm_set1_ps(1.0);
525     __m128           two     = _mm_set1_ps(2.0);
526     x                = xx[0];
527     f                = ff[0];
528
529     nri              = nlist->nri;
530     iinr             = nlist->iinr;
531     jindex           = nlist->jindex;
532     jjnr             = nlist->jjnr;
533     shiftidx         = nlist->shift;
534     gid              = nlist->gid;
535     shiftvec         = fr->shift_vec[0];
536     fshift           = fr->fshift[0];
537     facel            = _mm_set1_ps(fr->epsfac);
538     charge           = mdatoms->chargeA;
539     nvdwtype         = fr->ntype;
540     vdwparam         = fr->nbfp;
541     vdwtype          = mdatoms->typeA;
542
543     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
544     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
545     beta2            = _mm_mul_ps(beta,beta);
546     beta3            = _mm_mul_ps(beta,beta2);
547     ewtab            = fr->ic->tabq_coul_FDV0;
548     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
549     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
550
551     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
552     rcutoff_scalar   = fr->rcoulomb;
553     rcutoff          = _mm_set1_ps(rcutoff_scalar);
554     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
555
556     rswitch_scalar   = fr->rcoulomb_switch;
557     rswitch          = _mm_set1_ps(rswitch_scalar);
558     /* Setup switch parameters */
559     d_scalar         = rcutoff_scalar-rswitch_scalar;
560     d                = _mm_set1_ps(d_scalar);
561     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
562     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
563     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
564     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
565     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
566     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
567
568     /* Avoid stupid compiler warnings */
569     jnrA = jnrB = jnrC = jnrD = 0;
570     j_coord_offsetA = 0;
571     j_coord_offsetB = 0;
572     j_coord_offsetC = 0;
573     j_coord_offsetD = 0;
574
575     outeriter        = 0;
576     inneriter        = 0;
577
578     for(iidx=0;iidx<4*DIM;iidx++)
579     {
580         scratch[iidx] = 0.0;
581     }
582
583     /* Start outer loop over neighborlists */
584     for(iidx=0; iidx<nri; iidx++)
585     {
586         /* Load shift vector for this list */
587         i_shift_offset   = DIM*shiftidx[iidx];
588
589         /* Load limits for loop over neighbors */
590         j_index_start    = jindex[iidx];
591         j_index_end      = jindex[iidx+1];
592
593         /* Get outer coordinate index */
594         inr              = iinr[iidx];
595         i_coord_offset   = DIM*inr;
596
597         /* Load i particle coords and add shift vector */
598         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
599
600         fix0             = _mm_setzero_ps();
601         fiy0             = _mm_setzero_ps();
602         fiz0             = _mm_setzero_ps();
603
604         /* Load parameters for i particles */
605         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
606         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
607
608         /* Start inner kernel loop */
609         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
610         {
611
612             /* Get j neighbor index, and coordinate index */
613             jnrA             = jjnr[jidx];
614             jnrB             = jjnr[jidx+1];
615             jnrC             = jjnr[jidx+2];
616             jnrD             = jjnr[jidx+3];
617             j_coord_offsetA  = DIM*jnrA;
618             j_coord_offsetB  = DIM*jnrB;
619             j_coord_offsetC  = DIM*jnrC;
620             j_coord_offsetD  = DIM*jnrD;
621
622             /* load j atom coordinates */
623             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
624                                               x+j_coord_offsetC,x+j_coord_offsetD,
625                                               &jx0,&jy0,&jz0);
626
627             /* Calculate displacement vector */
628             dx00             = _mm_sub_ps(ix0,jx0);
629             dy00             = _mm_sub_ps(iy0,jy0);
630             dz00             = _mm_sub_ps(iz0,jz0);
631
632             /* Calculate squared distance and things based on it */
633             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
634
635             rinv00           = gmx_mm_invsqrt_ps(rsq00);
636
637             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
638
639             /* Load parameters for j particles */
640             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
641                                                               charge+jnrC+0,charge+jnrD+0);
642             vdwjidx0A        = 2*vdwtype[jnrA+0];
643             vdwjidx0B        = 2*vdwtype[jnrB+0];
644             vdwjidx0C        = 2*vdwtype[jnrC+0];
645             vdwjidx0D        = 2*vdwtype[jnrD+0];
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             if (gmx_mm_any_lt(rsq00,rcutoff2))
652             {
653
654             r00              = _mm_mul_ps(rsq00,rinv00);
655
656             /* Compute parameters for interactions between i and j atoms */
657             qq00             = _mm_mul_ps(iq0,jq0);
658             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
659                                          vdwparam+vdwioffset0+vdwjidx0B,
660                                          vdwparam+vdwioffset0+vdwjidx0C,
661                                          vdwparam+vdwioffset0+vdwjidx0D,
662                                          &c6_00,&c12_00);
663
664             /* EWALD ELECTROSTATICS */
665
666             /* Analytical PME correction */
667             zeta2            = _mm_mul_ps(beta2,rsq00);
668             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
669             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
670             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
671             felec            = _mm_mul_ps(qq00,felec);
672             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
673             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
674             velec            = _mm_mul_ps(qq00,velec);
675
676             /* LENNARD-JONES DISPERSION/REPULSION */
677
678             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
679             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
680             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
681             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
682             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
683
684             d                = _mm_sub_ps(r00,rswitch);
685             d                = _mm_max_ps(d,_mm_setzero_ps());
686             d2               = _mm_mul_ps(d,d);
687             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
688
689             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
690
691             /* Evaluate switch function */
692             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
693             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
694             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
695             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
696
697             fscal            = _mm_add_ps(felec,fvdw);
698
699             fscal            = _mm_and_ps(fscal,cutoff_mask);
700
701              /* Update vectorial force */
702             fix0             = _mm_macc_ps(dx00,fscal,fix0);
703             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
704             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
705
706             fjptrA             = f+j_coord_offsetA;
707             fjptrB             = f+j_coord_offsetB;
708             fjptrC             = f+j_coord_offsetC;
709             fjptrD             = f+j_coord_offsetD;
710             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
711                                                    _mm_mul_ps(dx00,fscal),
712                                                    _mm_mul_ps(dy00,fscal),
713                                                    _mm_mul_ps(dz00,fscal));
714
715             }
716
717             /* Inner loop uses 65 flops */
718         }
719
720         if(jidx<j_index_end)
721         {
722
723             /* Get j neighbor index, and coordinate index */
724             jnrlistA         = jjnr[jidx];
725             jnrlistB         = jjnr[jidx+1];
726             jnrlistC         = jjnr[jidx+2];
727             jnrlistD         = jjnr[jidx+3];
728             /* Sign of each element will be negative for non-real atoms.
729              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
730              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
731              */
732             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
733             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
734             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
735             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
736             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
737             j_coord_offsetA  = DIM*jnrA;
738             j_coord_offsetB  = DIM*jnrB;
739             j_coord_offsetC  = DIM*jnrC;
740             j_coord_offsetD  = DIM*jnrD;
741
742             /* load j atom coordinates */
743             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
744                                               x+j_coord_offsetC,x+j_coord_offsetD,
745                                               &jx0,&jy0,&jz0);
746
747             /* Calculate displacement vector */
748             dx00             = _mm_sub_ps(ix0,jx0);
749             dy00             = _mm_sub_ps(iy0,jy0);
750             dz00             = _mm_sub_ps(iz0,jz0);
751
752             /* Calculate squared distance and things based on it */
753             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
754
755             rinv00           = gmx_mm_invsqrt_ps(rsq00);
756
757             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
758
759             /* Load parameters for j particles */
760             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
761                                                               charge+jnrC+0,charge+jnrD+0);
762             vdwjidx0A        = 2*vdwtype[jnrA+0];
763             vdwjidx0B        = 2*vdwtype[jnrB+0];
764             vdwjidx0C        = 2*vdwtype[jnrC+0];
765             vdwjidx0D        = 2*vdwtype[jnrD+0];
766
767             /**************************
768              * CALCULATE INTERACTIONS *
769              **************************/
770
771             if (gmx_mm_any_lt(rsq00,rcutoff2))
772             {
773
774             r00              = _mm_mul_ps(rsq00,rinv00);
775             r00              = _mm_andnot_ps(dummy_mask,r00);
776
777             /* Compute parameters for interactions between i and j atoms */
778             qq00             = _mm_mul_ps(iq0,jq0);
779             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
780                                          vdwparam+vdwioffset0+vdwjidx0B,
781                                          vdwparam+vdwioffset0+vdwjidx0C,
782                                          vdwparam+vdwioffset0+vdwjidx0D,
783                                          &c6_00,&c12_00);
784
785             /* EWALD ELECTROSTATICS */
786
787             /* Analytical PME correction */
788             zeta2            = _mm_mul_ps(beta2,rsq00);
789             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
790             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
791             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
792             felec            = _mm_mul_ps(qq00,felec);
793             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
794             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
795             velec            = _mm_mul_ps(qq00,velec);
796
797             /* LENNARD-JONES DISPERSION/REPULSION */
798
799             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
800             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
801             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
802             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
803             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
804
805             d                = _mm_sub_ps(r00,rswitch);
806             d                = _mm_max_ps(d,_mm_setzero_ps());
807             d2               = _mm_mul_ps(d,d);
808             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
809
810             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
811
812             /* Evaluate switch function */
813             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
814             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
815             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
816             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
817
818             fscal            = _mm_add_ps(felec,fvdw);
819
820             fscal            = _mm_and_ps(fscal,cutoff_mask);
821
822             fscal            = _mm_andnot_ps(dummy_mask,fscal);
823
824              /* Update vectorial force */
825             fix0             = _mm_macc_ps(dx00,fscal,fix0);
826             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
827             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
828
829             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
830             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
831             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
832             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
833             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
834                                                    _mm_mul_ps(dx00,fscal),
835                                                    _mm_mul_ps(dy00,fscal),
836                                                    _mm_mul_ps(dz00,fscal));
837
838             }
839
840             /* Inner loop uses 66 flops */
841         }
842
843         /* End of innermost loop */
844
845         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
846                                               f+i_coord_offset,fshift+i_shift_offset);
847
848         /* Increment number of inner iterations */
849         inneriter                  += j_index_end - j_index_start;
850
851         /* Outer loop uses 7 flops */
852     }
853
854     /* Increment number of outer iterations */
855     outeriter        += nri;
856
857     /* Update outer/inner flops */
858
859     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*66);
860 }