32c654ece8fbacf6c675673f9346925e664318bd
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          ewitab;
97     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
99     real             *ewtab;
100     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
101     real             rswitch_scalar,d_scalar;
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
124     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
125     beta2            = _mm_mul_ps(beta,beta);
126     beta3            = _mm_mul_ps(beta,beta2);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
130
131     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
132     rcutoff_scalar   = fr->rcoulomb;
133     rcutoff          = _mm_set1_ps(rcutoff_scalar);
134     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
135
136     rswitch_scalar   = fr->rcoulomb_switch;
137     rswitch          = _mm_set1_ps(rswitch_scalar);
138     /* Setup switch parameters */
139     d_scalar         = rcutoff_scalar-rswitch_scalar;
140     d                = _mm_set1_ps(d_scalar);
141     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
142     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
143     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
144     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
145     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
146     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = jnrC = jnrD = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152     j_coord_offsetC = 0;
153     j_coord_offsetD = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
179
180         fix0             = _mm_setzero_ps();
181         fiy0             = _mm_setzero_ps();
182         fiz0             = _mm_setzero_ps();
183
184         /* Load parameters for i particles */
185         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
186         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
187
188         /* Reset potential sums */
189         velecsum         = _mm_setzero_ps();
190         vvdwsum          = _mm_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               x+j_coord_offsetC,x+j_coord_offsetD,
209                                               &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm_sub_ps(ix0,jx0);
213             dy00             = _mm_sub_ps(iy0,jy0);
214             dz00             = _mm_sub_ps(iz0,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
218
219             rinv00           = gmx_mm_invsqrt_ps(rsq00);
220
221             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
225                                                               charge+jnrC+0,charge+jnrD+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228             vdwjidx0C        = 2*vdwtype[jnrC+0];
229             vdwjidx0D        = 2*vdwtype[jnrD+0];
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             if (gmx_mm_any_lt(rsq00,rcutoff2))
236             {
237
238             r00              = _mm_mul_ps(rsq00,rinv00);
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq00             = _mm_mul_ps(iq0,jq0);
242             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
243                                          vdwparam+vdwioffset0+vdwjidx0B,
244                                          vdwparam+vdwioffset0+vdwjidx0C,
245                                          vdwparam+vdwioffset0+vdwjidx0D,
246                                          &c6_00,&c12_00);
247
248             /* EWALD ELECTROSTATICS */
249
250             /* Analytical PME correction */
251             zeta2            = _mm_mul_ps(beta2,rsq00);
252             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
253             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
254             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
255             felec            = _mm_mul_ps(qq00,felec);
256             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
257             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
258             velec            = _mm_mul_ps(qq00,velec);
259
260             /* LENNARD-JONES DISPERSION/REPULSION */
261
262             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
263             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
264             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
265             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
266             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
267
268             d                = _mm_sub_ps(r00,rswitch);
269             d                = _mm_max_ps(d,_mm_setzero_ps());
270             d2               = _mm_mul_ps(d,d);
271             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
272
273             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
274
275             /* Evaluate switch function */
276             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
277             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
278             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
279             velec            = _mm_mul_ps(velec,sw);
280             vvdw             = _mm_mul_ps(vvdw,sw);
281             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velec            = _mm_and_ps(velec,cutoff_mask);
285             velecsum         = _mm_add_ps(velecsum,velec);
286             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
287             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
288
289             fscal            = _mm_add_ps(felec,fvdw);
290
291             fscal            = _mm_and_ps(fscal,cutoff_mask);
292
293              /* Update vectorial force */
294             fix0             = _mm_macc_ps(dx00,fscal,fix0);
295             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
296             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
297
298             fjptrA             = f+j_coord_offsetA;
299             fjptrB             = f+j_coord_offsetB;
300             fjptrC             = f+j_coord_offsetC;
301             fjptrD             = f+j_coord_offsetD;
302             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
303                                                    _mm_mul_ps(dx00,fscal),
304                                                    _mm_mul_ps(dy00,fscal),
305                                                    _mm_mul_ps(dz00,fscal));
306
307             }
308
309             /* Inner loop uses 71 flops */
310         }
311
312         if(jidx<j_index_end)
313         {
314
315             /* Get j neighbor index, and coordinate index */
316             jnrlistA         = jjnr[jidx];
317             jnrlistB         = jjnr[jidx+1];
318             jnrlistC         = jjnr[jidx+2];
319             jnrlistD         = jjnr[jidx+3];
320             /* Sign of each element will be negative for non-real atoms.
321              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
322              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
323              */
324             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
325             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
326             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
327             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
328             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
329             j_coord_offsetA  = DIM*jnrA;
330             j_coord_offsetB  = DIM*jnrB;
331             j_coord_offsetC  = DIM*jnrC;
332             j_coord_offsetD  = DIM*jnrD;
333
334             /* load j atom coordinates */
335             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
336                                               x+j_coord_offsetC,x+j_coord_offsetD,
337                                               &jx0,&jy0,&jz0);
338
339             /* Calculate displacement vector */
340             dx00             = _mm_sub_ps(ix0,jx0);
341             dy00             = _mm_sub_ps(iy0,jy0);
342             dz00             = _mm_sub_ps(iz0,jz0);
343
344             /* Calculate squared distance and things based on it */
345             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
346
347             rinv00           = gmx_mm_invsqrt_ps(rsq00);
348
349             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
350
351             /* Load parameters for j particles */
352             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
353                                                               charge+jnrC+0,charge+jnrD+0);
354             vdwjidx0A        = 2*vdwtype[jnrA+0];
355             vdwjidx0B        = 2*vdwtype[jnrB+0];
356             vdwjidx0C        = 2*vdwtype[jnrC+0];
357             vdwjidx0D        = 2*vdwtype[jnrD+0];
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             if (gmx_mm_any_lt(rsq00,rcutoff2))
364             {
365
366             r00              = _mm_mul_ps(rsq00,rinv00);
367             r00              = _mm_andnot_ps(dummy_mask,r00);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq00             = _mm_mul_ps(iq0,jq0);
371             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
372                                          vdwparam+vdwioffset0+vdwjidx0B,
373                                          vdwparam+vdwioffset0+vdwjidx0C,
374                                          vdwparam+vdwioffset0+vdwjidx0D,
375                                          &c6_00,&c12_00);
376
377             /* EWALD ELECTROSTATICS */
378
379             /* Analytical PME correction */
380             zeta2            = _mm_mul_ps(beta2,rsq00);
381             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
382             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
383             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
384             felec            = _mm_mul_ps(qq00,felec);
385             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
386             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
387             velec            = _mm_mul_ps(qq00,velec);
388
389             /* LENNARD-JONES DISPERSION/REPULSION */
390
391             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
392             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
393             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
394             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
395             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
396
397             d                = _mm_sub_ps(r00,rswitch);
398             d                = _mm_max_ps(d,_mm_setzero_ps());
399             d2               = _mm_mul_ps(d,d);
400             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
401
402             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
403
404             /* Evaluate switch function */
405             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
406             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
407             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
408             velec            = _mm_mul_ps(velec,sw);
409             vvdw             = _mm_mul_ps(vvdw,sw);
410             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
411
412             /* Update potential sum for this i atom from the interaction with this j atom. */
413             velec            = _mm_and_ps(velec,cutoff_mask);
414             velec            = _mm_andnot_ps(dummy_mask,velec);
415             velecsum         = _mm_add_ps(velecsum,velec);
416             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
417             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
418             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
419
420             fscal            = _mm_add_ps(felec,fvdw);
421
422             fscal            = _mm_and_ps(fscal,cutoff_mask);
423
424             fscal            = _mm_andnot_ps(dummy_mask,fscal);
425
426              /* Update vectorial force */
427             fix0             = _mm_macc_ps(dx00,fscal,fix0);
428             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
429             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
430
431             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
432             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
433             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
434             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
435             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
436                                                    _mm_mul_ps(dx00,fscal),
437                                                    _mm_mul_ps(dy00,fscal),
438                                                    _mm_mul_ps(dz00,fscal));
439
440             }
441
442             /* Inner loop uses 72 flops */
443         }
444
445         /* End of innermost loop */
446
447         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
448                                               f+i_coord_offset,fshift+i_shift_offset);
449
450         ggid                        = gid[iidx];
451         /* Update potential energies */
452         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
453         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
454
455         /* Increment number of inner iterations */
456         inneriter                  += j_index_end - j_index_start;
457
458         /* Outer loop uses 9 flops */
459     }
460
461     /* Increment number of outer iterations */
462     outeriter        += nri;
463
464     /* Update outer/inner flops */
465
466     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*72);
467 }
468 /*
469  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_single
470  * Electrostatics interaction: Ewald
471  * VdW interaction:            LennardJones
472  * Geometry:                   Particle-Particle
473  * Calculate force/pot:        Force
474  */
475 void
476 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_single
477                     (t_nblist                    * gmx_restrict       nlist,
478                      rvec                        * gmx_restrict          xx,
479                      rvec                        * gmx_restrict          ff,
480                      t_forcerec                  * gmx_restrict          fr,
481                      t_mdatoms                   * gmx_restrict     mdatoms,
482                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
483                      t_nrnb                      * gmx_restrict        nrnb)
484 {
485     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
486      * just 0 for non-waters.
487      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
488      * jnr indices corresponding to data put in the four positions in the SIMD register.
489      */
490     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
491     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
492     int              jnrA,jnrB,jnrC,jnrD;
493     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
494     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
495     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
496     real             rcutoff_scalar;
497     real             *shiftvec,*fshift,*x,*f;
498     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
499     real             scratch[4*DIM];
500     __m128           fscal,rcutoff,rcutoff2,jidxall;
501     int              vdwioffset0;
502     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
503     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
504     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
505     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
506     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
507     real             *charge;
508     int              nvdwtype;
509     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
510     int              *vdwtype;
511     real             *vdwparam;
512     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
513     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
514     __m128i          ewitab;
515     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
516     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
517     real             *ewtab;
518     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
519     real             rswitch_scalar,d_scalar;
520     __m128           dummy_mask,cutoff_mask;
521     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
522     __m128           one     = _mm_set1_ps(1.0);
523     __m128           two     = _mm_set1_ps(2.0);
524     x                = xx[0];
525     f                = ff[0];
526
527     nri              = nlist->nri;
528     iinr             = nlist->iinr;
529     jindex           = nlist->jindex;
530     jjnr             = nlist->jjnr;
531     shiftidx         = nlist->shift;
532     gid              = nlist->gid;
533     shiftvec         = fr->shift_vec[0];
534     fshift           = fr->fshift[0];
535     facel            = _mm_set1_ps(fr->epsfac);
536     charge           = mdatoms->chargeA;
537     nvdwtype         = fr->ntype;
538     vdwparam         = fr->nbfp;
539     vdwtype          = mdatoms->typeA;
540
541     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
542     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
543     beta2            = _mm_mul_ps(beta,beta);
544     beta3            = _mm_mul_ps(beta,beta2);
545     ewtab            = fr->ic->tabq_coul_FDV0;
546     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
547     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
548
549     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
550     rcutoff_scalar   = fr->rcoulomb;
551     rcutoff          = _mm_set1_ps(rcutoff_scalar);
552     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
553
554     rswitch_scalar   = fr->rcoulomb_switch;
555     rswitch          = _mm_set1_ps(rswitch_scalar);
556     /* Setup switch parameters */
557     d_scalar         = rcutoff_scalar-rswitch_scalar;
558     d                = _mm_set1_ps(d_scalar);
559     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
560     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
561     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
562     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
563     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
564     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
565
566     /* Avoid stupid compiler warnings */
567     jnrA = jnrB = jnrC = jnrD = 0;
568     j_coord_offsetA = 0;
569     j_coord_offsetB = 0;
570     j_coord_offsetC = 0;
571     j_coord_offsetD = 0;
572
573     outeriter        = 0;
574     inneriter        = 0;
575
576     for(iidx=0;iidx<4*DIM;iidx++)
577     {
578         scratch[iidx] = 0.0;
579     }
580
581     /* Start outer loop over neighborlists */
582     for(iidx=0; iidx<nri; iidx++)
583     {
584         /* Load shift vector for this list */
585         i_shift_offset   = DIM*shiftidx[iidx];
586
587         /* Load limits for loop over neighbors */
588         j_index_start    = jindex[iidx];
589         j_index_end      = jindex[iidx+1];
590
591         /* Get outer coordinate index */
592         inr              = iinr[iidx];
593         i_coord_offset   = DIM*inr;
594
595         /* Load i particle coords and add shift vector */
596         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
597
598         fix0             = _mm_setzero_ps();
599         fiy0             = _mm_setzero_ps();
600         fiz0             = _mm_setzero_ps();
601
602         /* Load parameters for i particles */
603         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
604         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
605
606         /* Start inner kernel loop */
607         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
608         {
609
610             /* Get j neighbor index, and coordinate index */
611             jnrA             = jjnr[jidx];
612             jnrB             = jjnr[jidx+1];
613             jnrC             = jjnr[jidx+2];
614             jnrD             = jjnr[jidx+3];
615             j_coord_offsetA  = DIM*jnrA;
616             j_coord_offsetB  = DIM*jnrB;
617             j_coord_offsetC  = DIM*jnrC;
618             j_coord_offsetD  = DIM*jnrD;
619
620             /* load j atom coordinates */
621             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
622                                               x+j_coord_offsetC,x+j_coord_offsetD,
623                                               &jx0,&jy0,&jz0);
624
625             /* Calculate displacement vector */
626             dx00             = _mm_sub_ps(ix0,jx0);
627             dy00             = _mm_sub_ps(iy0,jy0);
628             dz00             = _mm_sub_ps(iz0,jz0);
629
630             /* Calculate squared distance and things based on it */
631             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
632
633             rinv00           = gmx_mm_invsqrt_ps(rsq00);
634
635             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
636
637             /* Load parameters for j particles */
638             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
639                                                               charge+jnrC+0,charge+jnrD+0);
640             vdwjidx0A        = 2*vdwtype[jnrA+0];
641             vdwjidx0B        = 2*vdwtype[jnrB+0];
642             vdwjidx0C        = 2*vdwtype[jnrC+0];
643             vdwjidx0D        = 2*vdwtype[jnrD+0];
644
645             /**************************
646              * CALCULATE INTERACTIONS *
647              **************************/
648
649             if (gmx_mm_any_lt(rsq00,rcutoff2))
650             {
651
652             r00              = _mm_mul_ps(rsq00,rinv00);
653
654             /* Compute parameters for interactions between i and j atoms */
655             qq00             = _mm_mul_ps(iq0,jq0);
656             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
657                                          vdwparam+vdwioffset0+vdwjidx0B,
658                                          vdwparam+vdwioffset0+vdwjidx0C,
659                                          vdwparam+vdwioffset0+vdwjidx0D,
660                                          &c6_00,&c12_00);
661
662             /* EWALD ELECTROSTATICS */
663
664             /* Analytical PME correction */
665             zeta2            = _mm_mul_ps(beta2,rsq00);
666             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
667             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
668             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
669             felec            = _mm_mul_ps(qq00,felec);
670             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
671             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
672             velec            = _mm_mul_ps(qq00,velec);
673
674             /* LENNARD-JONES DISPERSION/REPULSION */
675
676             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
677             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
678             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
679             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
680             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
681
682             d                = _mm_sub_ps(r00,rswitch);
683             d                = _mm_max_ps(d,_mm_setzero_ps());
684             d2               = _mm_mul_ps(d,d);
685             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
686
687             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
688
689             /* Evaluate switch function */
690             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
691             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
692             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
693             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
694
695             fscal            = _mm_add_ps(felec,fvdw);
696
697             fscal            = _mm_and_ps(fscal,cutoff_mask);
698
699              /* Update vectorial force */
700             fix0             = _mm_macc_ps(dx00,fscal,fix0);
701             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
702             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
703
704             fjptrA             = f+j_coord_offsetA;
705             fjptrB             = f+j_coord_offsetB;
706             fjptrC             = f+j_coord_offsetC;
707             fjptrD             = f+j_coord_offsetD;
708             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
709                                                    _mm_mul_ps(dx00,fscal),
710                                                    _mm_mul_ps(dy00,fscal),
711                                                    _mm_mul_ps(dz00,fscal));
712
713             }
714
715             /* Inner loop uses 65 flops */
716         }
717
718         if(jidx<j_index_end)
719         {
720
721             /* Get j neighbor index, and coordinate index */
722             jnrlistA         = jjnr[jidx];
723             jnrlistB         = jjnr[jidx+1];
724             jnrlistC         = jjnr[jidx+2];
725             jnrlistD         = jjnr[jidx+3];
726             /* Sign of each element will be negative for non-real atoms.
727              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
728              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
729              */
730             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
731             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
732             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
733             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
734             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
735             j_coord_offsetA  = DIM*jnrA;
736             j_coord_offsetB  = DIM*jnrB;
737             j_coord_offsetC  = DIM*jnrC;
738             j_coord_offsetD  = DIM*jnrD;
739
740             /* load j atom coordinates */
741             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
742                                               x+j_coord_offsetC,x+j_coord_offsetD,
743                                               &jx0,&jy0,&jz0);
744
745             /* Calculate displacement vector */
746             dx00             = _mm_sub_ps(ix0,jx0);
747             dy00             = _mm_sub_ps(iy0,jy0);
748             dz00             = _mm_sub_ps(iz0,jz0);
749
750             /* Calculate squared distance and things based on it */
751             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
752
753             rinv00           = gmx_mm_invsqrt_ps(rsq00);
754
755             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
756
757             /* Load parameters for j particles */
758             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
759                                                               charge+jnrC+0,charge+jnrD+0);
760             vdwjidx0A        = 2*vdwtype[jnrA+0];
761             vdwjidx0B        = 2*vdwtype[jnrB+0];
762             vdwjidx0C        = 2*vdwtype[jnrC+0];
763             vdwjidx0D        = 2*vdwtype[jnrD+0];
764
765             /**************************
766              * CALCULATE INTERACTIONS *
767              **************************/
768
769             if (gmx_mm_any_lt(rsq00,rcutoff2))
770             {
771
772             r00              = _mm_mul_ps(rsq00,rinv00);
773             r00              = _mm_andnot_ps(dummy_mask,r00);
774
775             /* Compute parameters for interactions between i and j atoms */
776             qq00             = _mm_mul_ps(iq0,jq0);
777             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
778                                          vdwparam+vdwioffset0+vdwjidx0B,
779                                          vdwparam+vdwioffset0+vdwjidx0C,
780                                          vdwparam+vdwioffset0+vdwjidx0D,
781                                          &c6_00,&c12_00);
782
783             /* EWALD ELECTROSTATICS */
784
785             /* Analytical PME correction */
786             zeta2            = _mm_mul_ps(beta2,rsq00);
787             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
788             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
789             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
790             felec            = _mm_mul_ps(qq00,felec);
791             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
792             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
793             velec            = _mm_mul_ps(qq00,velec);
794
795             /* LENNARD-JONES DISPERSION/REPULSION */
796
797             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
798             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
799             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
800             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
801             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
802
803             d                = _mm_sub_ps(r00,rswitch);
804             d                = _mm_max_ps(d,_mm_setzero_ps());
805             d2               = _mm_mul_ps(d,d);
806             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
807
808             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
809
810             /* Evaluate switch function */
811             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
812             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
813             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
814             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
815
816             fscal            = _mm_add_ps(felec,fvdw);
817
818             fscal            = _mm_and_ps(fscal,cutoff_mask);
819
820             fscal            = _mm_andnot_ps(dummy_mask,fscal);
821
822              /* Update vectorial force */
823             fix0             = _mm_macc_ps(dx00,fscal,fix0);
824             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
825             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
826
827             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
828             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
829             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
830             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
831             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
832                                                    _mm_mul_ps(dx00,fscal),
833                                                    _mm_mul_ps(dy00,fscal),
834                                                    _mm_mul_ps(dz00,fscal));
835
836             }
837
838             /* Inner loop uses 66 flops */
839         }
840
841         /* End of innermost loop */
842
843         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
844                                               f+i_coord_offset,fshift+i_shift_offset);
845
846         /* Increment number of inner iterations */
847         inneriter                  += j_index_end - j_index_start;
848
849         /* Outer loop uses 7 flops */
850     }
851
852     /* Increment number of outer iterations */
853     outeriter        += nri;
854
855     /* Update outer/inner flops */
856
857     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*66);
858 }